Cascas com superfície média de dupla curvatura

Cascas de revolução – Teoria de membrana (carregamento simétrico em relação ao eixo de revolução)

Uma superfície de revolução pode ser definida pela rotação de uma curva plana (meridiano) em torno de um eixo situado no mesmo plano do meridiano. Os paralelos da superfície são as curvas planas obtidas cortando-se a superfície por planos perpendiculares ao eixo de revolução. Esses paralelos são os círculos de raio r₀ na Figura 1.

Da geometria diferencial (Ramaswamy, 1968), sabe-se que o raio de curvatura de um meridiano em um dado ponto é um dos raios de curvatura principais da superfície de revolução naquele ponto – r_1 na Figura 1. Demonstra-se ainda que $r_2 = (r_0/\text{sen}\Phi)$ é o outro raio de curvatura principal.

Em uma casca de revolução no regime de membrana, o equilíbrio é obtido com os esforços internos e externos mostrados nas figuras 1 e 2. Se o carregamento (esforços externos) for simétrico, $p_x=0$ e $N_{\Phi\theta}=N_{\theta\Phi}=0$. Nessa situação particular, as equações de equilíbrio no regime de membrana são:

$$N_{\theta}r_{1}cos\phi - \frac{d(N_{\phi})}{d\phi} = p_{y}r_{0}r_{1}$$
$$\frac{N_{\phi}}{r_{1}} + \frac{N_{\theta}}{r_{2}} = -p_{z}$$

Maiores detalhes sobre a obtenção dessas equações podem ser obtidos em Ramaswamy (1968). Considere-se que a segunda equação é semelhante àquela obtida para a casca cilíndrica circular em aulas anteriores, com a consideração da curvatura do meridiano.

Interessa agora obter N_{Φ} por equilíbrio e utilizar somente a segunda equação para obter N_{θ} , o que é possível devido à simetria do problema.

Dessa forma, com base na Figura 3, pode-se obter N_{Φ} para o caso de peso-próprio (g em kN/m²) em uma casca esférica (r₁ = r₂ = R), por:

$$N_{\phi} = -\frac{gR}{1 + \cos\phi}$$

Aplicando-se a segunda equação, obtém-se:

$$N_{\theta} = -gR\left(\cos\phi - \frac{1}{1+\cos\phi}\right)$$

Figura 1 – Esforços de membrana em casca de revolução: r_1 = raio de curvatura do meridiano da superfície de revolução no ponto = um dos raios de curvatura principais da superfície no ponto; r_2 = r_0 /sen Φ =outro raio de curvatura principal; r_0 =raio do paralelo da superfície de revolução.

Figura 2 – Esforços externos (carregamentos) em uma casca de revolução: r_1 = raio de curvatura do meridiano da superfície de revolução no ponto = um dos raios de curvatura principais da superfície no ponto; r_2 = r_0 /sen Φ =outro raio de curvatura principal; r_0 =raio do paralelo da superfície de revolução.

(a)

b)

Figura 3 – Esforços de membrana em uma casca esférica sob ação do pesopróprio.

4

Teoria flexional

Pode-se utilizar procedimento análogo àquele empregado para a casca cilíndrica, na unidade anterior, para análise de uma casca esférica com teoria flexional em casos de carregamentos simétricos. Este tópico não será detalhado aqui, mas apresenta-se a seguir um exemplo numérico, extraído de Wilby que ilustra esse comportamento.

Antes disso, é interessante fazer uma comparação entre uma casca esférica e uma estrutura formada por arcos independentes dispostos segundo os meridianos de uma superfície esférica.

Em um arco, um esforço aplicado na base se propagaria por toda sua extensão, conforme figuras abaixo. Na casca, esse esforço seria amortecido devido aos esforços N_{θ}, na direção dos paralelos – Figura 6.

Figura 4 – Ilustração de propagação de momento fletor aplicado na base de um arco.

> Prof. Carlos Eduardo Moreira Maffei Profa. Heloísa Helena S. Gonçalves Prof. Pedro Wellington G. N. Teixeira

Para comparação, apresenta-se o cálculo de esforços em uma cúpula esférica com diâmetro de 12m (Wilby – Concrete dome roofs – Longman Scientific and Technical, 1993 – p. 73), conforme dados apresentados na Figura 5. O carregamento é uniforme sobre a superfície esférica com valor de 1,0 kN/m².

(b)

Figura 5 – Definições para exemplo de cálculo

Os resultados são apresentados na Figura 6 e na Tabela 1.

s (m)	Nt (kN/m)	Mf (kNm/m)	Nf (kN/m)	Vf (kN/m)
0,00	13,70	-0,42	-4,61	-1,16
0,45	8,70	-0,03	-5,51	-0,59
0,90	3,30	0,14	-6,20	-0,21
1,35	-1,10	0,19	-6,63	0,00
1,80	-4,10	0,16	-6,84	0,09
2,25	-5,70	0,11	-6,89	0,11
2,70	-6,50	0,07	-6,84	0,09
3,60	-6,70	0,01	-6,63	0,04
4,50	-6,50	-0,01	-6,45	0,00

Tabela 1 – Esforços em casca esférica para g=1,0 kN/m² (Wilby, 1993)

Na figura abaixo se apresentam gráficos de M_{Φ} e de N_{θ} .

(b)

Figura 6 – Resultados do cálculo de esforços em casca esférica de 12 m de diâmetro, conforme Figura 5 (Wilby, 1993): (a) momento fletor M_{Φ} (kN.m/m) próximo à borda; Esforço N_{θ} (kN/m) próximo à borda.

Atualmente, a maneira usual de se efetuar o cálculo desses esforços é com uso de programas de elementos finitos. Na Figura 7, apresenta-se uma vista de um modelo de elementos finitos para o mesmo problema – considerando-se a simetria.

Quando da elaboração de modelos de elementos finitos é necessário tomarem-se cuidados com o posicionamento adequado de enrijecedores – vigas ou anéis de borda – pois as excentricidades desses elementos em relação à superfície média das cascas afeta os resultados de forma significativa.

Figura 7 – Vista de modelo 3D elaborado com programa de elementos finitos para o mesmo problema anterior – a variação de espessura da casca próximo ao anel inferior não está modelada, mas pode ser feita no modelo.

Aplicação de cascas cilíndricas em coberturas

Comenta-se a seguir sobre o comportamento de cascas cilíndricas aplicadas em coberturas de áreas retangulares. Utiliza-se apenas uma teoria bastante simplificada – o denominado Método Viga-Arco. Soluções mais precisas podem ser obtidas por teorias mais bem elaboradas, mas usualmente empregam-se, hoje em dia, programas de elementos finitos.

A vantagem do método simplificado é fornecer uma ideia geral sobre o comportamento da estrutura. Inicia-se a análise imaginando a estrutura como uma viga e determinando-se os esforços – M e V. Utilizam-se então as expressões da Resistência dos Materiais:

$$\sigma = \frac{My}{I}$$
$$\zeta = \frac{VS}{Ib}$$

Considerando uma casca cilíndrica circular com raio de 3,00 m, espessura de 8,0 cm e vão de 16,0 m, tem-se:

Prof. Carlos Eduardo Moreira Maffei 9 Profa. Heloísa Helena S. Gonçalves Prof. Pedro Wellington G. N. Teixeira

- Área = 0,754 m²
- Momento de inércia: $I_x= 0,643 \text{ m}^4$

Dessa forma:

- Carregamento de peso-próprio = 0,754 m² x 25 kN/m³ = 18,85 kN/m
- M_{máx} = 603,2 kNxm
- V_{máx} = 150,8 kN

Figura 8 – Dados para a análise de viga.

7(m)	Nx(kN/m)	$O(m^3)$	Nvth (kN/m)
2(11)			
1,910	143,39	0,00000	0,00
1,596	119,85	0,05452	6,40
1,286	96,56	0,10739	12,60
0,983	73,79	0,15698	18,42
0,690	51,78	0,20170	23,66
0,410	30,77	0,24000	28,15
0,147	11,00	0,27041	31,72
-0,098	-7,32	0,29155	34,20
-0,320	-23,99	0,30213	35,44
-0,517	-38,83	0,30098	35,31
-0,688	-51,67	0,28708	33,68
-0,831	-62,37	0,25951	30,44
-0,943	-70,82	0,21752	25,52
-1,025	-76,92	0,16053	18,83
-1,074	-80,61	0,08811	10,34
-1,090	-81,85	0,00000	0,00

Tabela 2 - Resultados da análise	de viga para o	exemplo da Figura 8,.
----------------------------------	----------------	-----------------------

Observação: N_x na seção do meio do vão; $N_{x\Phi}$ nas seções dos apoios.

A análise de arco será omitida neste trabalho, mas segue em linhas gerais o cálculo desforços N_{Φ} e M_{Φ} na casca através de análise de um arco submetido ao carregamento ilustrado na figura abaixo.

Figura 9 – Definições para análise de arco do exemplo da Figura 8 – resultados não calculados.

Em seguida, nas Figuras 10 e 11, apresenta-se modelo de elementos finitos para o mesmo problema, e comparação dos resultados de N_x na seção do meio do vão com os obtidos pelo método simplificado – resultados da Tabela 2.

Observa-se que os valores extremos têm diferença muito grande, porém, o método simplificado ilustra bem o comportamento da estrutura, sendo esta sua principal vantagem. Naturalmente, no caso específico, a consideração dos resultados desse método simplificado estaria contra a segurança.

Figura 10 – Modelo de elementos finitos usado para analisar a estrutura em casca cilíndrica utilizada como cobertura de área retangular 6 m x 16 m.

Prof. Carlos Eduardo Moreira Maffei Profa. Heloísa Helena S. Gonçalves Prof. Pedro Wellington G. N. Teixeira

Figura 11 – Comparação entre o método viga-arco e resultado de processamento com programa de elementos finitos (SAP 2000 V. 14). Os resultados têm diferenças significativas, porém, a análise de viga fornece dados qualitativos importantes sobre o comportamento da estrutura.

Métodos construtivos

A forma curva das cascas traz muitas vantagens estruturais, como ficou demonstrado pelos resultados de cálculo de esforços apresentados. Porém, traz também problemas construtivos. Entre as maneiras de reduzir as dificuldades construtivas de cascas de concreto, têm sido feitos:

- Uso de pré-moldagem;
- Moldagem sobre monte de terra;
- Uso de concreto projetado;
- Uso de moldes flexíveis;
- Outros;

As figuras a seguir ilustram alguns desses procedimentos, alternativos à moldagem convencional. Não haverá tempo suficiente na disciplina, porém é

13

importante chamar a atenção da importância de métodos construtivos adequados para essas estruturas tão eficientes.

Uso de pré-moldagem.

Moldagem sobre fôrma flexível.

Uso de concreto projetado via seca e seção composta.

BIBLIOGRAFIA

BILLINGTON, D. P. Thin shell concrete structures. New York, McGraw-Hill, 1982.

GIBSON, J. E. The design of cylindrical shell roofs. London, E. & F. N. Spon, 1961.

RAMASWAMY, G. S. Concrete shell roofs. McGraw-Hill, 1968.

WILBY, C. B. Concrete dome roofs. Longman Scientific and Technical UK, 1993.