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iDistribuigio de Boltzmann
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Figure 6.4 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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Figure 1.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

oh
.
-,
»

..
-

Figure 1.1 Atomic-level structural
representation of members of

each of the major classes of
macromolecules, all drawn at the same
scale. Charged nitrogen, oxygen, and
phosphorus atoms, and the hydrogen
atoms that are directly bonded to
them, are colored black. Polar
nitrogen, oxygen, and sulfur atoms,
and the hydrogen atoms that are
directly bonded to them, are colored
gray. Carbon atoms and the hydrogen
atoms that are directly bonded to
them are colored light gray. (A) Atomic
structure of a small fragment of the
nucleic acid DNA in the B form,

(B) atomic structure of the
oxygen-carrying protein hemoglobin,
(C) phosphatidylcholine lipid molecule
from a cell membrane, and

(D) branched complex carbohydrate
(M41 capsular polysaccharide) from
the surface of the bacterium
Escherichia coli. (Illustrations courtesy
of D. Goodsell.)
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Figure 1.3 The chemical structure of nucleotides and DNA. (A} In DNA, the four
distinct subunits or bases are abbreviated: A (adenine), T (thymine), G (guanine),
and C (cytosine). In these diagrams, carbon is represented by C, oxygen by O,
nitrogen by N and hydrogen by H. The letter R indicates attachment to a larger
chemical group (the rest of the molecule); for nucleotides, the R group consists of
the pentose sugar deoxyribose attached to phosphate. A single line connecting
two atoms indicates a single covalent bond and a double line indicates a double
covalent bond. The two large bases, A and G, are called purines and the two small
bases, C and T, are called pyrimidines. (B) lllustration of how bases are assembled
to form DNA, a double helix with two “backbones” made of the deoxyribose and
phosphate groups. The four bases are able to form stable hydrogen bonds
uniquely with one partner such that A pairs only with T and G pairs only with C.
The structural complementarity of the bases enables the faithful copying of the
nucleotide sequence when DNA is replicated or when RNA is transcribed. (C)
Space-filling atomic model approximating the structure of DNA. The spacing
between neighboring base pairs is 0.34 nm. (Adapted from B. Alberts et al.,
Molecular Biology of the Cell, 5th ed. New York, Garland Science, 2008.)
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of the ring, the second nucleotide in the middle shaded ring and the third nucleotide in the outer shaded ring. In this
representation of the genetic code, the four bases are adenine (A), cytosine (C), guanine (G) and uracil (U). Uracil is
structurally very similar to thymine (T), and is used instead of thymine in messenger RNA. The amino acids

e o corresponding to each group of triplets are illustrated with their names (outer ring) and atomic structures. Two amino
Arginine acids, tryptophan and methionine, are encoded by only a single triplet, whereas others including serine, leucine, and
arginine are encoded by up to six. Three codons do not code for any amino acid and are recognized as stop signals. The
unigue codon for methionine, AUG, is always used to initiate protein synthesis.
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Ou Assim?

Celulas se comportam, do ponto de vista
mecanico, como um vidro mole...




Motores Celulares




iDistribuigio de Boltzmannj

12 . . I . . ,

il

— Mr' o
AleanJ gl

J

11

Revolutions
(@))
E

[R. Yasuda et al., Cell 93, 1117 (1998)]
http://www.k2.phys.waseda.ac. jp/Flmovies/FlStep.htm 0 50 100 150

Time (s)



Motores Celulares

O Sistema Acto-Miosina é presente em =
praticamente todas as celulas eucariontes ¢
(com nucleo)




Motores Celulares

Actin filament 1 - Rigor (mortis)
L
Myosin head (S1) short-lived during contraction
=
2 - Released

W% ATP reduces the affinity of S1
3 Myosin filament for the actin filament
-‘ I

HYDROLYSIS ¢ 3 - ATP Hydrolysis
W S1 binds to actin and releases

Pi triggering the power stroke
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Motores Celulares
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Modelo versus Dados Experimentais
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Para uma mola (modelo de Hooke)

F =—kAx (Microscopicamente)
F AL
o= —F A (Macroscopicamente)

E — Modulo de Young (Forca/Area)
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Figure 5.24 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

changed relative to its equilibrium
value. The energy curve shows the
elastic energy cost to change the
thickness of a lipid bilayer from its
equilibrium thickness.
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Viscoelastic
- element 2
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where €; = €/ f? is the strain, c 1s viscous coefficient, and v; is
— CV: the approaching velocity between the nodes connected by the
J jth bond. With this definition, we mimicked certain homogene-
ity in the system, such that the same strain would generate very
similar force independent of the size of the bond of the VE.
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A Mathematical Model of the Airway Smooth Muscle:
The Effect of Methacholine and Formaldehyde
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