

A origem do Spin Nuclear e a A RMN

Spin:

• O Spin é um momentum angular, propriedade fundamental de elétrons e núcleos como massa, carga.

• No caso de partículas como elétrons, prótons e neutrons, denominamos spin uma propriedade intrínseca, vale ½ e não tem análogo clássico.

• O que chamamos de spin nuclear é uma propriedades que está associada à combinação de todos os momentos angulares das partículas dentro do núcleo sejam eles de origem intrínseca ou orbital (movimento nuclear).

 O Spin está diretamente associado ao magnetismo da partícula através de uma relação de com o momento magnético. No caso de núcleos no seu estado fundamental, existe uma relação de proporcionalidade entre o spin nuclear e o momento magnético.

• O spin nuclear pode ser inteiro ou semi-inteiro e o seu valor depende se o número de massa do núcleo é par ou ímpar.

 Núcleos que possuem I>1/2 possuem uma propriedade denominada momento de quadrupolo elétrico, que afeta de forma importante suas características para RMN.

O modelo de camadas atômico

O núcleo atômico

O modelo de camadas e o spin nuclear

Ímpar

Par

Inteiro

8

A Tabela Periódica da RMN

http://grandinetti.org/Research/NMRMethods/index.html

Relação entre Momento Magnético e Momentum Angular

O Momento de Dipolo Magnético

Resumindo: O núcleo atômico e o spin nuclear

Momento angular total = soma das contribuições das partículas que o constituem

$$\vec{L} = \hbar \vec{I} \Longrightarrow \vec{\mu} = \gamma \hbar \vec{I}$$

$$I_z = -I, -(I+1), \dots, I$$

Z prótons	N nêutrons	M	Spin nuclear I	Exemplos
Par	Par	Par	Zero	¹² C ₆ e ¹⁶ O ₈
Par	Ímpar	Ímpar	Semi-inteiro	¹³ C ₆ e ¹⁷ O ₈
Ímpar	Par	Ímpar	Semi-inteiro	¹⁹ F ₉ e ³¹ P ₁₅
Ímpar	Ímpar	Par	Inteiro	${}^{2}\text{H}_{1} e {}^{14}\text{N}_{7}$

Para saber mais:

FREITAS, J. C. C. ; BONAGAMBA, Tito José . <u>Os núcleos atômicos e a RMN</u> em Princípios e Aplicações da RMN, Vol.1, Figueroa Villar, J.D. Editor,Rio de Janeiro: Associação dos Usuários de Ressonância Magnética Nuclear, 1999.

Descrição Clássica da RMN

O Que é?

✓A descrição clássica da Ressonância Magnética Nuclear é baseada na descrição clássica dos movimentos dos momentos magnéticos nucleares de modo a prover um modelo vetorial para a evolução da magnetização nuclear sob a ação de campos magnéticos externos

Quando Vale?

✓ Só é estritamente válida quando não houver acoplamento entre os spins. Em alguns casos propriedades quânticas podem ser inseridas nos modelos de modo a adaptá-lo a casos onde haja acoplamento ou para inserir efeitos fenomenológicos, o que resultas nas chamadas descrições semi-clássicas ou fenomenológicas, respectivamente.

Por que aprender?

✓ Pode ser bastante útil para entender efeitos de pulsos de RF, gradientes, relaxação, detecção de sinal ou mesmo experimentos mais simples como ecos de spin ou CPMG.

 ✓ Formalismos quânticos muito usados em RMN, por exemplo o formalismo de operadores produto, são de certa forma inspirados em modelos vetoriasi .

Movimento de um Momento Magnético em um campo magnético

Movimento de um Momento Magnético em um campo magnético

Se o imã girar em torno do própriò eixo com uma velocidade angular fixa ω , haverá um momentum angular de spin (como é de fato chamado em física clássica) cujo módulo será dado por $L_{spin} = I \omega$, onde I é o momento de inércia do Imã. Aplicando-se um campo magnético aparece o torque, mas como ω é fixo e I é um a propriedade mecânica do imã, o módulo de L_{spin} não tem variar e deste modo para satisfazer a equação de movimento a direção do momentum angular varia. Ocorreentão o movimento de precessá em torno do campo magnético.

$$\frac{d\vec{L}}{dt} = \vec{\mu} \times \vec{B}$$

Continua sendo satisfeito.

Estendendo para o núcleo:

Núcleo atômico: momento angular (spin): $\hbar \vec{I}$ momento magnético: $\vec{\mu} = \gamma \hbar \vec{I}$ $\int \frac{d\vec{L}}{dt} = \vec{\mu} \times \vec{B}_{0} \rightarrow \frac{d}{dt} \left(\frac{\vec{\mu}}{\gamma}\right) = \vec{\mu} \times \vec{B}_{0}$ $\frac{d\vec{\mu}}{dt} = \left[\vec{\mu} \times \gamma \vec{B}_{0}\right]$ Equação de precessão

Dedução do Movimento de Precessão: $\vec{\mu} = \mu_x \hat{x} + \mu_y \hat{y} + \mu_z \hat{z}$ $\vec{B}_0 = B_0 \hat{z}$

Magnetização macroscópica

Pergunta: O que define a magnetização macroscópica ?

Vamos ter que usar uma característica quântica do sistema.

Equilíbrio Térmico (I=1/2)

Equilíbrio Térmico (I=1/2)

Magnetização Macroscópica (I=1/2)

Magnetização Macroscópica (I=1/2) (Lei de Curie)

$$\gamma \mathcal{B}_{0} \hbar << KT \Rightarrow P_{\alpha} \approx 1 + \frac{\hbar \omega_{0}}{k_{B}T} ; P_{\beta} \approx 1 - \frac{\hbar \omega_{0}}{k_{B}T}$$

$$M = \frac{N \hbar \gamma}{2} \frac{1 + \frac{\hbar \omega_{0}}{2k_{B}T} - 1 + \frac{\hbar \omega_{0}}{2k_{B}T}}{1 + \frac{\hbar \omega_{0}}{2k_{B}T} + 1 - \frac{\hbar \omega_{0}}{2k_{B}T}} = \frac{N \hbar^{2} \gamma^{2} B_{0}}{4k_{B}T}$$
Número de spin
por unidade de Valor esperado
volume de μ_{z}

$$Para o caso mais geral, incluindo I > 1/2: \qquad Suceptibilidademagnéticaestática
$$M = \frac{N \hbar^{2} \gamma^{2} I (I+1)}{3k_{B}T} B_{0} = \chi_{0} B_{0}$$$$

Magnetização Macroscópica (I=1/2 (Resumindo)

Magnetização Macroscópica (I=1/2) (Resumindo)

Uma parêntese – LEI DE INDUÇÃO DE FARADAY-LENZ

Quando o campo magnético ao longo do eixo de uma bobina varia no tempo, aparece uma corrente induzida na bobina que tem sentido tal que crie um campo induzido que tende a se contrapor à variação de B. Porém, somente a variação ao longo do eixo induz corrente na bobina.

Efeitos de Campos de Radiofrequência nos momentos magnético nucleares

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B} = \gamma \vec{M} \times \left[B_0 \hat{z} + \vec{B}(t)\right] \hat{z}$$

• Os dois campos atuam simultaneamente, fazendo com que seja difícil descrever a trajetória da magnetização.

• Como a precessão de Larmor é muito bem definida, podemos "simplificar" a dependência com B_0 olhando do ponto de vista de um sistema de referência que gira em torno de z com frequência próxima à frequência de Larmor.

Sistema de Coordenadas Girante

Sistema de Coordenadas Girante

Demonstração: Equação de precessão da magnetização no SCG

Movimento Circular e Oscilação

Movimento Circular e Oscilação

Campo de radiofrequência (RF)

Sistema de Laboratório

Sistema Girante

Campo Efetivo

Em unidades de campo magnético:

Em unidades de frequência:

Amplitude do campo efetivo pode ser controlada pelo offset de ressonância

Direção do campo efetivo pode ser controlada pelo offset de ressonância e pela amplitude de B₁. 39

 $\Delta \vec{\omega} = (\omega_0 - \Omega) \hat{z}'$ $\omega_{eff} = \sqrt{\omega_0^2 + \Delta \omega^2} \checkmark$ $\Delta \omega$ ω_{eff} θ X $\tan \theta = \frac{\Delta \omega}{\langle}$ ω_1 \mathcal{O}_1

Movimento da magnetização no campo efetivo

Ressonância Magnética Nuclear ! Movimento de Precessão do spin em torno de B₁:

 $\nu_{Larmor} \!=\! \nu_L \!=\! \gamma \, B_1$

Referencial de laboratório Referencial Girante

$$\vec{B}_{1}(t) = B_{1} \cos(\omega_{RF}t + \phi)\hat{x} - B_{1} \sin(\omega_{RF}t + \phi)\hat{y}$$
Pulsos
Radiofrequencia
Angulo de Flip (ou rotação)

$$\beta = \omega_{1}t_{p} = \gamma B_{1}t_{p}$$

$$M_{z} = M_{0} \cos \beta$$

$$M_{y} = -M_{0} \sin \beta$$

$$\vec{D}_{y} = \frac{z}{M_{0} \sin \beta}$$

Calibração de Pulsos

$$M_z = M_0 \cos \beta$$
 $M_y = -M_0 \sin \beta$

Discussão: como garantir que um sinal com múltiplas linha o pulso possa ser considerado em ressonância com todas elas: conceito de pulso hard

Detecção do Sinal

O Espectrômetro Básico

Como já discutido somente componente com um componente (cos) não é possível distinguir o sentido de rotação, ou seja, se a frequência é positiva ou negativa em relação a frequência de referência.

Com a aquisição somente da componente cosseno, todas as linhas apareceriam duplicadas (espelhadas em relação a frequência do transmissor)

Exemplo de Duplicação das linhas com a aquisição de uma componente do sinal

Mas como vimos o sinal adquirido é de fato:

$$S(t) = S_0 \cos[(\omega_0 - \omega_r)t] = S_0 \cos(\Delta \omega t)$$

Como resolver ??? 49

Quadratura:

Dedução: transformada de Fourier do cosseno

Um parêntese: Representação Complexa

A relação entre o movimento circular e oscilações lineares é útil para entender números complexos. Se considerarmos o eixo x é a parte real e eixo-y como o imaginário

Movimento no sentido anti-horário: $exp(i\theta) = \cos\theta + i\sin\theta$ Movimento no sentido horário: $exp(-i\theta) = \cos\theta - i\sin\theta$

 $S(t) = S_0 \left[\cos(\Delta \omega t) \hat{x} + \sin(\Delta \omega t) \hat{y} \right] \equiv S(t) = S_0 \left[\cos(\Delta \omega t) + i \sin(\Delta \omega t) \hat{y} \right]$

Detecção em Fase e Quadratura

Fenomenologia da Relaxação

Spins nucleares não estão isolados

Interagem magnética e eletricamente com outros núcleos e o ambiente.

Fenomenologia da Relaxação

Se fora do equilíbrio a magnetização tende a retornar ao seu estado de equilíbrio

Fenomenologia da Relaxação

Equações de Bloch

Matrix de relaxação

٠

$$\frac{d\mathbf{M}(t)}{dt} = \mathbf{M}(t) \times \gamma \mathbf{B}(t) - \mathbf{R}(\mathbf{M}(t) - M_0)$$

$$\frac{dM_{z}(t)}{dt} = \gamma [M_{x}(t)B_{y}(t) - M_{y}(t)B_{x}(t)] - \frac{M_{z}(t) - M_{0}}{T_{1}}$$
$$\frac{dM_{x}(t)}{dt} = \gamma [M_{y}(t)B_{z}(t) - M_{z}(t)B_{y}(t)] - \frac{M(t)_{x}}{T_{2}}$$
$$\frac{dM_{y}(t)}{dt} = \gamma [M_{z}(t)B_{x}(t) - M_{x}(t)B_{z}(t)] - \frac{M(t)_{y}}{T_{2}}$$

Exemplo simples do uso das equações de Bloch

57

Spin-Eco

Inversão e Recuperação

Ver material Figueroa