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Simultaneous-Move Games
with Mixed Strategies I1:
Some General Theory

N CHAPTER 7 WE DEVELOPED the basic confeg.}l of a 1:11):::‘:0 slm::g ;::c 3
method for finding mixed-strategy uqtfillhna in l\fu;‘;i;‘mmf:ll s
on the opponent’s indifference prc;perlg:l ;I"wﬁt:;?;;swmém e Bﬁ;
i " ire 10 1 5
e t‘::l]:it?: zstrul:i}yaoqugl:x::ets}::i[:h :r:;ud-stfamgy equilibria will givea dee;;\ef;
Lnr?;:rssﬁnding to those who plan to go on (0 further study of game theory.
is i i I.
pmv\i/\(lie t}ﬁfj zgsrq’(gil:zsrfr::l;htﬁ;h;ﬁ of this chapter is more dil‘ﬁ?ull E!mn
the reztsof the book. But we do not apologize for including -\:hls Eﬁ:f,:ﬁ::ﬁ:
it has an important place in the history of game I.ht:;};_.r: ‘m:’ e s
Morgenstern's pioneering classic book and Luce and Raiffas L?mixed s
book! devote more than a third of their spm:i]: It: ;t;en:t;{:;r:foour e
i i i constituency. Just as : :
i;tl:lc,l[::\;: :;fetc?:lu;;}:;:alltst(? :V;ldents whase interests Iie. in economics, l;::)sxcr;e:é
litical science, or evolutionary biology, this chapter is for students w e
i mathematical background. Although only a small ﬂl‘l‘l()\l[‘li. of col t.zg
frrx:);;'lzr;n;is is needed, readers will require a familiarity with algebraic notation

nomic Behavior
'See John von Netnmanit antl Oskar Morgenstern, Theory of Games and Eco

i : Prinee! stsity Press, 1944;
Princeton, NJ: Princeton Univers : d
i‘loward Raitfa, Ganmes and Declsions (New York: John Wiley and Son
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), 1957.
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and logic to appreciate fully the material presented here. Those who lack the in-
terest or the preparation for this material can omit this chapter or cover only
parts of it without loss of continuity.

In addition to providing a more general approach to solving two-by-two
games with mixed strategies, we consider larger games in this chapter as well—
those in which players have three or more pure strategies initially available. A
substantive new question arises in such games: When will a player's equilibrium
mix include all of his pure strategies, and when will it include only a subset? Fi-
nally, the basic result regarding general mixed-strategy equilibria, due to von
Neumann and Morgenstern, can claim to be the first true theorem of game the-
ory. We describe that general result in Section 7 and introduce the other ideas
through numerical examples in the earlier sections.

1 BEST-RESPONSE ANALYSIS

When we developed the concept of a mixed strategy in Section 7.1, we pointed
out that a mixture is a special kind of continuous strategy. The probability of
using one of the pure strategies is the continuous variable that characterizes the
strategy. In Chapter 7, we then developed the opponent’s indifference property
as the method for calculating equilibrium-mixture probabilities. But when we
studied Nash equilibria with continuous strategies in Chapter 5, we developed
a different solution method, namely best-response analysis. Now we reconcile
the apparent difference in approaches by using best-response analysis to find
Nash equilibria in mixed strategies. Although the opponent’s indifference prop-
erty remains a quick method of calculating mixture probabilities, best-Tesponse
analysis is the more general method that locates all Nash equilibria (if the game
has multiple equilibria), pure and mixed.

A. Best-Response Analysis of the Tennis Point

We develop best-response analysis of games with mixed strategies using the same
tennis-point example that we used for developing the concept of mixed strate-
gies and their equilibria in Chapter 7. For your convenience we reproduce as
Figure 8.1 the payoff table from Figure 7.1, but we now explicitly include a third,
mixed, strategy for each player. For Evert, we refer to the mixture as her p-mix, in
which we assign the general probability pto choosing her first strategy, DL; we do
likewise for Navratilova and her g-mix. The expressions for the expected payoffs
when one player’s mixture faces a pure strategy of the other player were derived
in Section 7.2, The algebraic expression for the bottom right cell where mix meets
mix is more complicated, but we won't need it, so we leave that cell blank.
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NAVRATILOVA
L
DL g g-mix
s50g+ 50a+
DL 50,50 80,20 80(1 - ) 2001 - )
P
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90(1 - p), 1001 =) | 20(1 - P). 80(1 -p)

FIGURE8.1 Expected Payoffs for General Mixtures in the Tennis Point

In Section 7.2 we also derived Navratilova’s best response to Evert's p-mix.

We restate it here:

If p < 0.7, choose pure CCg="0.
1f p = 0.7, all values of g in the range from 0 to 1 are equa

If p = 0.7, choose pure DL{g=0D.

Just as a reminder, if pis low (Evert is quite likely to choose CC), Navratilova does
better by covering CC; if p is high (Evert is quite likely to choose DL), Navrati-
lova does better by covering DL for a critical value of pin between, namely 0.7,
Navratilova gets the same expected payoff from cither of her pure strategies and
therefore also the same from any mixture of the two.
we show this best response graphically in the left-hand panel of Fig-
ure 8.2, Navratilova is choosing q for cach given value of Bvert's p; thus g is
2 function of p. Therefore p i on the horizontal axis and g is on the verti-
cal axis. We know that, for p < 0.7, Navratilova does better by choosing pure
CC (g = 0); this segment of her best-response curve is the horizontal solid
{green) line along the bottom edge of the graph. For p > 0.7, Navratilova
does better by choosing pure DL (g = 1); this segment of her best-response
curve is the horizontal solid line along the top edge of the graph. For
p = 0.7, Navratilova does equally well with all of her choices, pure and mixed,
and so any value of ¢ between 0and 1 (inclusive) is a best response; the verti-
cal solid line in the graph at p = 0.7 shows her best responses for this choice
by Evert. Navratilova’s best responses are then shown by the three separate line
segments joined end to end and shown in green. As we did for general continu-
ous strategies in Chapter 5, we call this construction Navratilova's best-response
curve, It is conceptually the same as the best-response curves that we drew in
Chapter 5; the only difference is that, for mixed strategies, the curve has this spe-
cial shape. Because it actually consists of three straight-line segments, “eurve” is
a misnomer, but itis the standard general terminology in this context.

| best responses.

BEST-RESPONSE ANALYSIS 265

q = .
1 - - ._ 11— i ]

! ] AR ey

! ) 13

| | I

! : :

i |06

1 1

[} 1

i |

1 1
0 ! :
0 " 0 J

07 1P 0 06 = 9 S

F
IGURE 8.2 Best-Response Curves and Nash Equilibrium

Similarly, we recall Evert’s best-response rule from Section 7.2:

If g < 0.6, choose pure DL (p = 1).

If g = 0.6, all values of
N pfrom 0 to 1 are equal
If g > 0.6, choose pure CC (p = 0). SR

And we depict her best i
response in the middle i
el . ; : panel of Figure 8.2. Here, ¢
s q{zs : utes are determ.med in relation to Navratilova’s various possible CEV?H X
e ,bettti ;s (l)n Fhe horizontal axis and p on the vertical axis. For g < 0.6 }(;zces
e p iy](;lg pure DL (p = 1); for g > 0.6, she does better with 1;1;re gré
- bl,aCk Cti il .c; sh'e (:loes (fequally well with all choices, pure or mixed. The
) consisting of three lin joi .
Sy e segments joined end to end, is Evert's
The right- in Fi
fecting thg mil(l;llld pan;l in Figure 8.2 combines the other two panels by re
e graph across the diagonal (45° li i
S i e ' ine) so that p is on the hori-
rtical axis and then i i i
e superimposing this graph
P egraph. Now the green and black curves meet at thegpointg pp=) 007n thg
4 we. S.e gC{E _e;;qh Elayer. s rn'lxture choice is a best response to the other's C.h e'm
o .gtar ly the derivation of our Nash equilibrium in mixed strategie —
S.
. nll)rlgoure a.lso shows that the best-response curves do not hgave an
e st NaI; g)omt.s]: T}.ms t.he mixed-strategy equilibrium in this example i)s,
e eqm ibrium in the game. What is more, this representation i
. w[; Ce s r;itegles as special cases corresponding to extreme values of m(i
& oo e az:l; reli sofsee t}.1at the best-response curves do not have any poirr:tésiIT
A thuy of the sides of the square where each value of p and g equals em
pure_stratégy esq \L/lvi.ijla've ;zother way to verify that the game does not have anl)-r
: ilibria. The mixed-strategy equilibrium i i
kN Nt FAR gy equilibrium in this example is the
Observe that each ( :
player’s best response i
Wi playe ponse is a pure strategy for almo
er opponent’s mixture. Thus Navratilova's best response is purzt(;ag
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for all of Evert's choices of p < 0.7, and it is pure DL for all of Bvert's choices of
p=> 0.7. Only for the one crucial value p = 0.7 is Navratilova’s best response
a mixed strategy, as is represented by the vertical part of her three-segment
best-response curve in the left panel of Figure 8.2. similarly, only for the one cru-
clalvalue ¢ = 0.60f Navratilova’s mixture is Evert's best response 8 mixed strategy—
namely, the horizontal segment of her best-response curve in the middie panel of
Figure §.2. But these seemingly exceptional or rare strategies are just the ones that
emerge in the equilibrium.

These special values of p and ¢ have an important feature in common.
Evert’s equilibrium p is where Navratilova's best-response curve has its vertical
segment; so Navratilova is indifferent among all her strategies, pure and mixed.
Navratilova’s equilibrium ¢ is where Evert's best-response curve has its horizontal
segment; so Evert is indifferent among ail her strategies, pure and mixed. Each
player’s gggili];rium mixture is such that the other player.is indifferent among
all her mixes. Thus the oppcnentrs/iridi-fference property is reconfirmed by out
best-response analysis,

The best-response-curve method thus provides a very complete analysis of
the game. Like the cell-by-cell inspection method, which examines all the cells
of a pure-strategy game, the best-response-cuve method is the one to use when
we want to locate all of the equilibria, whether in pure o mixed strategies, that
a game might have. The best-response-curve diagram can show both types of
equilibria in the same place. 1t could also be used to show equilibria in which
one player uses a mixed strategy and the other player uses a pure strategy. Such
hybrids oceur only in exceptional cases; we give some examples in Section 2.B.

B. Best-Response Analysis in Non-Zero-Sum Games

Rest-response analysis can also be used for non-zero-sum games and yields all
equilibria, in mixed as well as pure strategics. We illustrate this case using the
assurance game, leaving thie other two classic games we discussed in Chapter 7
(battle of the sexes and chicken) for you as exercises.

We reproduce the payoff matrix of the assurance version of the meeting
game (Figure 4,12 or 7.4) as Figure 8.3, but as in Figure 8.1 for the tennis point,
we show an added row and an added column corresponding to Harry’s p-mix
and Sally's g-mix.”

We depict Sally's payoffs from her two pure strategies in relation 1o
Harry's p-mix, and her best-response rule, in the two panels of Figure 8.4
When p < 213, Sally's best response is pure Local lLatte (g = 0). The intu-
ition is simple; if Harry is not very likely to go 10 Starbucks, neither should

2Rgllowing standard practice, p and q represent the probabilities of choosing the first strategy
(Starbucks).

BEST-RESPONSE ANALYSIS 267

SALLY
Starbucks Local Latte g-mix
Starbucks 1,1
, 0,0
, a9
HARRY Local Latte 0,0 2,2
, 2(1-q), 2(1-q)
p-mix p.p 2(1-p), 2(1-p)

FIGURE 8..
3 Expected Payoffs for General Mixtures in the Assurance Game

Sally. Simil
" z : Wlh aerrlly, vzh;ls p > 2/3, Sally’s best response is pure Starbucks
eyl ;7 Combi,n :ili Ovre:h;t;sLof ql aIfe equally good for Sally, so her best
ocal Latte and Starb i i
. ‘ arbucks. This
i S re_spon.se curve is shown by the vertical straight line fr po“ion o
q Wat p = 2/3 in the right panel of Figure 8.4 st
e find the mixed-strate ilibriun
gy equilibrium b i i
. ! Yy superimposin,
Becauszp;:;s; :ur\;:s, z;s \}/lve did for the tennis-point game in Sgctiong 1 sz;’]"o
yoffs of the two players are s i : .
P peliES ks ymmetric, Harry's best-
bOthe (:/;nilhlo%k just like Sally’s with the two axes interchangedryFiguiztBrzsplfnse
e best-response curves at the i s i I
o e I e same time. Sally’s is the thick green
The twi - '
Al ;)at;e;t rtisponste cur.ves meet at three points. One is at the top right
q = 1. This point corresponds to each player choosing Starbugks

Sally's
payoffs 2 Sally's 1
g-mix
Local Latte
1

Starbucks !

]

i

i

Uo ]
2/3 1 s

Harry's p-mix 2/3 1

Harry's p-mix

Fl
IGUREB.4 Sally's Best Responses
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for sure, in the correct subjective beliel that the other is doing likewise. This
is a self-sustaining state of affaits. The second meeting point is at the bottom
left, where p = 0 and ¢ = 0. ere each is not putting any probability on going to
Srarbucks—that is, is going 1o Local Latte for sure—in the correct subjective belief
that the other is doing likewise. This also is a self-sustaining situation. These are just
the two pure-strategy Nash equilibria for this game that we found in Chapter 4.

But there is a third meeting point in Figure 8.5, where p = 2/3 and g = 2/3.
This intersection is just the mixed-strategy equilibrium that we calculated using
fference property in Section 7.4.A. As promised, best-response

the opponent's indi
for this game, whether in pure

analysis gives us all three of the Nash equilibria
or mixed strategies, in one go.

2 MIXING WHEN ONE PLAYER HAS THREE
OR MORE PURE STRATEGIES

The discussion of mixed strategies (0 this point has been confined to games in
which each player has only two pure strategies, as well as mixes between therm.
fn many strategic situations, each player has available a larger number of pure
strategies, and we should be ready to calculate equilibrium mixes for those cases
as well, However, these calculations gel complicated quite quickly. For truly com-
plex games, we would turn to a computer to find the mixed-strategy equilib-
Fium. But for some small games, itis possible to calculate equilibria by hand quite
easily, The calculation process gives us a better understanding of how the equi-
Jibrium works than can be obtained just from looking at a computer-generated
solution. Therefore in this section and the next one we solve some larger games.

Sally's 1
q-mix
2/3
. |
0 2/3 1

Harry's p-mix

FIGURE 8.5 Mixed-Strategy Equilibrium in the Assurance Game
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Here we consider zero-su i
-sum games in which one of the plays
. ne of tl ers has onl
pi;e_ gg;ltegles, whereas the other has more. In such games, we find E%%o
€ : .
gq 13,“ 11;) \g o hf}s three (or more) pure strategies typically uses only two of them iz
i um. : he ot%lers do not figure in his mix; they get zero probabilities. Wi
: etermine which ones are used and which ones are not.? .
ur example is that of the tenni i .
' s-point game augm ivi
i i . gmented by giving Evert a
i C(t)yrrlp:iedof ret}1rn. In addition to going down the line or crosscgurt gshe now
— e; using a lob (a slower but higher and longer return). Th; equilib
o starlpC en \7\; orl; the payoffs of the lob against each of Navratilova's two gefen—
s. We begin with the case that is most li i .
- t il i
a coincidental or exceptional case. S s e

A. AGeneral Case

Bvert -
N;’r antj;:)w has. 1‘lt.lhree pure strategies in her repertoire: DL, CC, and Lob. We leave
va with just two pure strategies, Cover DL ver C ,
e . 5 or Cover CC. The payoff t:
) 1-1s lr]llew game 0@ btle obtained by adding a Lob row to the table 1111) F)i, ea: 1le
Const:; ! t is shown in Figure 8.6. Now that you are more familiar with mgi)ucrin m
o=y ‘chr;l (g)ames,h we show only Evert's payoffs, and ask you to remember tghat
oses her strategies i
. gies so as to achieve smaller expected payoffs for
T .
Evert}:: ezagoffs in the ﬁrs.t three rows of the table are straightforward, When
e etrhpure strategies DL and CC, her payoffs against Navratilove;'s pur
es or the g-mix are exactly as in Fi :
gure 8.1. The third row also i
ratcgls w also is analo-
i . ‘(’ar} lf;/:rt uses Lob, we assume that her success percentages against
a’s DL and CC are, respectively, 70% and 60%. When Navratilova uses

NAVRATILOVA

DL cC q-mix
DL

50 80 50 +80(1 - g)
CcC 90

EVERT = 90q +20(1 -q)

Lob

iy 60 70q+60(1 - g)

p-mix 50p; +90 p, 80p, +20p,
+70(1 -py—p,) | +60(1-p; -py)

Fl
IGURE 8.6 Payoff Table for Tennis Point with Lob

*Even whon a
iergtmt "m“phw”f.“ ;;:;Ijt wo pute strategles, he may not use one of them in equilibrivm. The
B y one of his strategies to be better agalnst the one that the first pinyur

does use. In o
1 othe i i
[ A—— w‘{»ﬂ]’;‘]’:y‘i‘“ ;ﬂtlulllb] tium “mixtures” collapse to the special case of piare strategies.
res have three or more :
[ strategles, w ‘
ullibrium where some of the pure stratogies go unu: :.:.l &5, we can have a genuinely mixed-sirategy
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her ¢-mix, using DLa fraction ¢ of the time and CC a fraction (1 — g) of the time,
Evert's expected payoff from Lob is 70q + 6001 — g); therelore that is the entry in
the cell where Evert's Lob meets Navratilova's g-mix.

The really new feature here is the last row of the table. Evert now has three
pure strategies, so she must now consider three different actions in her mix. The
mix cannot be described by just one number p. Rather, we suppose that Evert
plays DL with probability p, and CC with probability p,, leaving Lob to get the
remaining probability, 1 — 4 — P Thus we need two numbers, p and p,, to
define Bvert’s p-mix. Each of them, being a probability, must be between 0 and
1. Moreover, the two must add to something no more than 1; that s, they must
satisfy the condition py + p» = 1, because the probability (1 — pr ~ p,) of using
Lob must be nonnegative.

Using this characterization of Evert's p-mix, then, we see that her expected
payoff, when Navratilova plays her pure strategy DL, is given by 50p, + 90p, +
70(1 — p, — j2). This is the entry in the first cell of the last row of the table in Fig-
ure 8.6. Evert's expected payoff from using her p-mix against Navratilova's CC is
similarly 80p, -+ 20p, + 60(1 — py — p»). We do not show the expression for the
payoff of mix against mix, because it is too long and we do not need it for our
calculations.

Technically, before we begin looking for a mixed-strategy equilibrium, we
should verify that there is no pure-strategy equilibrium. This is easy to do, how-
ever, so we leave it to you and turn to mixed strategies.

‘The easiest way to solve fora mixed-strategy equilibrium in a constant-sum
game where one player has just two pure strategies, and the other has any num-
ber, is to use the minimax method from the perspective of the player who has
just two pure strategies; here that player is Navratilova.t This approach works be-
cause Navratilova's mixture can be specified by using just one variable—namely,
the single probability (4) used to define her mixed strategy. That probability, of
choosing DL in this case, fully specifies her mixed strategy; after ¢ is known, the
probability of choosing CCis simply (1 — ¢).

Figure 8.7 shows Evert's expected payoffs (success percentages) from playing
each of her pure strategies DL, CC, and Lob as the g in Navratilova's g-mix var-
ies over its full range from 0 to 1. These graphs are just those of the expressions
in the right-hand column of Figure 8.6. Given the usual worst-case assumption
that is appropriate in zero-sum games, Navratilova's calculation of her mini-
max strategy is as follows. For each g, if Navratilova were to choose that g-mix
in equilibrium, Evert's best response would be to choose the strategy that gives
her (Evert) the highest payoff. Evert’s best response, which is also the worst-case

4For many amusing uses of this method, see John D. williams, The Compleat Strategyst (New York:

McGraw-Hill, 1954; reprint, New York: Dover, 1986).
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Evert's
success (%)
When Evert

plays 90

80 DL, Lob, and €C _
-~

7!
60 &

150
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i
i
I
I
I
I
|
|
|
i

0 I
0.5 06 0.667 1

Navratilova's g-mix

FIGURE 8.7 Diagrammatic Solution for Navratilova's g-Mix

s . . 3
tgzlaqu;)/v forhNavr}z:nlova, is then shown on the highest of the three lines at
. We show this set of worst-case outcomes wi
. s with the thicker li in Fi
. ines in Fig-
li;e; : ;thesgloutcomes are formed from the upper envelope of the three payi)gff
. Navratilova's optimal choice of i
: g will make Evert's
e . payoff as low as -
e (thereby making her own as large as possible) from thi .
i is set of worst-case
Cu]io l;le more Precise about Navratilova’s optimal choice of g, we must cal
e (;e n: e ;oordmates of the kink points in the line showing }’1er worst—cazt;
. tv‘e’es. }g Ij/alue of g at the left-most kink in this line makes Evert indiffer-
ont betwe gr; ‘ and Lob. T}'lat q nTust equate the two payoffs from DL and Lob
et o g_al;lgt the g-mix. Setting those two expressions equal gives us 50q
i 0;150—7 Eq + ’60(1 — ¢) and g = 20/40 = 1/2. This first kink is thus at
. 0 é % ; vert's expected payoff at this point is 50 X 0.5 + 80 x 0.5 =
el C Cmbs L01.)5 = 65. At the second (rightmost) kink, Evert is indifferent' be-
o ob. Thlfs the g value at this kink is the one that equates the CC
48/ payoff expressions. Setting 90g + 20(1 — ¢) = 704 + 60(1 q) find
= ' : S5e - q), we fin
Za I 6;)(,) the rightmost kink is at ¢ = 0.667, or 66.7%. Here, Evert's expected
yN 1890 X 0.667 + 20 X 0.333 = 70 X 0.667 + 60 X 0.333 = 66.67 ’
- Chon we can exp]lc‘ltly describe Evert's best responses to Navratiiova’s differ-
i ot:ce?1 of g. Evert's best response is DL when ¢ < 0.5, CC when g > 0.667
0 pe most
. Ofw ‘:}111] 0.5 <_ q< 0.667..As usual, Evert’s best response is pure for most
. [Zi " en g = 0.5, Evert is indifferent between DL and Lob and therefore
y indifferent between those two pure strategies and any mixture of them
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When g = 0.667, she is indifferent between CC and Lob and therefore equally

indifferent between those two pure strategies and any mixture of them.
Figure 8.7 also shows that, of all the worst-case scenarios for Navratilova,
{he best {or least bad) occurs at the left kink, where ¢ = 0.5 and Evert's expected
payoff is 65. The thick line shows all the maxima (for each ¢), and this point rep-
resents the minimum among them; this is Navratilova’s minimax. At this point,
Evert achieves the smallest of the payolls associated with choosing her best re-
sponse to each ¢ that Navratilova might pick, Therefore, at g = 0.5, Navratilova
achieves the largest of her worst-casc payoffs, and she should choose this ¢ in

) equilibrivm.

i When Navratilova chooses g = 0.5,
and either of these choices gives her a
ol Eyert will not use CC atall in equilibrium.

{_ equilibrium mix.
Now we can proceed with the equilibrium analysis as if this were a game with

just two pure strategies for each player: DL and CC for Navratilova, and DL and
Lob for Evert. We are back in familiar territory. Therefore we leave the calculation
to you and just tell you the result. Evert's optimal mixture in this game entails her
using DL with probability 0.25 and Lob with probability 0.75. Evert's expected pay-
off from this mixture, taken against Navratilova's DLand CC, respectively, is

50 X 0.25 + 70 X 0.75 = 80 X 0.25 + 60 % 0.75 = 65.

Evert is indifferent between DL and Lob,
better payoff than does CC. Therefore
CC will be an unused strategy in her

This payoff is Evert’s maximin value, and it equals Navratilova’s minimax, in con-
formity with the general result on mixed-strategy Nash equilibrium in zero-sum
games. Thus, in equilibrium Evert imixes her DL and Lob with probabilities 0.25
and 0.75. Navratilova mixes her DL and CC with probabilities 0.5 each. The max-
imin (minimax) payoff to each is 65.

We could not have started our analysis
we did not know in advance which of her three strategies Evert would not use.
But we can be confident that in the general case there will be one such strat-
egy. When the three expected payoft lines take the most general positions, they
intersect pair by pair rather than all crossing at a single point. Then the upper
envelope has the shape that we see in Figure 8.7. Its lowest point is defined by
the intersection of the payoff lines associated with two of the three strategies.
The payoff from the third strategy lies below the intersection at this point, s0 the

player choosing among the three strategies does not use that third one.

with this two-by-two game, because

B. Exceptional Cases

ersections of the three lines of Figure 8.7 depend on the

The positions and int
the payoffs for that particular

payoffs specified for the pure strategies. We chose
game to show a general cO

nfiguration of the lines. But if the payoffs stand in very
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i;’)i;?g;f relationships to each other, we can get some exceptional configuration:
ifferent results. We describe the ibiliti ;
; possibilities h i
draw the diagrams for these cases. hereburleaveltoyouto e
First. i )
e glst,l .1f Evert's pa.yoffs from Lob against Navratilova's DL and CC are equal
iy e .1nfa for Lob is horizontal, and a whole range of g-values achieve Ngvra’
minimax. For example, if the two i :
. 3 payoffs in the Lob i
o e, row of the tabl
Féz;‘: 2(75 are 71(; t;ach, then it is easy to calculate that the left kink in a reviiég
.7 would be at g = 1/3 and the right ki
ght kink at g = 5/7. For a i
lrizi)r;.ge frqm 1;13 to 5/7, Evert’s best response is Lob, and we get an umr;ZuZlm th'e
ium in which Evert plays a pure stra : <l
: tegy and Navratil i
Navratilova's equilibrium mi v
ixture probabiliti i i ithi ’
engetromegteat o P ilities are indeterminate within the
S ; )
loweref}?::'t }11f Everts‘payoffs from Lob against Navaratilova’s DL and CC are
- Strategiesose olf1 .Fl}glurebBJ by just the right amounts (or those of the other
are higher by just the right amounts) i
‘ ! , all three lines
o st . can meet
Navratﬂ;;(:;;t.]ffr e):iarélgle, if the payoffs of Evert's Lob are 66 and 56 against
an , respectively, instead of 70 a
: { nd 60, then fi =
lzi\zlegt_s expected payoff from the Lob becomes 66 X 0.6 + 56 X 0 40r_q39 60.6
en.t a— 62, tl:lelszlilme as that from DL and CC when g = 0.6. Then Ever‘t is indi.ffe:‘
mong all three of her strategies = is -
e gies when g = 0.6 and is equally willing to mix
In thi . i T
e l‘nmtiI;llstspeCIal case, Evert’s equilibrium mixture probabilities are not full
e iesa e. Rather, a whole range of mixtures, including some where all threZ
. Di anzrg élsed, can do the .job of keeping Navratilova indifferent between
i and therefore willing to mix. However, to achieve her minimax,
. i 0‘{;11 must use the mixture with g = 0.6. If she does not, Evert’s best r :
I i ' :
l\f; vr:fﬂ:;n 'bg t(‘{ switch to one of her pure strategies, and this will work :0
. Ovvas Ftnment. We do not dwell on the determination of the precise
ge over which Evert’s equilibrium mixtures can vary, because this case can

y aris for excepti f the payoﬁ numbers and is therefore
only arise fo: onal combinations of th

C. Case of Domination by a Mixed Strategy

What if ¢ i
oo 1:) “llievre;tl s pzta}):offs 1from using her Lob against Navratilova's DL and CC are
an the values that make all three lines i i i
ure 8.8 illustrates such a payoff matrix. nesntersectin one pointt e
When off I

. Na‘v,vreflrapl,l the .expected payoff lines from Evert's three pure strategies

b 1: ilova's cho.lce of g, we now find that Lob has shifted down from its

el antiolgurfel\?i. Figure 8.9 shows the new configuration of lines and the

! n of Navratilova’s minimax. The cal i

S o : . The calculations that give us the posi-
he three lines labeled DL, CC, and Lob, and their intersections f(I)JIIO\lN
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NAVRATILOVA
DL cC
DL 50 80
EVERT cC 90 20
Lob 75 30
FIGURES8.8 Tennis Point When Lob Is Never a Best Response

: ; .
the same procedures as before; so we omit the details. The line labeled Mix
e

0*?‘2"":’3:2: t];at with these numbers, Lob is notavery good strategy for Evert.
i :

i : ither DL
In fact, the line showing the payoffs from Lob hes‘i c\turywh.e:ewlzlell?: ;:llt;w b
CC—and so below the upper envelope of those lines—3a e
poin f intersection of the DL and CC lines. Thus, for each ('f in Navra
Pmm‘ Dl l“wul'ma of the pure strategies DL or CC gives Evert a higher payofl than
i msi:i re 8.9 shows that if g < 0.667, DL is a better response for Evert
s LOE: if gu:- ox; CC is better than Lob; and when 0.4 < ¢ < 0,667, both [f)L
gtfﬁntl‘g a.r:a gelte;: l'hau Lob. In other words, Lob is never the best response 10r

y C. If
1 1 T or
However, it 18 also true that Lob is not dom nated by e ther DL C I

g <04, Lob does better than CC, whereas if g >

Evert's
success (%}

80

0 04 0.6 0667 1

Navratilova's g-mix

FIGURE 8.9 Domination by a Mixed Strategy
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DL. Thus it appears that Lob cannot be eliminated from Evert’s consideration by
using dominance reasoning. Instead, we use reasoning below that is related to
the concept of rationalizability from Chapter 5.

But now that we are allowing mixed strategies, we can consider mixtures of
DL and CC as well. Can one such mixture dominate Lob? Yes. Consider a mix-
ture between DL and CC with respective probabilities p and (1 — p). Its payoff
against Navratilova’s pure DL is 50p + 90(1 — p), and its payoff against Navrati-
lova’s pure CC is 80p + 20(1 — p). Therefore its payoff against Navratilova’s g-mix
is [50p + 90(1 — p)] g + [80p + 20(1 — p)I(1 — q) = [50q + 80(1 — @)]Ip + [90g +
20(1 — @)l(1 — p). This expression is an average of the heights of the DL and CC
lines, with proportions p and (1 — p).

In other words, Evert's expected payoff from her p-mix between DL and CC

/ gainst Navratilova’s g-mix is a straight line that averages the two separate DL

and CC lines, Naturally, the average line must pass through the point of intersec-
tion of the two separate DL and CC lines; if, for some ¢, the two pure strategies
DL and CC give equal payoffs, so must any mixture of them.

If p = 1 in Evert’s mixture, she plays pure DL and the line for her mixture
is just the DL line; if p = 0, the mixture line is the CC line. As p ranges from 0
to 1, the line for the p-mix rotates from the pure CC to the pure DL line, al-
ways passing through the point of intersection at ¢ = 0.6. Among all such
lines corresponding to different values of p, one will be parallel to the line for
Lob. This line is shown in Figure 8.9 as the fourth (dashed) line labeled Mix.
Because the line for Lob lies below the point of intersection of DL and CC, it
also lies entirely below this parallel line representing a particular mixture of
DL and CC. Then, no matter what g may be, Lob yields a lower expected payoff
than this particular mixed strategy. In other words, Lob is dominated by this
mixed strategy.

It remains to find the probabilities that define the mixture that dominates
Lob for Evert. By construction, the Mix line is parallel to the Lob line and passes
through the point at which ¢ = 0.6 and the expected payoff is 62. Then it is
easy to calculate the vertical coordinates of the Mix line. We use the fact that
the slope of Lob = (75 — 30)/(1 — 0) = 45, Then the vertical coordinate of the
Mix line when g = 0 is given by v in the equation 45 = (62 — v)/(0.6 — 0), or
v = 35; similarly, when g = 1, the vertical coordinate solves 45 = (v — 62)/(1 — 0.6),
which gives us v = 80. For any value of g between 0 and 1, the vertical coor-
dinate of the Mix line is then 80 X g + 35 X (1 — ). Now compare this result
with the expression for the general p-mix line just derived. For the two to be con-
sistent, the part of that p-mix expression that multiplied ¢—50p + 90(1 — p)—
must equal 80, and 80p + 20(1 — p) must equal 35. Both of them imply that
pP=10.25,

Thus Evert's mixture of DL with probability 0.25 and CC with probability
0.75 yields the Mix line drawn in Figure 8.9. This mixed strategy gives her a better
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expected payoff than does her Lob, for each and every value of Navratilova's g. In
other words, this particular mixture dominates Lob from Evert's perspectivef’

Now we have shown that if a strategy is nevera best response, then we can
find a mixed strategy that dominates it In the process, we have expanded the
scope of the concept of dominance to include domination by mixed strategies.
The converse also is true; if a strategy is dominated by another strategy. albeit &
(mixed one, it can never be a best response 1o any of the other player’s strategies.
We can then use all of the other concepts associated with dominance that were
developed in Chapter 4, but now allowing for mixed strategies also. We can do
successive or iterated elimination of strategies, pure or mixed, that are domi-
nated by other strategies, pure or mixed. If the process leaves just one strategy
for each player, the game is dominance solvable and we have found a Nash
equilibrium. More typically, the process only narrows down the range of strate-
gies. In Chapter 5, we defined as rationalizable the set of strategies that remain
after iterated elimination of pure strategies that are never best responses. Now
we see that in two-player games we can think of rationalizable strategies as the
set that survives after doing all possible iterated elimination of strategies that

are dominated by other pure or mixed strategies.”

3 MIXING WHEN BOTH PLAYERS HAVE THREE STRATEGIES

As we saw in our two-by-three strategy example it the preceding section, & player
mixing among three pure strategies can choose the probabilities of any two of
them independently (as long as they are nonnegative and add up to no more than
1); then the probability of the third must equal 1 minus the sum of the probabil-

swe constructed the parailel line to guarantee dominance. Other lines through the point ofin-

tersection of the DL and CC lines also can dominate Lob as long as their slopes are not too different
from that of the Lob line.

“1n the example of Section 5.4 (Figure 5 6], we siw that Column's SUrtCEY O is never i best e
sponse but 1t is not dominated by any of the pure strategies C1, C2, or C3. Now wet knew that we can
look for domination by o mixed siTRtegy. In thit game, [t Is easy to see that G4 is (stricily) dominated

by an equal-probability mixiure of C1 and 3.
*This equivalence between “never a best response” arid ~dominated by o mixed strategy” works

fine in two-player games, but an added complication arises in many-player games. Consider a game
wiih three players, A, B, and C. Ong of As strategles—say, Al—may pever e a best response t ANy
pure gies or independ ty mived s gies of B and €, but Al may fail to be dominated by any
ather pure or mixed strategy for A However, if Al Is nevera best respunse 1o any pure strutegies of
arbitrarily correlated mised strategies of Band C then it must be dominated by another of Ks puie
or mixed ples A pl 1 6 this pequires more ad | gami theory, s0/We merely
mention it See Andreu Mas-Colell, Michael Whinston, and lerry R, Green, Microecanamic Theory'
(New York: Oxford University Press, 1a95), pp. 242-245 and 262263,
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I\ t 1 lfy m
ties of the other two. Thus we need two variables to spec! a mix.” When both
gles,
layers have three strategies, we cannot find a mixed-strategy e b Wi
play gy qu111 Tium 1
out dOlIlg two-variable algebra. In many cases, such algebla is still manageable

A. Full Mixture of All Strategies

Consider a simplified re| i
presentation of a penalty kick in socc

‘ : ; er. Su
i(;cl;ell‘ };as Jl:iSt t}kllree pure strategies: kick to the left, right, or center. (Affr? z;the
r 7, left and right refer to the goalie’s left or ri ig . .l

: ight, for a right-footed ki
jort, eftand right . : gl ed kicker.) Then
g these strategies, with probabilitie
. i s denoted by p, and
Zrcl,d rt:;pe(;lt}vely. Any twolof them can be taken to be the independentLv:rr;ables
| e third expressed in terms of them. If p and py are made the two inde
en . . A
Etrateeliléscimce v;irlables, then p; = 1 — p;. — pg. The goalie also has three pure
e g : hname ly, move to the kicker's left (the goalie’s own right), move to the
I's right, or continue to stand in the center i :

Tig —and can mix among them with
prol;ablhtles qu gr and g, two of which can be chosen independentgly "
e t‘At:st.-rt;sponse analysis also works in this context. The goalie wouid choose

o .
s in )epen(;ieflt variables, say (g, g), as his best response to the kicker's
hy 'hlf;; pr), and vice versa. The Nash equilibrium occurs when each is choos-
mignit gst r.esponse to the other’s mix. However, because each is choosing two
udes in response to the other's two, we can’
X t use best-
because they would have to be in four dimensions i
. o5 .
- tonfztzs(:,oze use tfle principle of the opponent’s indifference, which enables
one player’s mixture probabilities. They sh
other is indifferent amon S oy
g all the pure strategies that i is mi
o . constitute his mixture.
quations that can be solved for the mi ili

In the soccer example, the kicker" S ey
. 7 er's (p,, pr) would satisfy two e i

ing the requirement that the ie’ i s

goalie’s expected payoff from using hi
equal that from using his ri| B e,
ght and that the goalie’s ex| d i
his right should equal that fr i i bt el
om using his center. (Then the equali

payoffs from left and center follow: i B e
. : s automatically and is not a

tion.) With more pure strategi ' be olved for

gies, the number of the probabilities to b
; e sol

and ;klle number of equations that they must satisfy also increase vedter
he g;illl-re 81;)1 s}éO\;vs the payoff matrix with the kicker as the Row player and

ie as the Column player. (Unlike in the ex i

i g ample in Chapter 7, th
not real data, but similar rounded i 2D
; ) numbers to simplify cal i
ngeie T I plify calculations.) Because
Scorelscaerowimtsdto maxur?lze the percentage probabilities that he successfully
goal and the goalie wants to minimize the probability that he lets the

8
More generally, if a player has ure strategies, then her mix has (N — 1) independent variables,
[ play Np gi i i p:
or“degrees of freedom of choice, I Ny
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GOALIE

Left Center Right

Left 45 90 90
KICKER Center 85 0 85

Right 95 95 60

(AL

FIGURE 8,10 Mixing in Soccer penalty Kick When All Pure Strategies Are Used

goal through, this is a zero-sum game. W;: s?;m; “;T E::r:iilsl'rz)mh:::}e;l:r;irl i
ar's) peispective. For example, if the Kic
i::ecgl::::ep::i\rcs} IL thrl.' kicker’s left {the wp-ie[vc.omer .celli. \.;;e su.‘lpiplos:dtl;il:
the kicker still succeeds 45% of the time. But if the kicker kicks to his ;19,.1 Tn "
goalie goes to the kicker's left, then the kicker 1‘135 a 90% chance ;: Is:i.n;e rficks-
suppose a 10% probability that he might kick wide m: l.alu high.. If l. e . cl it
to his right (bottom row of the matrix), his probabilities of :.uc;es:- are c Iy
the goalie guesses wrong and 60% if the goalie g‘ucsse‘s correctly. ‘uu can c;im
ment with different payoff numbers that you think mlg.ht be more ap[)rn;;q Su. )
it is easy to verify that the game has no equilibrium in pure strategies. x m[;[
pose the kicker is mixing with probabilities p, Pr and pe =1 = m= p“r%“ ga
each of the goalie’s pure strategies, this mixture yields the following payolls:

Left: 45p + 85pc + 95pR = 45p, +85(1 — p.— pr) + 95pPu

Center: 90p, + 0pc + 95pa = 90p. + 95pa

Right: 90p, +85pc + 60pp = 90p, + 85(1 — pL— pr) + 60pr

mall as possible. Butin a mixed-strategy
be such that the goalie is indifferent
ese expressions must be equal

The goalie wants these numbers to be as s
equilibrium, the kicker’s mixture must
among his pure strategies. Therefore all three of th
" e(ll?,lgll;:trilrlllgmt.he Left and Right expressions and sirl?pllfying, we have 4(?;:le=
35pg, O p = (9/7)py. Next, equate the Qenter and R;gh.{ f:xp'rcss'.ons an

plify, by using the link between p, and pyjust obtained. This gives

90py + 95(9p,/7) = 90p, + 8511 — pL = P/ + 609p7),

or [85+ 120(9/7)] pL= 85,

which yields p. = 0.355.

= 0.355(9/7) = 0.457, and finally pe = 1 — 0.355 — 0.457 = 0.11_38.
any of the goalie's pure strategies
n then be calculated by using any

Then we get pa f
The kicker's payoff from this mixture against

and therefore against any mixture of them cef
of the preceding three payoff lines; the result is 75.4.
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The goalie's mixture probabilities can be found by writing down and solving
the equations for the kicker’s indifference among his three pure strategies against
the goalie’s mixture. We will do this in detail for a slight variant of the same
game in Section 3.B, so we omit the details here and just give you the answer:
g, = 0.325, gz = 0.561, and g = 0.113. The kicker's payoff from any of his pure
strategies when played against the goalie's equilibrium mixture is 75.4. Note that
this payoff is the same as the number found when calculating the kicker’s mix;
this is just the maximin = minimax property of zero-sum games.

Now we can interpret the findings. The kicker does better with his pure Right
than his pure Left, both when the goalie guesses correctly (60 > 45) and when he
guesses incorrectly (95 > 90). (Presumably the kicker is left-footed and can kick
harder to his right.) Therefore the kicker chooses his Right with greater prob-
ability and, to counter that, the goalie chooses Right with the highest probabil-
ity, too. However, the kicker should not and does not choose his pure-strategy
Right; if he did so, the goalie would then choose his own pure-strategy Right,
too, and the kicker’s payoff would be only 60, less than the 75.4 that he gets in
equilibrium.

B. Equilibrium Mixtures with Some Strategies Unused

In the preceding equilibrium, the probabilities of using Center in the mix are
quite low for each player. The (Center, Center) combination would result in
a sure save and the kicker would get a really low payoff—namely, 0. There-
fore the kicker puts a low probability on this choice. But then the goalie also
should put a low probability on it, concentrating on countering the kicker's
more likely choices. But if the kicker gets a sufficiently high payoff from
choosing Center when the goalie chooses Left or Right, then the kicker will
choose Center with some positive probability. If the kicker’s payoffs in the
Center row were lower, he might then choose Center with zero probability;
if so, the goalie would similarly put zero probability on Center. The game
would reduce to one with just two basic pure strategies, Left and Right, for
each player.

We show such a variant of the soccer game in Figure 8.11. The only differ-
ence in payoffs between this variant and the original game of Figure 8.10 is that
the kicker's payoffs from (Center, Left) and (Center, Right) have been lowered
even further, from 85 to 70. This might be because this kicker has the habit of
kicking too high and therefore missing the goal when aiming for the center.
Let us try to calculate the equilibrium here by using the same methods as in
Section 3.A. This time we do it from the goalie’s perspective; we try to find
his mixture probabilities g,, gz, and g by using the condition that the kicker
should be indifferent among all three of his pure strategies when played against
this mixture.




|
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GOALIE
Left Center Right
Left 45 90 90
KICKER Center 70 0 70
Right 95 95 60

FIGURE8.11  Mixing in Soccer Penalty Kick When Not All Pure Strategies Are Used

The kicker's payoffs from his pure strategies are

Left: 45¢,+ 90qc + 90gp = 4541 + 90(1 — g — qn) + 90Gr = 45¢, + 9003 — qu

: = 70qr
Center: 70g, + 0dc + 70qr 70q, + - B
Right: 95qt + 95qc + 60gp = 95qL + 95(1 — g, — qp) + 60 G = 95(1 — gp) + 60gr

Equating the Left and Right expressions and simplifying, we have 9;)8;04;&';57;;1
95 — 35¢p or 35gy = 5 + 454y Next, equate the Left and Ce_n:e; esxplr e i
simplify 1o get 90 — 454, = T0q, + T0qy, or 115qL.+ T0¢y = 90, :.1 35 l?n[; >
oy from the first of these equations (after multiplying t.hroui;?h by A':n ge]m m.;uc
10 + 904, into the second yields 205g, = 80, or g, nvl].sstl. Ih,en mbr:]sl; ]: ﬂ.;' o
for g, in either of the equations gives gy = 0.644. Finally, we lEeh‘;] s
values to obtain g = 1 — 0.390 — 0.644 = —0.034. Because probabiities
i thing has obviously gone wrong.
” n';ga\i:g;:t?:d wlfat happens in this example,. start by' rfoting th.at C:fn:g;
is now a poorer strategy for the kicker than it was in the or}gmal v;rs:(ir;e fihe
game, where his probability of choosing it was already quntfe Icw.h u . w. -
cept of the opponent’s indifference, expressed in 1.lw equations |l1 ‘ar O
solution, means that the kicker has to be kept willing to use this ;;u k“.:ker’q
egy. That can happen only if the goalie is using I.zis hc.":t counter :n ;\ 1(:[ 1 :hi.s
Center—namely, the goalie’s own Center—sufficiently l.n‘frequenl \lr ncf |Cr:e i
example that logic has to be carried so far that the goalie's probability o
e negative. .
- :;t;etf;ergebEa, the solution that we derived may h'e ﬁ}w. but it VI[::::::TI:::
requirement of probability theory and real-life rar‘1d0‘mw.atsun that pr{:' "S e
be nonnegative. The best that can be done in reality is to push the ﬂ,m?ll ||3I llewes
ability of choosing Center as low as possible—namely, o zero. But 1. t!a ﬁ(;n e
the kicker unwilling to use his own Center. In other w?rds‘, we. get.a il uathat :
which each player is not using one of his pure strategies in his mixture, 3
is using it with zero probability. o

eac}tllasr? i::egre then be ar? equilibrium in which each player is mlxm.g be;vlvltzzz
his two remaining strategies—namely, Left and Right? If we regard this re
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two-by-two game in its own right, we can easily find its mixed-strategy equilib-
rium. With all the practice that you have had so far, it is safe to leave the details
to you and to state the result:

Kicker's mixture probabilities: p, = 0.4375, pp = 0.5625;
Goalie’s mixture probabilities: g, = 0.3750, gy = 0.6250;
Kicker’s expected payoff (success percentage): 73.13.

We found this result by simply removing the two players’ Center strategies
from consideration on intuitive grounds. But we must check that it is a genuine
equilibrium of the full three-by-three game. That is, we must check that neither
player finds it desirable to bring in his third strategy, given the mixture of two
strategies chosen by the other player.

When the goalie is choosing this particular mixture, the kicker's payoff from
pure Center is 0.375 X 70 + 0.625 X 70 = 70. This payoff is less than the 73.13
that he gets from either of his pure Left or pure Right or any mixture between
the two, so the kicker does not want to bring his Center strategy into play. When
the kicker is choosing the two-strategy mixture with the preceding probabili-
ties, his payoff against the goalie's pure Center is 0.4375 X 90 + 0.5625 X 95 =
92.8. This number is higher than the 73.13 that the kicker would get against the
goalie's pure Left or pure Right or any mixture of the two and is therefore worse
for the goalie. Thus the goalie does not want to bring his Center strategy into

play either. The equilibrium that we found for the two-by-two game is indeed an
equilibrium of the three-by-three game.

To allow for the possibility that some strategies may go unused in an equilib-
rium mixture, we must modify or extend the “opponent’s indifference” principle.
Each player's equilibrium mix should be such that the other player is indifferent
among all the strategies that are actually used in his equilibrium mix. The other
player is not indifferent between these and his unused strategies; he prefers the
ones used to the ones unused. In other words, against the opponent’s equilib-
rium mix, all of the strategies used in your own equilibrium mix should give you
the same expected payoff, which in turn should be higher than what you would

get from any of your unused strategies. This is called the principle of comple-
mentary slackness; we consider it in greater generality in the next section, where
the reason for this strange-sounding name will become clearer.

4 MORE COUNTERINTUITIVE PROPERTIES OF MIXED STRATEGIES

In Chapter 7, Section 5, we pointed out, discussed, and explained some fea-
tures of mixed-strategy equilibria that appear counterintuitive at first sight.
We postponed the discussion of some other counterintuitive outcomes
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OPPONENT EXPECTS
P R
4 b
YOU
PLAY R . o

FIGURE8.12 Table of Success Probabilities of Risky and Percentage Plays

because they required somewhat more mathematics. We take these additional

examples up now.

A. Risky and Safe Choices in Zero-Sum Games

In sports, there are always some strategies that are relatively sat‘(:j: they cI:‘ :::l:
fail disastrously even if anticipated by the opponent l:a.ul do not do \rer__g:rw :
better even if unanticipated. Other strategies arf: risky; they do br I-Z“ )sr
if the other side is not ready for them but fail miserably if the nlt:ar SI. (fd:e
ready. Thus in football, on third down with a yard to go, a run up th.e n;le »
is safe and a long pass is risky. The following example incorporates t 11s i 5
safe-versus—risky strategies. In addition, although most of‘our examples .uset )
lustrative numbers for payoffs, here we change that practice to emplhalsm:’ raiz
generality of the problem. Therefore, we let the p'ayoffs be genera al gebein
symbols, subject only to some conditions concerning the basic strategy g
con&z(ti):lrsig;ar any zero-sum game in which you have two pure str:.ate.gies. Let us
call the relatively safe strategy (the percentage play) P and the rlslfllir s;r'fxt:eﬁgi;;
R. The opponent has two pure strategies thaf we also call P and R,blls flswb‘
best response to your B as is his R to your R. Figure 8,12 slmw's‘lhe table of “psafe“
abilities that your play succeeds; these are not Ym.lf ]:ayfuffs. The SBI:I.S(! un ui
and “risky" is captured by requiring @ > b> > d. The risky p.l.jay :llm.s-r;*at y ;:1 ;
if the opponent is not prepared for it (your success probability is :) umz ” Z
badly if he is (your success probability is d); the Pementage play 1'0th e
ately well in either case (you succeed with probability b or ¢) but a litile w
nent expects it (¢ < b). e
e ?::fc;our pasoff or utility be W if your play succeeds and L ;lf/ it fialis.a ;‘:
“really big occasion” is when W is much bigger thfm .L. Note that W an .
not necessarily money amounts, so they can be utilities that capture a.nyd -
sion to risk, as explained in the Appendix to Chapter 7. Now V\./e cz.m wrlte‘ (; o
the table of expected payoffs from the various strategy co.mbmatlons as 1(;1 OlgH
ure 8.13. Note how this table is constructed. For example, if you play P and y
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OPPONENT EXPECTS

P R
You G W+(1-dL | bW+(1-b)L
gld R aw+(1-a)l dW+(1-d)L

FIGURE B.13  Payoff Table with Risky and Percentage Plays

opponent expects R, then you get utility Wwith probability b and utility L with
probability (1 — b); your expected payoff is bW + (1 — b)L. This game is zero-
sum; so in each cell your opponent’s payoffs are just the negative of yours.

In the mixed-strategy equilibrium, your probability p of choosing P is de-
fined by the opponent’s indifference property; therefore

pleW+ (1 - oLl + (1 — plaWw+ (1 — a)I] =
plbW+ (1 - DL+ (1 - pldW+ (1 - d)I)

This equation simplifies to p = (@ — d)/[(a — d) + (b — J)]. Because (b — ¢ is
small in relation to (a — d), we see that p is close to 1. That is exactly why the
strategy P is called the percentage play; it is the normal play in these situations,
and the risky strategy R is played only occasionally to keep the opponent guess-
ing or, in football commentators’ terminology, “to keep the defense honest.”

The interesting part of this result is that the expression for p is completely

independent of Wand L. That is, the theory says that you should mix the per-
centage play and the risky play in exactly the same proportions on a big occa-
sion as you would on a minor occasion. This runs against the intuition of many
people. They think that the risky play should be engaged in less often when the
occasion is more important. Throwing a long pass on third down with a yard to
go may be fine on an ordinary Sunday afternoon in October, but doing so in the
Super Bowl is too risky.

So which is right: theory or intuition? We suspect that readers will be divided
on this issue. Some will think that the sports commentators are wrong and will be
glad to have found a theoretical argument to refute their claims. Others will side
with the commentators and argue that bigger occasions call for safer play. Still
others may think that bigger risks should be taken when the prizes are bigger, but
even they will find no support in the theory, which says that the size of the prize
or the loss should make no difference to the mixture probabilities.

On many previous occasions when discrepancies between theory and in-
tuition arose, we argued that the discrepancies were only apparent, that they
were the result of failing to make the theory sufficiently general or rich enough
to capture all the features of the situation that created the intuition, and that
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improving the theory removed the discrepancy. This one is d%fferent; the .prota);
lem is fundamental to the calculation of payofts from mixed Stra;egl.est.
prnhnhiiilylwcighwd averages or expected payoffs. And almost all of existing
game theory has this starting point.”

8. Counterintuitive Changes in Mixture Probabilities for Non-Zero-Sum Games

In Chapter 7, Section 5.C, we described a counterintuitive property of m:{l'db
strategies in zero-sum games. If a player improves t!?e paynﬂ‘s‘ l"ror‘n one n \ :‘,
pure strategies, the probabitity of using that strategy in the equilibrium mu?tf ,
can go down. Here we demonstrate an even more ?emr:.ﬂ. al!d mor.c s“.mm‘tg_
tesult in general non-zero-suim games, One players equlllbn‘um mlx.l‘me .;:lm

abilities depend only on the ather player’s payoffs, not on his own. L&?ns; ; er a
general two-by-two non-zero-sum game with the payoff table shown in *Iglfre
& .14. In actual games, the payoffs would be actual nuu:nbers and the smratemevs.l
would have particular names. In this example, we again u:‘ia genernl al!geh.n;:s:
symbols for payoffs so that we can examine how the ?mbah\]illes‘ of the equilib-
rium mixtures depend on them, Similarly, we use arbitrary generic labels for the
Stratseal)e:(')se the game has a mixed-strategy equilibrit}rn in which Row pl‘nys Up
with probability p and Down with probability (1 — p). To guarantee that Column
also mixes in equilibrium, Row’s p-mix must keep Colummn indifferent between

COLUMN
Left Right
Up aA b, B
Row Down cC d,D

FIGURE8.14 General Algebraic Payoff Matrix for Two-by-Two Non-Zero-Sum Game

svincent P Crawford, “Equilibrium Without In tependence,” ﬁlfmm]' u].-"- " i Hmlar_t', \':j'l,:ll;l;
no. | (February 1990), pp. 127-154; and James Dow and Sergio w:-.rlnn;;, Mash !:E:\‘illi:mn;] a: .
Knightian Uncoetainty,” Joursal of Economic Theary, vol. 64, no, 2 {December 1f : l]}. :‘:p.. m; i m;
are among the few rescarch papers thit suggest alternative foundations l'nxlg.un: L2 r!,;mh by
exposition of this problem in the first edition of this book inspired an article that u,:m P
methods on it: Simon Grant, Atsushi Koji, and Ben Polak, “Thind Down and a Yard to Go: et
Expected Utility and the Dixit-Skeath Conundrum,” Feonomic Letters, yol, 73, no. 3 (Decem!

J 1, B,
pp. 275-286. Unfortunately, it uses more advanced pis than those it the ory
level of this book.
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his two pure strategies, Left and Right. Equating Column's expected payoffs from
these two strategies when played against Row's mixture, we have'®

PA+(1-p)C=pB+(1—-p)D, or
p=(D-O/A-B)+(D-0)]

The surprising thing about the expression for p is not what it contains, but what it

does not contain. None of Row’s own payoffs, a, b, ¢, or d, appear on the right-hand

side. Row’s mixture probabilities are totally independent of his own payoffs!
Similarly, the equilibrium probability g of Column playing Left is given by

g=(d—b)ll(a—c)+ (d— b)l.

Column’s equilibrium mixture also is determined independently of his own
payoffs.

The surprising or counterintuitive aspect of these results is resolved if you
remember the general principle of the opponent’s indifference. Because each
player’s mixture probabilities are solved by requiring the opponent to be indif-
ferent between his pure strategies, it is natural that these probabilities should
depend on the opponent’s payoffs, not on one’s own. But remember also that
it is only in zero-sum games that a player has a genuine reason to keep the op-
ponent indifferent. There, any clear preference of the opponent for one of his
pure strategies would work to one’s own disadvantage. In non-zero-sum games,
the opponent's indifference does not have any such purposive explanation; it is
merely a logical property of equilibrium in mixed strategies.

5 MIXING AMONG ANY NUMBER OF STRATEGIES: GENERAL THEORY

We conclude this chapter with some general theory of mixed-strategy equilib-
ria, to unify all of the ideas introduced in the various examples in Chapters 7
and 8 so far. Such general theory unavoidably requires some algebra and some
abstract thinking. Readers unprepared for such mathematics or averse to it can
omit this section without loss of continuity.

Suppose the Row player has available the pure strategies R,, R, ..., R,, and
the Column player has strategies C;, C,, ... C,. Write the Row player’s payoff
from the strategy combination (i, j) as A and Column’s as By, where the index
i ranges from 1 to m, and the index j ranges from 1 to n. We allow each player

"°For there to be a mixed-strategy equilibrium, the probability p must be between 0 and 1. This
requires that (A4 — B) and (D — C) have the same sign; if A is bigger than B, then D must be bigger
than C, and, if A is smaller than B, then D must be smaller than C. (Otherwise, one of the pure strate-
gies, Left or Right, would dominate the other.)
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D b-
to mix the available pure strategies. Suppose the Row player’s p m)x has prtobe
abilities P;and the Column player’s g-mix has Q;. All these probabilities mus\
nonnegative, and each set must add to 1, so

PI+P2+"'+PW:1:Q1+Q2+"'+Qn'

We write V; for Row's expected payoff from using his pure stra.tegy Lage;mst
Column’s g-mix. Using the reasoning that we have already seen in several ex-

amples, we have
1,
Vo= AnQ + ApQu + -+ + AuQ, :FEI:AU Q

where the last expression on the right uses the mathematic.al nota.tlo.n for:l:lr:(—i
mation of a collection of terms. When Row plays his p-mix and it is matc
against Column's g-mix, Row's expected payoffis

i

m
P1V1+"'+vam:21PiVi= P[Aiij-
i=

LA
i1 j1

is p-mi imize this expression.
The Row player chooses his p-mix to maximize : N
Similarly, writing W, for Column’s expected payoff when his pure strategy j is

pitted against Row’s p-mix, we have
m
W= PByj+ P;By+ -+ + PpByy = glPiB,-j.

Pitting mix against mix, we have Column's expected payoff:

A, m.on
QWA+ + QW = ZQW;= 2 XPBQ,
and he chooses his g-mix to maximize this expressio ! .

We have a Nash equilibrium when each player &multaneot.}sly chooses hfs
best mix, given that of the other. That is, Row’s equilibrium p-mix should b.e k;ls
best response to Column’s equilibrium g-mix, and vice \{ersa. Let us b’egm .y
finding Row’s best-response rule. That is, let us temporarily fix Column’s g-mix
and consider Row’s choice of his p-mix. .

Suppose that, against Column’s given g-mix, Row has V; > V. Then Row c;r%
increase his expected payoff by shifting some probability from strategy R, tl;).]. N
that is, Row reduces his probability P, of playing R, and 1nc1.‘eases the probabi :ity
P, of playing R, by the same amount. Because the expressions for V; and Vz. .0
ni)t include any of the probabilities P; at all, this is true no matter what Fl.le ongl-f
nal values of P, and P, were. Therefore Row should reduce the probability P, o

i ible— is, all the way to zero.

laying R, as much as possible—that is, a ' ]
b y"ll"he idea generalizes immediately. Row should rank. the V; 1.n desclznt(’i
ing order. At the top there may be just one strategy, in which case it should be

TR
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the only one used; that is, Row should then use a pure strategy. Or there may
be a tie among two or more strategies at the top, in which case Row should
mix solely among these strategies and not use any of the others.! When there
is such a tie, all mixtures between these strategies give Row the same expected
payoff. Therefore this consideration alone does not fix Row's equilibrium
p-mix. We show later how, in a way that may seem somewhat strange at first
sight, Column’s indifference condition does that job.

The same argument applies to Column. He should use only that pure strat-
egy which gives him the highest W or should mix only among those of his pure
strategies C; whose W, are tied at the top. If there is such a tie, then all mixtures
are equally good from Column’s perspective; the probabilities of the mix are not
fixed by this consideration alone,

In general, for most values of Q) Qy ..., Q,) that we hold fixed in Column’s
g-mix, Row’s V}, V,.. ., V,, will not have any ties at the top, and therefore Row’s
best response will be a pure strategy. Conversely, Column's best response will be
one of his pure strategies for most values of (P, Py, ..., P,) that we hold fixed in
Row's p-mix. We saw this several times in the examples of Chapters 7 and 8; for
example, in Figure 8.2, for most values of p in Row's p-mix, the best ¢ for Col-
umn was either 0 or 1, and vice versa, For only one critical value of Row’s pwas it
optimal for Column to mix (choose any g between 0 and 1), and vice versa.

All of these conditions—ties at the top, and worse outcomes from the other
strategies—constitute the complicated set of equations and inequalities that,
when simultaneously satisfied, defines the mixed-strategy Nash equilibrium of
the game. To understand it better, suppose for the moment that we have done
all the work and found which strategies are used in the equilibrium mix, We
can always relabel the strategies so that Row uses, say, the first g pure strategies,

R, Ry, ..., R, and does not use the remaining (m — g) pure strategies, Ry,
Ryip ...\ R, while Column uses his first £ pure strategies, C), C,,..., C,, and
does not use the remaining (n — h) pure strategies, Cyt1r Chaas - -+, C,. Write V

for the tied value of Row’s fop expected payoffs V; and, similarly, W for the tied
value of Column’s top expected payoffs W, Then the equations and inequali-
ties can be written as follows. First, for each player, we set the probabilities of

the unused strategies equal to zero and require those of the used strategies to
sumto 1:

PiA P+t P=1, Pyy=Puy=-Pp=0 @.1)
and
Q+ QG+ +Q=1L Qu=Qu=0Q,=0 (8.2)

"'In technical mathematical terms, the expression 3.,P,V; is linear in the P;; therefore its maximum
must be at an extreme point of the set of permissible P;.
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Next we set Row’s expected payoffs for the pure strategies that he uses equal to
the top tied value:
= 3
V:A,-,Q1+A,~ZQZ+~~~+A“,Q,1 fori=1,2,...,8 8.3)

and note that his expected payoffs from his unused strategies must be smaller
(that is why they are unused):

i= 8.4
V>A,1Q,+A,-2Q2+---+A,~,,Q,, fori=g+1L,8+2.... 1 (8.4)
Next, we do the same for Column, writing W for his top tied payoft value:
W= P, By+ PBy+ -+ Py forj=12... h ®.5)
and
W PB,+ Py + oo+ Py forj=h+ Lt 2.0 ®.6)

To find the equilibrium, we must take this whole system; regard the choice
of gand has well as the probabil:‘ties P, Py..., Py and Q,, Q ..., Qyasun
; empt to solve for them. .
kno‘”/\[’:l:rzxilsd :ltilaysp the exhaustive search method. Try_a particula.r selection of
gand k; that is, choose a particular set of pure strategies as candidates .for u:‘:*zs
in equilibrium. Then take Egs. (8.1) and (8.5) asa set of (h+ 1) sirmfllt,llne,crr ’
linear equations regarding Py, P -..» P, and Was tg‘+ l}.un}mnwr.uz. sn v:. :J
them; and check if the solution satisfies all the inequalities in Eq. (a.a)_. Simil nr]y.
take Egs. (8.2) and (8.3) as a set of (g + 1) simultaneous linear cqtlnatmns :n t e
(h + 1) unknowns Q;, Q... Qpand V; solve for them; fmd check if the so u}:mn
satisfies all the inequalities in Eq. (8.4). If all these things check ou.t, we have
found an equilibrium. If not, take another selection of pure .strategles as can-
didates and try again. There is only a finite number of selechons'.' Row can -lll)sle
(2" — 1) possible pure strategies in his mix and Column can use 2" — 1)1posf$ e
pure strategies in his mix. Therefore the process must end successfully after a
i termnpts.
ﬁmtf/\frklll:rrlﬁl;:;ﬁfia:z areﬁeasonably small, exhaustive search is m.anageable. Even
then, shortcuts suggest themselves in the course of the calculatlol? for each spfe-
cific problem. Thus, in the second variant of our soccer Penalty kick, t}?e way 1:1
which the attempted solution with all strategies used failed told us which strat-
i in the next attempt.
egy E/Srllscfzzdmoderately large I;)roblems, however, solutions based on exhaus-
tive search or ad hoc methods become t00 complex. That is when one must re-
sort to more systematic computer searches or algorithms. What these .co{np:terl;
algorithms do is to search simultaneously for solutions o 'tvtlo linear ma)uml;la ::s.
(or linear programming, in the terminology of decision thef)ry) pro .e ize.
given a g-mix, and therefore all the V; values, choose a p-mix to maxim
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Row's expected payoff ,;P;V;; and given a p-mix and therefore all the W, values,
choose a g-mix to maximize Column’s expected payoff %;Q;W; However, for a
typical g-mix, all the V; values will be unequal. If Column were to play this
g-mix in an actual game, Row would not mix but would instead play just the
one pure strategy that gave him the highest V. But in our numerical solution
method we should not adjust Row's strategy in this drastic fashion. If we did,
then at the next step of our algorithm, Column’s best g-mix also would change
drastically, and Row's chosen pure strategy would no longer look so good. Instead,
the algorithm should take a more gradual step, adjusting the p-mix a little bit
to improve Row's expected payoff. Then, with the use of this new p-mix
for Row, the algorithm should adjust Column’s g-mix a little bit to improve his
expected payoff. Then back again to another adjustment in the p-mix. The
method proceeds in this way until no improvements can be found; that is the
equilibrium.

We do not need the details of such procedures, but the general ideas that
we have developed above already tell us a lot about equilibrium. Here are some
important lessons of this kind.

1. We solve for Row's equilibrium mix probabilities P, P,, ..., Py from Egs.
(8.1) and (8.5). The former is merely the adding-up requirement for probabilities.
The more substantive equation is (8.5), which gives the conditions under which
Column gets the same payoff from all the pure strategies that he uses against the
p-mix. It might seem puzzling that Row adjusts his mix so as to keep Column
indifferent when Row is concerned about his own payoffs, not Column’s. Actu-
ally the puzzle is only apparent. We derived those conditions (Eq. (8.5)] by think-
ing about Column’s choice of his g-mix, motivated by concerns about his own
payoffs. We argued that Column would use only those strategies that gave him
the best (tied) payoffs against Row’s p-mix. This is the requirement embodied
in Eq. (8.5). Even though it appears as if Row is deliberately choosing his p-mix
so0 as to keep Column indifferent, the actual force that produces this outcome is
Column’s own purposive strategic choice.

In Chapter 7, we gave the name “the opponent’s indifference property” to
the idea that each player’s indifference conditions constitute the equations that
can be solved for the other player’s equilibrium mix. We now have a proof of this
principle for general games, zero-sum and non-zero-sum,

2. However, in the zero-sum case, the idea that each player chooses his mix-
ture to keep the other indifferent is not just an as if matter; there is some genu-
ine reason that a player should behave in this way. When the game is zero-sum,
we have a natural link between the two players’ payoffs: B; = —A; forall iand j,
and then similar relations hold among all the combinations and expected pay-
offs, too. Therefore we can multiply Egs. (8.5) and (8.6) by —1 to write them in




290 ([CH. 8] SIMULTANEOUS-MOVE GAMES WITH MIXED STRATEGIES Il

terms of Row’s payoffs rather than Column's. We write these “zero-sum versions”
of the conditions as Egs. (8.52) and (8.6z):

V=P Ay+ Pofg+ o+ BAg forj=12.... h 8.52)
and
V< PAy+ Pyt PAg; forj=h+1,h+2,..., 0 (8.62)

(Note that multiplying by —1to go from Eq. (8.6) to Eq. (8.62) revesses the direc-
tion of the inequality.)

Of these, Eqs. (8.5) and (8.52) tell us that as long as Row is using his equilib-
rium mix, Column (and therefore Row, 100, in this zero-sum game) gets the same
payolf from any of the pure strategies that he actually uses in equilibrium. Col-
umn cannot do any better for himself—and therefore in this zero-sum game
cannot cause any harm to Row—Dby choosing one of those strategies rather than
another. What is more, Eq. (8.62) tells us that were Column to use any of the other
strategies, Row would do even better. In other words, these conditions tell us that
Column cannot exploit Row's equilibrium mix. Thus we see in a more general set-
ting the purposive role of mixing in zero-sum games that we saw in the examples
of Chapter 7; we also see more explicitly why it works only for zero-sum games.

3. Now we return to the general, non-zero-sum, case. Note that the sys-
tem comprising Egs. (8.1) and (8.5) has (b + 1) linear equations and (g + 1)
unknowns. In general, such a system has no solution if & > g has exactly one
solution if & = g and has many solutions if k < g Conversely, the system com-
prising Eqs. (8.2) and (8.3 has (g + 1) linear equations and (h + 1) unknowns.
In general, such a system has no solution if g > h, has exactly one solution if
g=h, and has multiple solutions if g < h. Because in equilibrium we want both
systems to be satisfied, in general we need g = h. Thus in a mixed-strategy equi-
librium, the two players use equal numbers of pure strategies.

We keep on saying “in general” because exceptions can arise for fortuitous
combinations of coefficients and right-hand sides of equations. In particular, itis
possible for too many equations in too few unknowns to have solutions. This s just
what happens in the “exceptional cases” mentioned in Section 2.8 of this chapter.

4. We observe a very particular relation between the use of strategies and
their payoffs. Row uses strategies P, to P, with positive probabilities, and Eq. (8.3)
shows that he gets exactly the payoff V when any one of these pure strategies is
played against Column's equilibrium mix. For the remaining pure strategies in
Row’s armory, Eq. (8.4) shows that they yield a lower payoff than Vwhen played
against Column’s equilibrium mix, and then they are notused; that is, Pyoy 10 Py
are all zero. In other words, for any i, it is impossibleto have

both V> Ay Q1 + ApQy + - + AnQ, and  Pi>0.

At least one of these inequalities must collapse into equality. This is known as
the principle of complementary slackness, and it is of great importance in the
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general theory of games and equilibria, as well as in mathematical optimization
(programming).

. 5. Back to the zero-sum case. When both players choose their equilibrium
mix, Row’s expected payoff is

E4

n

V=2 3 PAQ,

J=1

and Column’s is just the negative of this payoff. Moreover, the equilibrium
co.mes about when Row, for the given g-mix, chooses his p-mix to maximize
this _expression, and simultaneously Column, for the given p-mix, chooses his
g-mix to maximize the negative of the same expression, or to minimize the
same expression. If we regard the expression as a function of all the P;and the
Qj, therefore, and graph it in a sufficiently high-dimensional space, it lwill look
like a saddle. The front-to-back cross section of a saddle looks like ;valley ora
I,J' with its minimum at the middle, while the side-to-side cross section looks
like :a peak or an inverted U, with its maximum at the middle. If each player
has‘ just two pure strategies, the p-mix and g-mix can each be described by
a single number—say, the probability of choosing the first strategy. (For each

plf«lyer, the probability of choosing his second pure strategy is thén just one

minus that of choosing his first pure strategy.) We can then draw a graph in

thfee d?mensions, where the x and y axes are in a horizontal plane and the z
axis points vertically upward. The p-mix is shown along the x-axis, the g-mix
along the y-axis, and the value V along the z-axis. The cross section of this

Saddle point

P

FIGURE 8,15 Saddle Point
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saddle-shaped surface along the x direction will show the maximimli.un o‘f 4
with respect to p, therefore a peak. And the cross section along the y direction
will show the minimization of Vwith respect to g, therefore a valley. Tll'fus. the
graph will look like a saddle, as illustrated in Figure 8.15. Such an equilibrium
is called a saddle point. .

The value of V in equilibrium—that is, the simultaneous maximum
with respect to the P; and the minimum with respect to the Q;—is ca!led the
minimax value of the zero-sum game. The idea of such an equilibrium, as
well as the formulation of the conditions such as Eqgs. (8.5z) and (8.6z) that
define it, was the first important achievement of game theory and appeared
in the work of von Neumann and Morgenstern in the 1940s. It is called their

minimax theorem.

SUMMARY

Best-response analysis can be used to solve for mixed-strategy equilibria. The
best-response-curve diagram can be used to show all mixed-strategy as well as
pure-strategy equilibria of a game,

If one player has three strategies-and the other has only two, the.pla}yer wl.sh
three available pure strategies will generally use only two in her equilibrium mix.
In some exceptional cases, equilibrium mixtures may also be indctemilnate..

When one or both players have three (or more) strategies, equilibrium
mixed strategies may put positive probability on all pure strategies or may in-
clude only a subset of the pure strategies. All strategies that are actively used in
the mixture yield equal expected payoff against the opponent’s equilibrium mix;
all the ones unused yield lower expected payoff. This is the principle of comple-
mentary slackness.

KEY TERMS

complementary slackness (290) saddle point (292)

SOLVED EXERCISES

S1. “When a zero-sum game has a mixed-strategy equilibrium, a player’s equi-
librium mixture is designed to yield her the same expected payoff whe.n used
against each of the other player’s pure strategies.” True or false? Explain.

$2. Sections 1.A and 1.B illustrate how to use a best-response graph to find all
of the Nash equilibria of the tennis-point game and the assurance game
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respectively. For the battle of the sexes game from Figure 4.13, graph the
best responses of Harry and Sally on a p-g coordinate plane. Label all of the
Nash equilibria.

$3. Revisit Exercise U9 from Chapter 7. For parts (a) and (b) below, graph the
best-response curves of Row and Column on a p-g coordinate plane. On
the graphs, identify and label the pure-strategy Nash equilibria and any
mixed-strategy Nash equilibria.
(a) Letx=3.
(b) Letx=1.

S4. Recall the exceptional cases of the three-by-two tennis-point game de-

scribed in Section 2.B.

(a) Draw the diagram of Evert's success rate relative to Navratilova's g-mix
(similar to Figure 8.7) for the case where Evert's payoff from playing
Lob is 70 when Navratilova plays either DL or CC. Use this diagram
to explain why it is an equilibrium for Evert to play pure Lob and for
Navratilova to mix 50-50.

Describe all possible Nash equilibria for the game given in part (a).
Draw the diagram of Evert's success rate as a function of Navratilova's
g-mix (similar to Figure 8.7) for the case where the the payoffs of Evert’s
Lob are 66 and 56 against Navratilova’s DL and CC, respectively. Use this
diagram to illustrate that Navratilova’s equilibrium g must be 0.6.

As the text notes, there are a number of different Nash equilibria for the
game in part (c) involving different mixtures for Evert. Write down the
indifference equation for Navratilova in terms of p, and p,. (Hint: Look
at Figure 8.6.) Note that this equation can be satisfied by many values
of p; and p,. Find the largest and smallest possible values for p, and p,.

(b
(c

NN

(d

Pl

85. Consider the following game:

OLLISTAN
Laurel Hardy
Groucho 9 2
Harpo 7 5
KARL Chico 5 6
Zeppo 4 9
Gummo 1 8

(a) On a single graph, plot the expected payoffs from each of Karl’s strate-
gies as a function of Ollistan’s g-mix.
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(b) Which strategies appear on the upper envelope of the graph in part (a)?
(c) Which strategies are never a best response for Karl:s’ Why?
(d) What is the mixed-strategy Nash equilibrium of this game?

Consider the following game:

PROFESSOR PLUM

Revolver Knife Wrench

Conservatory 1,3 2,-2 0,6

MRS. PEACOCK
Ballroom 3,1 1,4 50

(a) Graph the expected payoffs from each of Professor Plum’s strategies as
a function of Mrs. Peacock’s p-mix. )

(b) Over what range of p does Revolver yield a higher expected payoff for

Professor Plum than Knife? .

Over what range of p does Revolver yield a higher expected payoff than

Wrench? o o '

(d) Which pure strategies will Professor Plum use in his equilibrium mix-
ture? Why? o ' .

(e) What is the mixed-strategy Nash equilibrium of this game?

(c

Find all Nash equilibria of the following game. (Hint: Look for dominated
strategies.)

GREEK
@ B ¥ 3
A 6 -1 5 4
ROMAN B B -2 2 1
C 3 7 4 8

Find all Nash equilibria of the Roman-Greek game in Exercise S7 when the
payoff to (A, y) changes from 5 to 3.

Many of you will be familiar with the children’s game rock—pa;.)er-«sci:ss.l.m::
In rock—paper—scissors, two people simultaneously choose either I'Ot.k.‘
“paper,” or “scissors,” usually by putting their hands into the shap'e of GI'I.L
of the three choices. The game is scored as follows. A person choosing Scis-
sars beats a person choosing Paper (because scissors cut paper). A persl(in
choosing Paper beats a person choosing Rock (b.ecaus? paper covers roc )l<
A person choosing Rock beats a person choosing Scissors (because roc

S10.
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breaks scissors). If two players choose the same object, they tie. Suppose
that each individual play of the game is worth 10 points. The following ma-
trix shows the possible outcomes in the game:

PLAYER 2
Rock Scissors Paper
Rock 0 10 -10
PLAYER | seissors | ~10 0 10
Paper 10 -10 0

(@) Find the mixed-strategy equilibrium of this rock-paper-scissors game.

(b) Suppose that Player 2 announced that she would use a mixture in
which her probability of choosing Rock would be 40%, her probability
of choosing Scissors would be 30%, and her probability of Paper, 30%.
What is Player 1's best response to this strategy choice by Player 2?2

Explain why your answer makes sense, given your knowledge of mixed
strategies.

Harry and Sally have planned to go out to eat tonight. Harry strongly pre-
fers pasta, which Sally finds disagreeable. Sally really likes a particular
sandwich place, but Harry'’s not a fan. Another option is a buffet, which
would allow each of them to get a lower-quality version of the food they'd
most like to eat. Harry and Sally enjoy one another’s company and would
rather eat together than apart, but they are abysmally poor communicators.
Once again they have neglected to decide beforehand where to go, and they
have both absentmindedly allowed their cell-phone batteries to die. Their
payoffs are as follows:

SALLY
Pasta | Sandwich | Buffet |
Pasta 5,1 0,0 0,0
HARRY | Sandwich 0,0 1.5 0,0
Buffet 0,0 0,0 2,2

The pure-strategy Nash equilibria are easy to see, but this game also has

multiple mixed-strategy Nash equilibria.

(a) Show that it is a mixed-strategy equilibrium when Harry plays Pasta
5/6 of the time, Sandwich 1/6 of the time, and Buffet never, whereas
Sally plays Pasta 1/6 of the time, Sandwich 5/6 of the time, and Buffet
never. What is the expected payoff to each player in this equilibrium?
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(b) What mixed-strategy equilibrium  results when both Harry and
Sally mix only over Pasta and Buffet? What is the expected payoff to
each player in this equilibrium? Explain why Sally would never pla.y
Sandwich if she knew that Harry was playing his mixed strategy for this
equilibrium. }

(¢) What mixed-strategy equilibrium results when both Harry and Sally
mix only over Sandwich and Buffet? What is the expected payoff to enc%1
player in this equilibrium? Explain why Harry would never play Pasta il
he knew that Sally was playing her mixed strategy for this equilibrium.

(d) There is also a mixed-strategy equilibrium where both Harry and .Sal.ly
play all three of their strategies with positive probability. What is it?
What is the expected payoff to each player?

(¢) Which of the seven equilibria of this game is focal? Explain your reasoning,

Recall the game between ice-cream vendors on a beach from Exercise U.6

in Chapter 6. In that game, we found two asymmetric pure-strategy equi-

libria. There is also a symmetric mixed-strategy equilibrium to the game.

(a) Write down the five-by-five table for the game.

(b) Eliminate dominated strategies, and explain why they should not be
used in the equilibrium. .

(c) Use your answer to part (b) to help you find the mixed-strategy equi-
librium to the game.

Suppose that the soccer penalty-kick game of Section 5.A in this chapter is
expanded to include a total of six distinct strategies for the kicker: to shoot
high and to the left (HL), low and to the left (LL). high and in the center
(HC), low and in the center (LC), high right (HR), and low right (LR). The
goalkeeper continues o have three strategies: to move 1o the kicker's left
(L) or right (R} or to stay in the center (C). The kicker's success percentages
are shown in the following table.

GOALIE
L C R
HL 0.50 0.85 0.85
LL 0.40 0.95 0.95
HC 0.85 0 0.85
KICKER
LC 0.70 0 0,70
HR 0.85 0.85 0.50
LR 0.95 0.95 0.40

$13.
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These payoffs incorporate the following information. Shooting high runs

some risk of missing the goal even if the goalie goes the wrong way (hence

0.85 < 0.95). If the goalie guesses correctly, she has a better chance of col-

lecting or deflecting a low shot than a high one (hence 0.40 < 0.50). And if

the shot is to the center while the goalie goes to one side, she has a better
chance of using her feet to deflect a low shot than a high one (hence

0.70 < 0.85).

In this problem, you will verify the following mixed-strategy equilib-
rium of this game. The goalie uses L and R each 42.2% of the time, and C
15.6% of the time. The kicker uses LL and LR each 37.8% of the time, and
HC 24.4% of the time.

(a) Given the goalie’s proposed mixed strategy, compute the expected pay-
off to the kicker for each her six pure strategies. (Use only three signifi-
cant digits, in order to keep things simple.)

(b) Use your answer to part (a) to explain why the kicker's proposed mixed
strategy is a best response to the goalie’s proposed mixed strategy.

(¢} Given the kicker's proposed mixed strategy, compute the expected
payoff to the goalie for each her three pure strategies. (Again, use only
three significant digits, in order to keep things simple.)

(d) Use your answer to part (a) to explain why the goalie’s proposed mixed
strategy is a best response to the kicker’s proposed mixed strategy.

(e) Using your previous answers, explain why the proposed strategies are
indeed a Nash equilibrium.

(f) Compute the equilibrium payoff to the kicker.

(Optional) Recall the three-player game among Marta's sons in Exercise S9
of Chapter 4. In that game, we found three asymmetric Nash equilibria in
pure strategies. In this exercise, you will find a symmetric equilibrium in
mixed strategies. Note that with three players, we need three different vari-
ables (p, ¢, and n) to stand for the mixing probabilities. We next need to un-
derstand how to compute expected payoffs for one player when both of the
other players are mixing.

(a) Suppose that Bernardo plays Yes with probability ¢ and No with prob-
ability 1 — gq. Further suppose that Carlos independently plays Yes
with probability r and No with probability 1 — r. Then from Arturo's
perspective, what is the probability that Bernardo plays Yes and Carlos
plays No? (Hint: See Section 1.C of the Appendix to Chapter 7.)

(b) What is Arturo's expected payoff from playing Yes, in terms of Bernar-
do's g and Carlos’s r?

(c) Write down an indifference equation for Arturo in terms of gand r.

(d) Write down the indifference equations for Bernardo and Carlos.
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(e) Solve the system of three (nonlinear) equations in three unknowns to
find the mixed-strategy equilibrium.

{Optional) Recall Exercise $12 of Chapter 4, which was based on the bar
scene from the Blm A Beautiful Mind, Fere we consider the mixed-strategy
equilibria of that game when played by n > 2 young mei.

(a) Begin by considering the symmetric case in which each of the nyoung
men independently goes after the solitary blonde with some probabil-
ity P. This probability is determined by the condition that each young
man should be indifferent between the pure strategies Blonde and
Brunette, given that everyone clse is mixing. What s the condition that
guarantees the indifference of each player? What is the equilibrium
value of Pin this game?

(3 Thereare also some asymmetric mixed-strategy equilibria in this game,
In these equilibria, m =< nyoung men each go for the blonde with prob-
ability @, and the remaining n — m young men go after the brunettes,
What is the condition that guaraniees that each of the m young mern
is indifferent, given what everyone else is doing? What condition must
hold so that the remaining i — m players don't want to switch from the
pure strategy of choosing a brunette? What is the equilibrium value of
Qin the asymmetric equilibrium?

UNSOLVED EXERCISES

For the chicken game from Figure 4.14, graph the best responses of James
and Dean on a p-¢ coordinate plane. Label all of the Nash equilibria.

Revisit Exercise U10 from Chapter 7.

(a) Graph the best-response curves of Row and Column on a p-4 coordi-
nate plane.

(b) Identify and label the pure-strategy Nash equilibria.

(c) Identify and label the set of mixed-strategy Nash equilibria.

(a) Find all pure-strategy Nash equilibria of the following non-zero-sum game.
COLUMN
A 8 @ D
1 11 2,2 3,4 9,3
ROW
2 2,5 3,3 1,2 7.1

EXERCISES 299

(b) Noyv find a mixed-strategy equilibrium of the game. What are the play-
ers’ expected payoffs in the equilibrium?

U4. Consider the following game:

Us.

ue.

uz.

PROFESSOR PLUM
Revolver Knife Wrench
Conservatol 1 =
MRS. PEACOCK L i i
Ballroom 3,2 1,4 5,0

(a) Graph Fhe expected payoffs from each of Professor Plum's strategies as
a function of Mrs. Peacock’s p-mix.

(b) Which strategi i in hi ilibri
oy egies will Professor Plum use in his equilibrium mixture?

(c) What is the mixed-strategy Nash equilibrium of this game?

(d) Note that this game is only slightly different from the game in Exercise
S6. Hon fil'e' the two games different? Explain why you intuitively think
the equilibrium outcome has changed from Exercise $6.

Find all Nash equilibria of the Roman-Gre i
-Greek game in Exercise $7 wh
payoff to (4, v) changes from 5 to 4. e

Find all Nash equilibria of the Roman-Gr: i
-Greek game in Exercise $7 wh
payoff to (A, ) changes from 5 to 2. when the

Consider the following game:
MAXWELL
Alr Sea Land
Air 0,3 2,0 1,7
JAMES Sea 2,4 0,6 2,0
Land 1,3 2,4 0,3

(a) 2;)% this game have a pure-strategy Nash equilibrium? If so, what is
it? ’

(b) Find a mixed-strategy equilibrium to this game.

(© A.ctu‘ally, th.1s game has two mixed-strategy equilibria. Find the one you
didn't find m.part {(b). (Hint: In one of these equilibria, one of the play-
ers plays a mixed strategy, whereas the other plays a pure strategy.)
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U8. Consider a slightly different version of rock—paper—sciss'ors in Yvhich Player
1 has an advantage. If Player 1 picks Rock and Player 2 picks Smssors,.Pl'ayer
1 wins 20 points from Player 2 (vather than 10). The new payoff matrix is:

PLAYER 2
Rock ScissoT| Paper
Rock 0 20 -10
PLA.'YER Scissors -10 0 10
Paper 10 -10 0

N . B

(a) What is the mixed-strategy equilibrium in this version of the game?

(b) Compare your answer here with your answer for the m1xed—str.ategy
equilibrium in Exercise $9. How can you explain the differences in the
equilibrium strategy choices?

U9. Section 2.C of Chapter 1 mentioned the story of two chemistr.y students at
Duke who had opted to party hard instead of studying f(?r their final. Ir‘1 the
hopes of obtaining a makeup final at a later date, they lied about getting a
flat tire on their return trip. Their professor agreed to the makeup, but‘the
students were unpleasantly surprised by the second (a.md last) c!uestlorll,
worth 90 points: “Which tire?” The students hadn’t'prevlously decided this
part of their story, and they can’t communicate during the exam.

(a) Write the game table for the tire-guessing game. (Note tpat each stu-
dent has four pure strategies.) Giving the same answer yields a payoff
of 90 for each student, while all other outcomes are worth a payoff of 0

(b) ;‘(I)o‘i/jcr:;my pure-strategy Nash equilibria are there? What are. they? .

As in the restaurant-choice game between Harry and Sally. in Exercise
$10, the number of zeroes in the table makes it relatively straightforward
to find all of the game's mixed-strategy equilibria. There are eleven of
tilfn"}.here is one mixed-strategy Nash equilibrium where t.h.e two stu‘derkllt's

play each of their four strategies with positive probability. What is t' is
equilibrium? What is the expected value to each student from playing
i ilibrium?

(d) ;}I](l)ivecrlrlllany mixed-strategy equilibria are there where 'cach student
plays three of the four strategies with positiv? probability (and ‘nev:!(r‘
plays the fourth one)? What are they? What is .lhu expected value
each student from playing each of these equilibria?
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(e) How many mixed-strategy equilibria are there where each student
plays two of the four strategies with positive probability (and never
plays the other two)? What are they? What is the expected value to each
student from playing each of these equilibria?

(f) If the students can't coordinate on one of the pure-strategy equilibria,
can they at least improve their expected payoffs by mixing over a coor-
dinated subset of their strategies? Explain.

U10. Barry and Neill sit down to play a relatively simple card game. They each
hold one card of each suit. Each privately selects one of the suits and
pushes the card of that suit toward the middle of the table. If the cards are
both diamonds, then Barry wins. If the cards match suit but are not dia-
monds, then Neill wins. If the cards do not match suit and neither card is a
diamond, then Barry wins. If the cards do not match suit and one is a dia-
mond, then Neill wins. That is, the payoff table is as follows:

NEILL
Club Heart Spade | Diamond
Club 0,1 1,0 1,0 0,1
Heart 1,0 0,1 1,0 0,1
BARRY
Spade 1,0 1,0 0,1 0,1
Diamond 0,1 0,1 0,1 1,0

(a) What is the mixed-strategy Nash equilibrium of this game?
(b) What is the expected value of this game to each player?

Ull.Recall the duel game between Renard and Chagrin in Exercise U12 in
Chapter 6. Remember that the duelists start 10 steps apart and walk toward
one another at the same pace, 1 step at a time, and either may fire his gun
after each step. When one duelist shoots, the probability of scoring a hit
depends on the distance; after k steps, it is k/5. Each gets a payoff of -1 if
he himself is killed and 1 if the other duelist is killed. If neither or both are
killed, each gets zero. Now, however, suppose that the duelists have guns
with silencers. If one duelist fires and misses, the other does not know that
this has happened and cannot follow the strategy of then holding his fire
until the final step to get a sure shot. Each must formulate a strategy at the
outset that is not conditional on the other's intermediate actions. Thus we
have a simultaneous-move game, with strategies of the form “Shoot after n
steps if still alive.” Each player has five such strategies corresponding to the
five steps that can be taken toward his adversary in the duel.
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(a) The five-by-five payoff table for this game is shown below. Demon-
strate how to calculate the payoffs for Row 2 of the table.

CHAGRIN
1 2 S 4 5
1 0 -0.12 -0.28 -0.44 -0.6
2 0.12 0 0.04 -0.08 -0.2
RENARD 3 0.28 -0.04 0 028 0.2
4 0.44 0.08 -0.28 0 0.6
5 06 0.2 [>—0.2 -06 0

The mixed-strategy Nash equilibrium involves each player playing strat-
egies 2,3, and 5, with proportions 5/11,5/11, and 1/11, respectively. Strate-
gies 1 and 4 go unused. You will now verify that this is a Nash equilibrium.
(b) Compute the expected payoff to each of the five strategies for Renard,

given Chagrin's proposed equilibrium mixture.

(c) Explain how your answer to part {h) demonstrates that the proposed
mixed-strategy equilibrium really is a Nash equilibrium.
(d) What is the expected payoff for each player in equilibrium?

U12.(Optional) Recall the game from Exercise $10 in Chapter 4, where Lartry,
Moe, and Curly can choose to buy tickets toward a prize worth $30. We
found six pure-strategy Nash equilibria in that game. In this problem you
will find a symmetric equilibrium in mixed strategies.

(a) Eliminate the weakly dominated strategy for each player. Explain why
a player would never use this weakly dominated strategy in his equilib-
rium mixture.

(b) Find the equilibrium in mixed strategies.

U13. (Optional) Revisit the three-player version of evens or odds played by Rox-
anne, Sara, and Ted in Exercise U1l of Chapter 4. In addition to the two
pure-strategy Nash equilibria found in that problem, the game also has a
mixed-strategy equilibrium.

(a) Find the mixed-strategy Nash equilibrium of the game.
(b) Once again, is this a fair game? Explain.

U14. (Optional) Find all Nash equilibria of the Roman-Greek game in Exercise
§7 when the payoft to (A, ) changes from5to 1.

U15. (Optional) Revist the soccer-shootout problem from Exercise S12 to see
what happens to the equilibrium mixtures when the payoff in a particular
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cell is changed slightly from the original game table. You may wish to use
software such as Gambit (freely available at http://gambit.sourceforge.net/)
to compute the answers to these questions. You can also try to compute the
answers by hand, but this is harder because of the number of possibiliti
to consider. possites
. V}V’lhat is the new rrllixed—strategy equilibrium, given each of the follow-
?ﬁg (1:(1 a;(ng:scto the original payoff matrix? What is the expected payoff to
e kicker? Compare your a i i
A Ve nswers in each case with the answers for the
(a) Change the payoff for (HC, C) to 0 ing i
) .10, making it slightl i
the shooter to score on a high-center shot, SV R
(b) Change the payoff for (HL, L) to 0.70, making it more likely for the
shooter to score on a high-left shot.
(c) Change the payoff for (LC, C) to 0 i
; .50, making it mi i
shooter to score on a low-center shot. ’ R




