The R Environment

This chapter provides an introduction to the R environment, including an
overview of the environment, how to obtain and install R, and how to work with
packages.

About R

R is three things: a project, a language, and a software environment. As a
project, R is part of the GNU free software project (www.gnu.org), an
international effort to share software on a free basis, without license restrictions.
Therefore, R does not cost the user anything to use. The development and
licensing of R are done under the philosophy that software should be free and
not proprietary. This is good for the user, although there are some
disadvantages. Mainly, that “R is free software and comes with ABSOLUTELY
NO WARRANTY.” This statement comes up on the screen every time you start
R. There is no quality control team of a software company regulating R as a
product.

The R project is largely an academic endeavor, and most of the contributors are
statisticians. The R project started in 1995 by a group of statisticians at
University of Auckland and has continued to grow ever since. Because statistics
is a cross-disciplinary science, the use of R has appealed to academic
researchers in various fields of applied statistics. There are a lot of niches in
terms of R users, including: environmental statistics, econometrics, medical and
public health applications, and bioinformatics, among others. This book is
mainly concerned with the base R environment, basic statistical applications,
and the growing number of R packages that are contributed by people in
biomedical research.

Copyright May 2007, K Seefeld 6

Permission granted to reproduce for nonprofit, educational use.

The URL for the R project is http://www.r-project.org/. Rather than repeat its
contents here, we encourage the reader to go ahead and spend some time reading
the contents of this site to get familiar with the R project.

As a language R is a dialect of the S language, an object-oriented statistical
programming language developed in the late 1980’s by AT&T’s Bell labs. The
next chapter briefly discusses this language and introduces how to work with
data objects using the S language.

The remainder of this chapter is concerned with working with R as a data
analysis environment. R is an interactive software application designed
specifically to perform calculations (a giant calculator of sorts), manipulate data
(including importing data from other sources, discussed in Chapter 3), and
produce graphical displays of data and results. Although it is a command line
environment, it is not exclusively designed for programmers. It is not at all
difficulty to use, but it does take a little getting used to, and this and the three
subsequent chapters are geared mainly toward getting the user acquainted with
working in R.

Obtaining and Installing R

The first thing to do in order to use R is to get a copy of it. This can be done on
the Comprehensive R Archive Network, or CRAN, site, illustrated in Figure 2-1.

3 The Comprehensive R Archive Netwaork - Microsoft Internet Explorer provided by Tufts-NEMC
Fie Edit View Favorites Tools Help

Q- © - [x] A&) sexch 7 Favarites) - \; |-l 3

Acdress [] httpsffaran.us.r-project.org] P> ERESS

P
R-2.4.1 for Windows
This directory contains a binary distribution of R-2 4.1 ta run on Windows 95. 98, ME. NT4.0, 2000 and XP on Intel'clone
chips.
S Patches to this release are incorporated in the r-patched snapshot buld.
Mirrors) S) ML
e A build of the development version (which will eventually become the next major release of R is available in the r-devel snapshot
Task Views s
Search
ooy Tn this directory:
About R
BFlomsi READMER-24 1 and other instruction:
CHANGES New features of this Windorws version.
;"Sft"'”e NEWS New features of all versions.
ﬁ R241win3lexe Setup program (about 28 megabytes). Please download this from a mirror near you.
s This corresponds to the file named SetupR_exe or rwXXXX.exe in pre-2 2 0 releases.
Packages
Other old The previous release
mdSsum txt mdSsum output for the setup program. A Windows GUT version of mdSsum is available at
Documentation hitp:/fwwv.mdSsummer org/; a Windows command line version is available at
Mamals hitp//www etree org/mdScom himl
FAQs
Contributed Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information, inchuding
Newsletter upgrade advice.
Note to webmasters: A stable link which will redirect to the current Windorws binary release is 1
<CRAN MIRROR>/bin/windows/base htm
E
& ® mternet
=

ez > [fam Firstalfoone [BT 3 Maosoft of... 2 z prehen... | 8] Inbox - Mirosof...

Figure 2-1

Copyright May 2007, K Seefeld 7

Permission granted to reproduce for nonprofit, educational use.

The URL for this site is www.cran.r-project.org. This site will be referred to
many times (and links to the www.r-project.org site directly through the R
homepage link on the left menu screen) and the user is advised to make a note of
these URLs. The archive site is where you can download R and related
packages, and the project site is source of information and links that provide
help (including links to user groups).

On the top of the right side of the page shown in Figure 2-1 is a section entitled
“Precompiled Binary Distributions”, this means R versions you can download
which are already compiled into a program package. For the technologically
savvy you can also download R in a non-compiled version and compile it
yourself (something we will not discuss here) by downloading source code.

In this sections are links to download R for various operating systems, if you
click on the Windows link for example; you get the screen depicted in Figure 2-
2.

3 The Comprehensive R Archive Netwaork - Microsoft Internet Explorer provided by Tufts-NEMC

Fle Edt View Favorites Tools Help

@Eack = @ B d Ig] ﬂ /',_VSEsrm \:‘\?Favnntss &) - :ﬁ] - 4] i 3

ncess] httosfiran.us.-srofect.org/ D> ERES

R for Windows
This directory contains binaries for a base distribution and packages to run on Windows (NT, 95 and later) on Intel and clones

(but not NT on Alpha and other platforms)

»

Note: CRAN does not have Windows systems and cannot check these binaries for viruses. Use the normal precautions with
Mirrors downloaded executables.

Task Views Subdircctorics:
Search
base Binaries for base distribution (managed by Duncan Murdoch)
About R contrib Binarics of contributed packages (managed by Uwe Ligges)
R Homepage
Please do not submit binaries to CRAN. Package developers might want to contact Duncan Murdoch or Uwe Ligges directly in
Software case of questions / suggestions related to Windows binaties.
R Sources
R Binarics Youmay also want to read the R FAQ and R for Windows FAQ
Packages
Other
Last modified: April 4, 2004, by Friedsich Leisch
Documentation
Mamuals
FAQs

Contributed
Newsletter

& ® mtermet
14 start 4 S [fam FirstHalfoone |23 3 Miaosoft OF... [l Re z prehen... | [B] Inbox - Microsof... B =M sosam

Figure 2-2

If you click on “base” (for base package, something discussed in the Packages
section later in this chapter) you get the screen in Figure 2-3. The current
version of R is available for download as the file with filename ending in *.exe
(executable file, otherwise known as a program). R is constantly being updated
and new versions are constantly released, although prior versions remain
available for download.

Copyright May 2007, K Seefeld 8

Permission granted to reproduce for nonprofit, educational use.

3 The Comprehensive R Archive Network - Microsoft Internet Explorer provided by Tufts-NEMC

Fle Edt View Favorites Tools Help

Q- © [# B @ Lseaen Srraons @ (-2 @ - JEH B

Acdress @) htto: feranus.r progect.org/ VB ks
3
R-2.4.1 for Windows
This directory contains a binary distribution of R-24.1 to run on Windows 95, 98, ME, NT4.0, 2000 and XP on Inteliclone.
chips.
i Patches to this release are incorporated in the r-patched snapshot build
Mirors
e A buld of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot
Task Views L
Search
Tnthis directory:
About R
RiHomepise READMER-24 1 and ofher

eatures of this Windows version.

;Osft"'afe New fedyres of all versions
ﬁ Setup pybgram (about 28 megabytes). Please download this from a mirror near you.
e ThisCorresponds to the file named SetupR.exe or rXXXX.exe i pre-2.2.0 relcases.

ackages

e old The previous release

mdSsum et ml$ sum output for the setup program. A Windows GUT version of mdSsum is available at

Documentation hito:/www mdSsummer ore/; a Windows command line version is available at
Manuals pop:/ /v etree org/mdScom himl
FAQs

Contributed Please see the R FAQ 8 seneral information about R and the R Windows FAQ for Windows-specific information, incliding
Newsletter upgrade advice.

- link which will redirect to the current Windows binary release is
fows/base/release htm

Note to webmasters: A stal

<CRAN MIRROR>/bin/wi

® Internet

L R < | = -
g start e s fo FirstHalfDONE I 3 Mirosoft OF.. 1 z prehen... | [B] Inbox - Mirosof...

Figure 2-3

After downloading, the program needs to be installed. Installation is initiated by
clicking on the “*.exe” icon (* is the filename of the current version) created
and following the series of instructions presented in dialog boxes, which include
accepting the user license and whether you want documentation installed. After
installation the R program will be accessible from the Windows Start-Programs
menu system, as well as an installed program in Program Files.

Installation for Mac and Linux systems follows similar steps. Although this
book uses Windows in examples, the operating system used should not make a
difference when using R and all examples should work under other operating
systems.

Exploring the Environment

When you start up R the screen will look like Figure 2-4. The environment is
actually quite plain and simple. There is a main application window and within
it a console window. The main application contains a menu bar with six menus
and toolbar with eight icons for basic tasks.

Copyright May 2007, K Seefeld 9

Permission granted to reproduce for nonprofit, educational use.

I2 RGui - [R Console]
RE\I& Edit Misc Packages Windows Help

R version 2.4.1 (2006-12-18)
Copyright (C) 2006 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type '"license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()"' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HIML browser interface to help.

Type 'qg()' to quit R.

> 1

R 2.4.1 - A Language and Environment

Figure 2-4

Let’s explore some of the features of the R environment.

The Command Line

The command line is where you interact with R. This is designated in red and
has a “>” symbol. At the command line you type in code telling R what to do.
You can use R as calculator to perform basic mathematical operations. Try
typing some basic arithmetic tasks at the command line. Hit enter and R will
compute the requested result:

> 249
[11 11
> 7*%8
[1] 56

More than one line of code can be entered at the command line. Subsequent
lines after the first line are designated by a “+” symbol. For example if you use
an opening parenthesis and then hit enter you will get a “+” symbol and can
continue writing code on the next line:

> 2% (

+ 4+6)

[1] 20

If you enter something incorrect, or that R does not understand, you will get an
error message rather than a result:

> what
Error: Object "what" not found

Copyright May 2007, K Seefeld 10

Permission granted to reproduce for nonprofit, educational use.

The Menu Bar

The menu bar in R is very similar to that in most Windows based programs. It
contains six pull down menus, which are briefly described below. Much of the
functionality provided by the menus is redundant with those available using
standard windows commands (CTRL+C to copy, for example) and with
commands you can enter at the command line. Nevertheless, it is handy to have
the menu system for quick access to functionality.

File

The file menu contains options for opening, saving, and printing R documents,
as well as the option for exiting the program (which can also be done using the
close button in the upper right hand corner of the main program window). The
options that begin with “load” (“Load Workspace and “Load History”) are
options to open previously saved work. The next chapter discusses the different
save options available in some detail as well as what a workspace and a history
are in terms of R files. The option to print is standard and will print the
information selected.

Edit

The edit menu contains the standard functionality of cut, copy and paste, and
select all. In addition there is an option to “Clear console” which creates a blank
workspace with only a command prompt (although objects are still in working
memory), which can essentially clean a messy desk. The “Data editor” option
allows you to access the data editor, a spreadsheet like interface for manually
editing data discussed in depth in the next chapter. The last option on the edit
menu is “GUI preferences” which pops up the Rgui configuration editor,
allowing you to set options controlling the GUI, such as font size and
background colors.

Misc

The Misc menu contains some functionality not categorized elsewhere. The
most notable feature of this menu is the first option ¢ which can also be accessed
with the ESC key on your keyboard. This is your panic button should you have
this misfortune of coding R to do something where it gets stuck, such as
programming it in a loop which has no end or encountering some other
unforeseeable snag. Selecting this option (or ESC) should get the situation
under control and return the console to a new command line. Always try this
before doing something more drastic as it will often work.

The other functionality provided by Misc is listing and removing objects. We
will discuss working with objects in the next chapter.

Copyright May 2007, K Seefeld 11

Permission granted to reproduce for nonprofit, educational use.

Packages

The packages menu is very important, as it is the easiest way to load and install
packages to the R system. Therefore the entire section following this is devoted
to demonstrating how to use this menu.

Windows

The Windows menu provides options for cascading, and tiling windows. If
there is more than one window open (for example, the console and a help
window) you can use the open Windows list on the bottom of this menu to
access the different open windows.

Help

The Help menu directs you to various sources of help and warrants some
exploration. The first option, called “Console” pops up a dialog box listing a
cheat sheet of “Information” listing various shortcut keystrokes to perform tasks
for scrolling and editing in the main console window.

The next two options provide the FAQ (Frequently Asked Questions) HTML
documents for R and R for the operating system you are using. These should
work whether or not you are connected to the Internet since they are part of the
program installation. The FAQ documents provide answers to technical
questions and are worth browsing through.

The next section on the help menu contains the options “R language (standard)”,
“R language (HTML)”, and “Manuals”. “R language (standard) pops up the
help dialog box in Figure 2-5. This will popup the help screen for the specified
term, provided you enter a correct term (which can be hard if you don’t know
ahead of time what you’re looking for). This can also be accomplished using
the help () command, as we will see in the next chapter.

Help on

akK | Cancel |

Figure 2-5

The menu option “R language (HTML)” will produce some HTML based
documents containing information and links to more documentation. This
should be available off-line as part of the R installation. The next option
“Manuals” provides a secondary menu with several pdf files of R documents.

Copyright May 2007, K Seefeld 12

Permission granted to reproduce for nonprofit, educational use.

The remaining options on the Help menu are “Apropos” and ‘“About”’.
“Apropos” pops up a dialog box similar to the help box depicted in Figure 2-5
but that you only need to enter a partial search term to search R documents.
“About” pops up a little dialog box about R and the version you are using.

One of the most difficult tasks in R is finding documentation to help you. R is
actually very extensively documented and only a fraction of this documentation
is available directly using the help menu. However, much of the documentation
is technical rather than tutorial, and geared more toward the programmer and
developer rather than the applied user. More about getting help is discussed in
the next chapter.

The Toolbar

Below the menu bar is the toolbar, depicted in Figure 2-5. This provides quick
access icons to the main features of the menu bar. If you scroll over the icons
with your mouse slowly you will get rollover messages about the feature of each
icon. The stop icon can be useful as a panic button providing the same
functionality as the Misc menu’s “Stop current computation” option.

ClE LUl mIELG CAukdyEs ariuuws Oel
EEEERRRIEIE

Figure 2-5

Packages

The basic R installation contains the package base and several other packages
considered essential enough to include in the main software installation. Exact
packages included may vary with different versions of R. Installing and loading
contributed packages adds additional specialized functionality. R is essentially a
modular environment and you install and load the modules (packages) you need.
You only need to install the packages once to you system, as they are saved
locally, ready to be loaded whenever you want to use them. However

The easiest way to install and load packages is to use the Packages menu,

although there are equivalent commands to use as well if you prefer the
command line approach.

Installing Packages

In order to use an R package, it must be installed on your system. That is you
must have a local copy of the package. Most packages are available from the
CRAN site as contributed packages, and can be directly downloaded in R. In

Copyright May 2007, K Seefeld 13

Permission granted to reproduce for nonprofit, educational use.

order to do this, select “Install package from CRAN” from the Packages menu.
You must be connected to tine Internet to use this option, and when you do so
the connection will return a list of packages in a dialog box like that in Figure 2-
6 listing available packages:

BEERATK o
adapt —
aded

age b
akima

amap

AnalyzeFMAI

ape

azh

awg

Bhat

bindata

blighty

bootstrap

boot

batl

bl

car

colust

cla

chron

CircStats ¥

ok Cancel

Figure 2-6

Select the package of interest and OK, and R will automatically download the
package to your computer and put it in the appropriate directory to be loaded on
command.

Some packages are not available directly from the CRAN site. For these
packages download them to an appropriate folder on your computer from their
source site. To install them select the “Install package from local zip file”
option on the packages menu and R will put them in the appropriate directory.

Loading Packages

Whenever you want to use an R package you must not only have installed
locally you must also load the package during the session you are using it. This
makes R more efficient and uses less overhead than if all installed packages are
loaded every time you use R, but makes the use do a little more work.

To load an installed package, select the “Load package” option from the

packages menu. This produces another dialog box very similar to Figure 2-7,
only this time the list of packages includes only those packages which are

Copyright May 2007, K Seefeld 14

Permission granted to reproduce for nonprofit, educational use.

installed locally. Select the package to load and you should be all set to use the
features of that package during the current work session. Load packages
become unloaded when you quit R and are NOT saved when you save your
workspace or history (discussed in the next chapter). Even if you open previous
work in R you will still need to reload packages you are using the features of.

R vs. S-Plus

The other major implementation of the S language, which is a popular statistical
application, is a commercial package called S-Plus. This is a full commercial
product, and is supported by the company that makes it, called Insightful
(www.insightful.com). There is a demo version of S-Plus available for
evaluation purposes.

R and S-Plus are almost identical in their implementation of the S language.
Most code written with R can be used with S-Plus and vice versa. Where R and
S-Plus differ is in the environment. S-Plus is a GUI based application
environment that has many features that allow for data analysis to be more menu
and pop-up dialog box assisted, requiring less coding by the user. On the other
hand, the S-Plus environment has a heavier overhead, and many times code will
run more efficiently in R as a consequence.

R and Other Technologies

Although not a topic that will be covered in this book, it is of interest to note that
R is not an isolated technology, and a significant part of the R project involves
implementing methods of using R in conjunction with other technologies. There
are many packages available that contain functionality to R users in conjunction
with other technologies available from the CRAN site. For example, the
package ROracle provides functionality to interface R with Oracle databases,
and package XML contains tools for parsing XML and related files. Interested
users should explore these options on the R websites.

Copyright May 2007, K Seefeld 15

Permission granted to reproduce for nonprofit, educational use.

Basics of Working with R

This chapter introduces the foundational skills you need to work in R. These
include the ability to create and work with data objects, controlling the
workspace, importing and saving files, and how and where to get additional
help.

Using the S Language

R is based on a programming language known as S. R is both an
implementation of the S language that can be considered a language on its own,
and a software system. There are some differences in language that are not
noticeable by the applied user and are not discussed here.

The S language (and R language, if you consider them distinct languages, which
is a debatable issue) was specifically designed for statistical programming. It is
considered a high level object-oriented statistical programming language, but is
not very similar to object-oriented languages such as C++ and Java. There is no
need to know anything about object-oriented programming, other than the
general idea of working with objects, in order to be an effective applied user of
R.

Copyright May 2007, K Seefeld 16

Permission granted to reproduce for nonprofit, educational use.

The abstract concepts used in object-oriented languages can be confusing.
However for our purposes, the concept of an object is very easy. Everything is
an object in R and using R is all about creating and manipulating objects. We
are concerned with two types of objects: function objects and data objects. Data
objects are variable-named objects that you create to hold data in specified
forms, which are described in detail in this chapter. Function objects are the
objects that perform tasks on data objects, and are obtained as part of the R base
system, part of an imported package, or can be written from scratch. We
immediately start working with function objects in this chapter, but the next
chapter covers them in more depth, including some basics of writing your own
functions. Function objects perform tasks that manipulate data objects, usually
some type of calculation, graphical presentation, or other data analysis. In
essence, R is all about creating data objects and manipulating these data objects
using function objects.

Structuring Data With Objects

In R the way that you work with data is to enter data (either directly or indirectly
by importing a file) and in doing so, you are creating a data object. The form of
the data object you create depends on your data analysis needs, but R has a set
of standard data objects for your use. They are: scalars, vectors, factors,
matrices and arrays, lists, and data frames. The different types of data objects
handle different modes of data (character, numeric, and logical T/F) and format
it differently. The first part of this section briefly explains what these different
types of data objects are and when to use which object. The second part of this
section deals with some general tasks of working with data objects that are of
general use.

All data objects generally have three properties. First they have a type (scalar,
vector, etc). Second, they have values (your data) that have a data mode.
Finally, they generally are assigned a variable name (that you supply, using the
assignment operator). Sometimes you will work only transiently with data
objects, in which case you do not need to name them. But you should always
provide a descriptive variable name of a data object you are going to perform
further manipulations on. With few exceptions R will allow you to name your
variables using any name you like.

Types of Data Objects in R

Scalars

The simplest type of object is a scalar. A scalar is an object with one value. To
create a scalar data object, simply assign a value to a variable using the
assignment operator “<-”. Note the equals sign is not the assignment operator in
R and serves other functionality.

Copyright May 2007, K Seefeld 17

Permission granted to reproduce for nonprofit, educational use.

For example to create scalar data objects x and y:

> fficreate scalar data object x with value 5
> x<-=5
> #create scalar data object y with value 2
> y<=2

With scalar data objects of numeric mode, R is a big calculator. You can
manipulate scalar objects in R and perform all sorts of algebraic calculations.

> #some manipulations on scalar objects x and y
> z<—=X+y

*

+2

z
]
.
]
x
1 12

7
Y
3
Yy
1

Of course data can also be logical or character mode. Logical data can be
entered simply as T or F (no quotes).

> correctLogic<-T

> correctLogic

[1] TRUE

> incorrectLogic<-"T"
> incorrectLogic

[1} nn

Character data should always be enclosed with quotations (either single or
double quotes will do).

> single<-'singleQuote'

> double<—"doubleQuote"

> single

[1] "singleQuote"

> double

[1] "doubleQuote"

#You will get an error if you enter character data with no quotes at all
> tryThis<-HAHA

Error: Object "HAHA" not found

The function “mode (variable name)” will tell you the mode of a variable.

> mode (x)

[1] "numeric"

> mode (correctLogic)
[1] "logical"

> mode (incorrectLogic)
[1] "character"

Vectors

Of course the power of R lies not in its ability to work with simple scalar data
but in its ability to work with large datasets. Vectors are the data objects
probably most used in R and in this book are used literally everywhere. A vector
can be defined as a set of scalars arranged in a one-dimensional array.

Copyright May 2007, K Seefeld 18

Permission granted to reproduce for nonprofit, educational use.

Essentially a scalar is a one-dimensional vector. Data values in a vector are all
the same mode, but a vector can hold data of any mode.

Vectors may be entered using the c () function (or “combine values” in a vector)
and the assignment operator like this:
> newVector<-c(2,5,5,3,3,6,2,3,5,6,3)

> newVector
[11 25533623563

Vectors may also be entered using the scan () function and the assignment
operator. This is a good way to enter data easily as you can past in unformatted
data values from other documents.

> scannedVector<-scan ()
1: 2

2: 3

3: 1

4: 3

5: 53

To stop the scan simply leave an entry blank and press enter.

6:
Read 5 items

Another way to make a vector is to make it out of other vectors:

> vl<-c(1,2,3)
> v2<-c(4,5,6)

You can perform all kinds of operations on vectors, a very powerful and useful
feature of R, which will be used throughout this book.

> z<—v1+v2
> z
[11 579

Note that if you perform operations on vectors with different lengths (not
recommended) then the vector with the shorter length is recycled to the length of
the longer vector so that the first element of the shorter vector is appended to the
end of that vector (a way of faking that it is of equal length to the longer vector)
and so forth. You will get a warning message, but it does let you perform the
requested operation:
> xl<-c(1,2,3)
> x2<-c(3,4)
> x3<-x1+x2
Warning message:
longer object length

is not a multiple of shorter object length in: x1 + x2
> x3
[1] 46 6

You can also create a vector by joining existing vectors with the c () function:

> g<-c(vl,v2)
> q

Copyright May 2007, K Seefeld 19

Permission granted to reproduce for nonprofit, educational use.

[11 1 23 456

Vectors that have entries that are all the same can easily be created using the
“rep” (repeat) function:

> x<-rep(3,7)

> X

[11 3333333

> charvec<-rep("haha", 4)

> charvec
[1] "haha" "haha" "haha" "haha"

Factors

A factor is a special type of character vector. In most cases character data is
used to describe the other data, and is not used in calculations. However, for
some computations qualitative variables are used. To store character data as
qualitative variables, a factor data type is used. Although most coverage in this
book is quantitative, we will use qualitative or categorical variables in some
chapters in this book, notably in experimental design.

You may create a factor by first creating a character vector, and then converting
it to a factor type using the factor () function:

> settings<-c("High", "Medium", "Low")
> settings<-factor (settings)

Notice that this creates “levels” based on the factor values (these are the values
of categorical variables).
> settings

[1] High Medium Low
Levels: High Low Medium

Matrices and Arrays

Matrices are collections of data values in two dimensions. In mathematics
matrices have many applications, and a good course in linear algebra is required
to fully appreciate the usefulness of matrices. An array is a matrix with more
than two dimensions. Formatting data as matrices and arrays provides an
efficient data structure to perform calculations in a computationally fast and
efficient manner.

To declare a matrix in R, use the matrix () function, which takes as arguments a
data vector and specification parameters for the number of rows and columns.
Let’s declare a simple 2 by 2 matrix.

> mat<-matrix(c(2,3,1,5),nrow=2,ncol=2)
> mat

Copyright May 2007, K Seefeld 20

Permission granted to reproduce for nonprofit, educational use.

This book makes no assumption of knowledge of matrix mathematics, and when
matrices and arrays are used in applied examples, appropriate background
information will be provided. Typically the data in an array or matrix is
numerical.

Specially structured matrices can also be easily created. For example, creating a
2 by 3 matrix consisting of all ones can be done as follows:
> onemat<-matrix(1l,nrow=2,ncol=3)

> onemat
(11 [,2]1 [,3]

If you create a matrix with a set of numbers, for example 7 numbers, and you
specify it to have a set number of columns, for example 3 columns, R will cycle
through the numbers until it fills all the space specified in the matrix, giving a
warning about unequal replacement lengths:

> matrix(c(1,2,3,4,5,6,7),ncol=3)

(-11 [, 2] [,3]
[1,1] 1 4 7
[2,] 2 5 1
[3,] 3 6 2

Warning message:
Replacement length not a multiple of the elements to replace in matrix(...)

Lists

Lists are the “everything” data objects. A list, unlike a vector, can contain data
with different modes under the same variable name and encompass other data
objects. Lists are useful for organizing information. Creating a list is very
simple; just use the list () function to assign to a variable the list values. Note
that list values are indexed with double bracket sets such as [[1]] rather than
single bracket sets used by other data objects.

> myList<-1ist (5,6, "seven", mat)

> myList

[[11]

Copyright May 2007, K Seefeld 21

Permission granted to reproduce for nonprofit, educational use.

Data Frames

Data frames are versatile data objects you can use in R. You can think of a data
frame object as a being somewhat like a spreadsheet. Each column of the data
frame is a vector. Within each vector, all data elements must be of the same
mode. However, different vectors can be of different modes. All vectors in a
data frame must be of the same length. We will use data frames frequently in
this book.

To create a data frame object, let’s first create the vectors that make up the data
frame (genome size data from www.ornl.gov).:

> organism<-c ("Human", "Mouse", "Fruit Fly", "Roundworm", "Yeast")
> genomeSizeBP<—c (3000000000,3000000000,135600000,97000000,12100000)
> estGeneCount<-c(30000,30000,13061,19099,6034)

Now, with three vectors of equal length we can join these in a data frame using
the function data.frame () with the vectors we want as the arguments of this
function. Note that the format here is “column name”="vector to add” and the
equals (not assignment) operator is used. We are naming columns not creating
new variables here. Here, the variable names are used as column names, but
you could rename the columns with names other than the variable names if you

like.

> comparativeGenomeSize<—
data.frame (organism=organism, genomeSizeBP=genomeSizeBP,
+ estGeneCount=estGeneCount)

> comparativeGenomeSize
organism genomeSizeBP estGeneCount

1 Human 3.000e+09 30000
2 Mouse 3.000e+09 30000
3 Fruit Fly 1.356e+08 13061
4 Roundworm 9.700e+07 19099
5 Yeast 1.210e+07 6034

Working with Data Objects

Once you have created a data object, you will often want to perform various
tasks. This section discusses some common tasks to access and modify existing
data objects. Mainly our focus here is on vectors and data frames, since these
will be the data objects heavily utilized in this book, but similar techniques can
be applied to other data objects.

Working with Vectors

In order to be able to work with a specific element in a data object, first you
need to be able to identify that specific element. With vectors this is fairly easy.
Every element in a vector is assigned an index value in the order in which
elements were entered. This index starts with 1, not zero. To address a specific

Copyright May 2007, K Seefeld 22

Permission granted to reproduce for nonprofit, educational use.

element in a vector, enter the name of the vector and the element of interest in
brackets:

> y<-c(9,2,4)
> yl[2]
[1]1 2

If you are not certain exactly where your value of interest is but have an idea of
the range of indexes it may be in, you can look at selected index values of your
vector using as set of numbers written in the form [start: finish]

> z<-c(1,2,3,4,12,31,2,51,23,1,23,2341,23,512,32,312,123,21,3)
> z[3:7]
[11] 3 412 31 2

You can overwrite a value by re-assigning a new value to that place in the
vector:

7 412 31 2

To organize your data, function sort will sort your data from smallest to largest
(additional functional parameters possible to do other ordering) and function
order will tell you which elements correspond to which order in your vector.

> sort(z)
[1] 1 1 2 2 3 3 4 12 21 23 23 23 31
51
[16] 123 312 512 2341
> order (z)
(1] 110 2 7 319 4 518 9 11 13 6 15 8 17 16 14 12

You may want to extract only certain data values from a vector. You can extract
subsets of data from vectors in two ways. One is that you can directly identify
specific elements and assign them to a new variable. The second way is that you
can create a logical criterion to select certain elements for extraction.
Illustrating both of these:

> ffextracting specific elements

> z3<-z[c(2,3)]

> z3

[11 2 7

> #logical extraction, note syntax
> z100<-2z[z>100]

> z100

[1] 2341 512 312 123

Sometimes, if you are coding a loop for example, you may need to know the
exact length of your vector. This is simple in R using the length () function:

> length(z)
[1] 19

Copyright May 2007, K Seefeld 23

Permission granted to reproduce for nonprofit, educational use.

32

Working with Data Frames

Because a data frame is a set of vectors, you can use vector tricks mentioned
above to work with specific elements of each vector within the data frame. To
address a specific vector (column) in a data frame, use the “$” operator with the
specified column of the data frame after the “$”.

> x<-c(1,3,2,1)
> y<-c(2,3,4,1)
> xy<-data.frame(x,y)
> xy
Xy
112
233
324
411
> f#fuse g to create new vector extracting x column of dataframe xy
> g<—-xyS$x
> g
11 1321

To address a specific element of a data frame, address that vector with the
appropriate index:

> xy$x[2]
[1]1 3

Commonly you will want to add a row or column to the data frame. Functions
rbind, for rows, and cbind, for columns, easily perform these tasks. Note these
functions work for matrices as well.

#create and bind column z to
z<-c(2,1,4,7)
xyz<—cbind(xy, z)

XYz

vV V V V
NV SIS

N W X
N SN

117

#create and bind new row w
w<-c(3,4,7)

xyz<-rbind (xyz, w)

XY7Z

V V.V V b WNR-

g W N
W N W X
B W K
< J NN

There are many ways to work with data in data frames; only the basics have
been touched on here. The best way to learn these techniques is to use them,
and many examples of the use of data objects and possible manipulations will be
presented in this book in the examples presented.

Copyright May 2007, K Seefeld 24

Permission granted to reproduce for nonprofit, educational use.

Checking and Changing Types

Sometimes you may forget or not know what type of data you are dealing with,
so R provides functionality for you to check this. There is a set of “is.what”
functions, which provide identification of data object types and modes. For
example:

> x<-c(1,2,3,4)

> fichecking data object type
> is.vector (x)

[1] TRUE
> is.data.frame (x)
[1] FALSE

> #checking data mode
> is.character (x)

[1] FALSE

> is.numeric (x)

[1] TRUE

Sometimes you may want to change the data object type or mode. To do this R
provides a series of “as.what” functions where you convert your existing data
object into a different type or mode. Don’t forget to assign the new data object
to a variable (either overwriting the existing variable or creating a new one)
because otherwise the data object conversion will only be transient.

To change data object types, you may want to convert a vector into a matrix:

> y<-as.matrix(x)
>y
[Il

S W N

(1,1
(2,1
(3,1
(4,1

You can also use the “as.what” functionality to change the mode of your data.
For example, you may want to change a numerical vector to a character mode
vector.

> z<-as.character (x)
> z
[1} "1" "2" "3" |l4ll

R is smart enough to try catching you if you try to do an illogical conversion,
such as convert character data to numeric mode. It does do the conversion but
the data is converted to NA values.

> words<-c("Hello", "Hi")
> words

[1] "Hello"™ "Hi"

> as.numeric (words)

[1] NA NA

Warning message:

NAs introduced by coercion

Copyright May 2007, K Seefeld 25

Permission granted to reproduce for nonprofit, educational use.

Missing Data

Anyone working with empirical data sooner or later deals with a data set that has
missing values. R treats missing values by using a special NA value. You
should encode missing data in R as NA and convert any data imports with
missing data in other forms to NA as well, assuming you are not using a
numerical convention (such as entering 0’s).

> missingData<-c(1,3,1,NA,2,1)

> missingData
1] 1 3 1N 2 1

If computations are performed on data objects with NA values the NA value is
carried through to the result.
> missingData2<-missingData*2

> missingData?
[1] 2 6 2NA 4 2

If you have a computation problem with an element of a data object and are not
sure whether that is a missing value, the function is.na can be used to determine
if the element in question is a NA value.

> is.na(missingDatal[l])
[1] FALSE

> is.na(missingData[4])
[1] TRUE

Controlling the Workspace

This section describes some basic housekeeping tasks of listing, deleting, and
editing existing objects. Then there is discussion of the different ways of saving
your workspace.

Listing and Deleting Objects in Memory

When working in R and using many data objects, you may lose track of the
names of the objects you have already created. Two different functions 1s() and
objects() have redundant functionality in R to list the current objects in current
workspace memory.

> 1s()

[1] "q" "yl" "v2" "xI" "x2" "x3" "z"

> objects|()
[l:| "q" "Vl " "V2 " "Xl" "X2 n "X3 n "Z"

Sometimes you will want to remove specific objects from the workspace. This
is easily accomplished with the remove function, rm(object) with the object
name as the argument.

| > rm(q)

Copyright May 2007, K Seefeld 26

Permission granted to reproduce for nonprofit, educational use.

> 1s/()

[l:| "Vl n "VZ " "Xl n "XZ" llX3" "Z"
> rm(vl, z)

> 1s/()

[l:| "V2l| lle" "X2" "X3"

Editing data objects

R has a built in data editor which you can use to edit existing data objects. This
can be particularly helpful to edit imported files easily to correct entries or if you
have multiple data entries to edit beyond just simple editing of a particular entry.
The data editor has a spreadsheet like interface as depicted in Figure 3-1, but has
no spreadsheet functionality.

|F RGui - [Data Editor]

[R Ele Edt Help ==l x|

VAarZ WAarsi war4 vars VAarG

W |1 ||| e
=
m

[
o

i
[5]

i
w

i
iy

i
i
W |w ||| w e |-

i
w

Figure 3-1

To use the data editor, use the data.entry function with the variable being edited
as the argument:

> x<-c(3,1,3,5,12,3,12,1,2,3,5,7,3,1,3)
> data.entry(x)

All changes made using the data editor are automatically saved when you close
the data editor. Using the Edit menu option “Data editor”, which brings up a
dialog box asking which object to edit, is an alternative way to access the data
editor.

Copyright May 2007, K Seefeld 27

Permission granted to reproduce for nonprofit, educational use.

Saving your work

R has a few different options for saving your work: save to file, savehistory, and
save workspace. Save to file saves everything, savehistory saves commands and
objects and save image just saves the objects in the workspace. Let’s explain a
little more about these and how to use them.

Save to file

Save to file is an option available under the file menu. This option saves
everything — commands and output — to a file and is the most comprehensive
method of saving your work. This option produces a save as dialog box, making
saving the file in a specific directory easy. It produces a text file format
viewable in a text editor or word processor or custom specified file type using
the all files option and typed in file type. This method of saving is most familiar
and simplest, but sometimes you may not want to save everything, particularly
when you have large amounts of output and only want to save commands or
objects.

Savehistory

This history of what you did in a session can be saved in a *.Rhistory file using
the savehistory function. This will save everything typed into the command line
prior to the savehistory() function call in the session without R formatting or
specific output (versus Save to file which includes all output and formatting).

> x<-c(1,2,3,4,5)

> X

[11 1 2345
> savehistory(file="shortSession.Rhistory")

This creates a *.Rhistory file in the main R directory (C:\Program Files\R*
where * is the current version of R) unless otherwise specified. This file should
be readable by a text editor, such as notepad, as in Figure 3-2.

ﬂ shortSeszion - Motepad |0

File Edt Search Help

fk<-c(1,2,3,4,5) =
H
savehistory(file="shortSession.Rhistory"}

Figure 3-2

Copyright May 2007, K Seefeld 28

Permission granted to reproduce for nonprofit, educational use.

Saving workspace image

The option to save the workspace saves only the objects you have created, not
any output you have produced using them. The option to save the workspace
can be performed at any time using the save.image () command (also available
as “Save Workspace” under the file menu) or at the end of a session, when R
will ask you if you want to save the workspace.

> x<-c(1,2,3,4,5)

> X

[11 12345
> save.image ()

This creates an R workspace file. It defaults to having no specific name (and
will be overwritten the next time you save a workspace with no specific name),
but you can do save.image(filename) if you want to save different workspaces
and name them.

Note that R will automatically restore the latest saved workspace when you
restart R with the following message

|[Previously saved workspace restored]

To intentionally load a previously saved workspace use the load command (also
available under the file menu as “Load Workspace”).
> load("C:/Program Files/R/rwl062/.RData")

> X
[11 1 23 45

Importing Files

We have seen that entering data can be done from within R by using the scan
function, by directly entering data when creating a data object, and by using the
data editor. What about when you have a data file that you want to import into
R, which was made in another program? This section touches on the basics of
answering these questions.

It is of note here that there is a manual available for free on the R site and on the
R help menu (if manuals were installed as part of the installation) called “R Data
Import/Export” which covers in detail the functionality R has to import and
export data. Reading this is highly recommended to the user working
extensively with importing or exporting data files. This manual covers
importing data from spreadsheets, data, and networks.

The first thing to do before importing any file is to tell R what directory your file
is in. Do this by going under the File menu and choosing the “Change dir”

option”, which produces the dialog box illustrated in Figure 3-3. Type in or
browse to the directory of your data file and press the OK button.

Copyright May 2007, K Seefeld 29

Permission granted to reproduce for nonprofit, educational use.

Change diectoy

Change working directary bo;

C:\Program Files\R] 062 | Browze |
] | Cancel |
Figure 3-3

Importing using the function read. *()

The most convenient form to import data into R is to use the read functions,
notably read.table(). This function will read in a flat file data file, created in
ASCII text format. In Notepad you can simply save such a file as a regular text
file (extension *.txt). Many spreadsheet programs can save data in this format.
Figure 3-4 gives an example of what this format should look like in Notepad:

.Ej sizeTime - Hotepad [H[=] B3

File Edit Search Help

Size Time{min) ;l
45 289
32 o087
23 891
21 379
49 om|

4] 2

Figure 3-4

Using read.table with arguments of file name and header=T (to capture column
headings), such a file can easily be read in R as a data frame object:
> sizeTime<-read.table("sizeTime.txt", header=T)

> sizeTime
Size Time.min.

1 45 289
2 32 907
3 23 891
4 21 379
5 49 901

There are some additional read function variants. Notably read.csv() which will
read comma delineated spreadsheet file data, which most spreadsheets can save
files as.

Copyright May 2007, K Seefeld 30

Permission granted to reproduce for nonprofit, educational use.

Importing with scan ()

The scan function can be used with an argument of a file name to import files of
different types, notably text files (extension *.txt) or comma separated data files
(extension *.csv). Data from most spreadsheet programs can be saved in one or
both of these file types. Note that scan() tends to produce formatting problems
when reading files much more often than read and is not recommended for
importing files.

Package foreign

Also of note is an R package called foreign. This package contains functionality
for importing data into R that is formatted by most other statistical software
packages, including SAS, SPSS, STRATA and others. Package foreign is
available for download and installation from the CRAN site.

Troubleshooting Importing

Finally, sometimes you may have data in a format R will not understand.
Sometimes for trouble imports with formatting that R cannot read, using scan ()
or the data editor to enter your data may be a simple and easy solution. Another
trick is to try importing the data into another program, such as a spreadsheet
program, and saving it as a different file type. In particular saving spreadsheet
data in a text (comma or tab delineated) format is simple and useful. Caution
should be used as some spreadsheet programs may restrict the number of data
values to be stored.

Getting Help

Virtually everything in R has some type of accessible help documentation. The
challenge is finding the documentation that answers your question. This section
gives some suggestions for where to look for help.

Program Help Files

The quickest and most accessible source of help when using R is to use the on-
line help system that is part of R. This includes on-line documentation for the R
base packages, as well as on-line documentation for any loaded packages.

Finding help when you know the name of what it is your asking for help on is
easy, just use the help function with the topic of interest as the argument of the
help function. For example to get help on function sum:

| > help (sum)

This produces a help file as depicted in Figure 3-5.

Copyright May 2007, K Seefeld 31

Permission granted to reproduce for nonprofit, educational use.

|2 RGui = (0] x]
File Edit Windows

[F* R Console = =
!F'_ “sum” help
i sum package :base E Documentatio
Ver
R Zum of Vector Elements
i
o Description:
Typ
o *sum' returns the sum of all the wvalues present in its argu.men_
- 3 If 'na.rmw' is "FALSE' an "NiL' walue in anhy of the arguments wi
e cause a walue of "HNA' to be returned, otherwise "NL' wvalues ar
ignored.
Typ
he Usage:
Typ
sum(..., ha.rm=FALL3E)
[Fr =
4| | i
| 7

Figure 3-5
As an alternative to calling the help function you can just put a question mark in
front of the topic of interest:
|> ?sum
If you don’t know the exact name of what you’re looking for, the apropos()
function can help. To use this function type in a part of the word you are looking
for using quotes as the function argument. The result of calling apropos is that

you will get a list of everything that matches that clue, as in Figure 3-6 for
apropos(“su”), and you can then do a help search on your term of interest.

Copyright May 2007, K Seefeld 32

Permission granted to reproduce for nonprofit, educational use.

R RGui [5]x]

File Edit Misc Package: “windows: Help

EISEIBEE
X - =y I =
[FPreviously sawved workspace restored]
> Epropos{ meu™)

[1] ".sukbset™ "osubsec2™ foontr. s

[4] Meawnswan™ fextractiIC.survreg™ fosukn

[7] "influehce.messures™ frrint. Swinsry. sovT fprint. SWnsry. s
[10] "print.sweosey.olo™ fprint.swinsry.olim.null™ Tprint. sumnary. 1
[13] "print.swmary.lm.null”™ "print.swanary.manova’ "print.Sumnary.
[1e] "rowswum™ "rowsum. data. frame " "rowswm,. defaulc”
[12] "suk" "subset" "subset.data.fra
[22] "subset.default” "substitute" "substc"
[25] «Fsubstrc=" "substring™ "zubstring<-"
[28] "swmn'™ "sunenar " "swrrnar . aowv"
[31] "swmnary.aovlist™ "sunnar v. connection® "swnmar v. data. fr
[34] "summary.default" "summary. factor" "summar . o lm™
[37] "swumoary.glm.nuall” "summary.infl" "sunrnary. lm'™
[40] "swumoary. lm.nall™ "sunrar v . manowa't "sunmmar y.mateix'
[43] "swmnary.mlm™ "sunnar v. packageStatus" "summmary. POSRIECC
[46] "swmoary.POSTELc™ "sunmary. table™ "suntmar yEprof™
[429] "sunflowerplot'™ Myrcov. survreg™

= | =
. | _’l_l
7

|H 1.6.2 - & Language and Environment

Figure 3-6

Note that on-line help is especially useful for describing function parameters,
which this book will not discuss in great detail because many functions in R
have lots of optional parameters (read.table for example has about 12 different
optional parameters). The reader should be comfortable with looking up
functions using help to get detailed parameter information to use R functions to
suit their needs.

Documents

The R system and most packages are fairly well documented, although the
documentation tends to be technical rather than tutorial. The R system itself
comes with several documents that are installed as part of the system
(recommended option). These are under the “Manuals” option on the “Help”
menu.

In addition to manuals that cover R in general, most packages have their own
documents. R has a system where package contributors create pdf files in
standard formats with explain the technical details of the package, including a
description of the package and its functionality. These documents also generally
list the name and contact information for the author(s) of the package. These
documents are available from the “Package Sources” section of the CRAN site
(cran.r-project.org) where the relevant package is listed and are always listed as
Reference Manual, although they save with a file name corresponding to the

Copyright May 2007, K Seefeld 33

Permission granted to reproduce for nonprofit, educational use.

package name. They can be downloaded and saved or viewed on-line using a
web browser that reads pdf files.

Books

There are several books written that are about or utilize R. In addition, there are
several books that cover the related topics of S and S-Plus. These are included
in the resource section at the end of the book.

On-line Discussion Forums

One of the best sources of help if you have a specific question is the on-line
discussion forums where people talk about R. These forums serve as “technical
support” since R is open source and has no formal support system. There are
usually many well-informed users who regularly read these discussion lists. A
guide to such lists is found at www.r-project.org as depicted in Figure 3-7. In
addition many other forums exist on the web where questions about R may be
posted.

/2 The R Project for Statistical Computing - Microsoft Internet Explorer

J File Edit “iew Fawortes Tool: Help |

@ L= 0 AN B B BNE PR = B
Back. Farimard Stop Refresh Home Search Favortes History I il Print

J Addresz I@ hittp: /A, -project orgd ﬂ 6} Go

J Lirks @ Shopping @ Best of the ‘Web @ Channel Guide @ Cuztarnize Links @ Free HatM ail i

Mailing Lists

Thanles to Martin IMaechler, there are three mailing lists devoted to &

I
ﬂ L: r-announce

=

R . This list iz for anncuncements about the development of B and the
Project availability of new code.

M J The list has a low volume (about one a week) and everyone
MLI—SFS mildly interested should consider subscribing, but note that E-help
Bug Tracking gets everything from R-anmounce as well, so you don't need to
Developer subseribe to both of them,

Page

Search Note that the list is smaderated to be used for announcements

0| | _’lll mainly by the B Core Development Tearm.
|@] Dore l_l_lﬂ Internet

Figure 3-7

s

Copyright May 2007, K Seefeld 34

Permission granted to reproduce for nonprofit, educational use.

