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{CH. 3] GAMES WITH SEQUENTIAL MOVES

and 1 — x— yfor Rudy; similarly, the probability of winning when Rich gives

up is 2 for Kelly and 1 — 2 for Rudy. Further, suppose that Rich's chance of

by the jury is p il he has won immunity and has voted Rudy off
pickedis 4 if Kelly has won immunity and has
voted Rudy off. Continue to assume that if Rudy wins immunity, he keeps

Rich with probability 1, and that Rudy wins the game with probability 1 ifhe

ends up in the final two. Note that inthe example of Figure 3.11, we had x=

045, y=052= 0.9, p=04, and g = 0.6. (In general, the variables pand q

need notsumto 1, though this happened to be true in Figure 3.11.)

{a) Findan algebraic formula, in terms of x, y z poand 4, for the probabil-
ity that Rich wins the million dollars if he chooses Continue. (Note: Your
formula might not contain all of these variables.)

(b) Find a similar algebraic formula for the prohability that Rich wins the
million dotlars if he chooses Give Up. (Again, your formula might not

contain all of the variables.)

(¢} Use these results to find an algebraic ine
circumstances Rich should choose Give Up.

(@) Suppose all (he values are the same as in Figure 3.11 except for z. How
high or low could z be so that Rich would still preferto Give Up? Explain

some values of z for which Rich is better off

peing picked
{he island; his chance of being

quality telling us under what

intuitively why there are
choosing Continue.
(¢) Suppose all {he values are the same as in Figure 3.11 except for p and
q. Assume that since the jury is mare likely to choose & “nice” person
who doesn't vote Rudy off, we should have p = 0.5 = q. For what values
of the ratio (p/q) <hould Rich choose Give Up? Explain intuitively why

there are some values of pand g for which Rich is better off choosing

Continue.

Simultaneous-Move Games
with Pure Strategies I:
Discrete Strategies
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I .:rl:TER 2 .th.u games are said to have simultaneous moves
BB Ot(:v.e without knowledge of what their rivals have cho
en 0 .ﬁme N g\:r(r):;s:y -,;) if players choose their actions at exactly

. he i s also simultane /| . th
e . : ) ous when players ch i
e evenoiléattkllon, }\lvlth no information about what other pla;r:rs ;a;’:;e o
i Si;mﬂtaneo :; choices are made at different hours of the clock. (For thti);1 : "

, -move games have im, j ‘ e
e ; perfect information in the sen
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eous games, introduce i A
N a solution concept called Nash ilibri
" . sh equil
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B ke i a‘ \"otes; no voter knows what the others have done wh o ohe
p—— ecision, The interaction between a soccer goalie and an : i
o s _gtz penal.ty kick requires both players to make their deCPPOS‘
kicked to dooion Whl.a ioalle cannot afford to wait until the ball has actuall lstions

Whon a layer ich way to go, because then it would be far too late .

in a simultaneous-. .
0005 50 wrthos i t;lnove glame chooses her action, she obviously
ge of the choices made by other players. She also
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90 [CH. 4] SIMULTANEOUS-MOVE GAMES WITH PURE STRATEGIES

cannot look ahead to how they will react to her choice, because they act simul-
taneously and do not know what she is choosing. Rather, each player must fipure
aut what others are doing when what the others are doing is figuring out what this
player is doing. This cireularity makes the analysis of simultaneous-move games
somewhat more intricate than that of sequential-move games, but the analysis is
not difficult. In this chapter, we develop a simple concept of equilibrium for such

games that has considerable explanatory and predictive power.

l DEPICTING SIMULTANEOUS-MOVE GAMES
WITH DISCRETE STRATEGIES

In Chapters 2 and 3, we emphasized that a strategy is a complete plan of ac-
tion. But in a purely simultaneous-move game, each player can have at most
one opporiunity to act {although that action may have many component parts);
if a player had multiple opportunities to act, that would be an element of se-
quentiality. Therefore there is no real distinction between strategy and action in
simultaneous-maove games, and the terms are often used as synonyms in this
context. There is only one complication. A strategy can be a probabilistic choice
from the basic actions initially specified. For example, in sports, & player or team
may deliberately randomize its choice of action to keep the opponent guessing.
Such probabilistic strategies are called mixed strategies, and we consider them
in Chapters 7 and 8. In this chapter, we confine our attention to the basic ini-
tially specified actions, which ave called pure strategies.

In many games, each player has avallable to her a finite number of dis-
crete pure strategies—for example, Dribble, Pass, or Shoot in basketball. In
other games, each player's pure strategy can be any number from a continuous
range—for example, the price charged by a firm.! This distinction makes no dif-
ference to the general concept of equilibrium in simultaneous-move games, but
the ideas are more easily conveyed with discrete strategies; solution of games
with continuous strategies needs slightly more advanced tools. Therefore, in this
chapter, we restrict the analysis 1o the simpler case of discrete pure strategies
and take up continuously variable strategies in Chapter 5.

simultaneous-move games with discrete strategies are most often depicted
with the use of a game table (also called a game matrix or payoff table). The
table is called the normal form or {he strategic form of the game. Games with
any number of players can be illustrated by using a game table, but its dimen-

\In fact, prices must be denominated in the minimum unit of coinage—for example, whole
cents—and can therefore take on only a finite number of discrete values. But this unit is usually s0

small that it makes more sense to think of the price as a continuous variable.
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sio;
di nrllel;rlufst e;]ual the number of players. For a two-player game, the table is two
. fsg)lna and appears similar to a spreadsheet. The row and column head
! ic t(i) 1 e 'It‘;llble. are the strategies available to the first and second players re_
asaila;;e ly. The size of thze table, then, is determined by the numbers of strate, ies
v arise to t(}ile players. Each cell within the table lists the payoffs to all plagers
v a :,-i ltl}?t ;:r the lconﬁguration of strategies that placed players into that Zell
ree players require three-di i .
e eionte imensional tables; we consider them
We i
s : r:lllu}sltrate the concept of a payoff table for a simple game in Figure 4.1
Withg i x; er.e has .no special interpretation; so we can develop the cgo B
o ht;s tfoz rdl;trfictlon of a “story.” The players are named Row and C;zfrl:rtls
choices (strategies or actions) labeled i .
o ( eled Top, High, Low, and B H
¢ r(:dugnll has three choices labeled Left, Middle, and Right. Each selection 2?}:“"
= olumn generates a potential outcome of the game. Payoffs associated OVI\:
B CO(r)lutcor.ne are shown in the cell corresponding to that row and that colugt
oid : E(:)rlmon,’ of the two payoff numbers, the first is Row's payoff and the se::L
ond1s ﬂ:umns. For example, if Row chooses High and Column chooses Right
- r];;t I}I;)n gs, gzets .to. Row and 4 to Column. For additional convenience, we sgov:r
rtaining to Row—player name, strategi '
: 5 ies, —i
and everything pertaining to Column in green S SRl nie
Re i '
e Oflgleentl:i,zr;}(;at, in some games, most notably in sports contexts, the inter.
ides are exactly the opposite of each ’ i
o ‘ ‘ ch other. Then, for each com-
ion of the players’ choices, the payoffs of one can be obtained by reversirrrllg

the s1gn of the pa offs to th Wi -
e other, As noted i
( y ) mn Chapter 2, we call these zero

COLUMN
Left | Middle | Right
lop 31 2,3 10,2
ROW High | 45 3,0 6,4
Low 2,2 5,4 12,3
Bottom 5,6 4,5 3,7

FIGUR| i i
E4.1  Representing a Simultaneous-Move Game in a Table

U ench firm e

can e P i

Fias 100 digsiiiet ‘“:\l :Iffm'.m it.-»p.ncc atany number of cents in a range that extends over a doll

il :\!gct,'.--.h- [;_,t [T mmte?;:ux. and the table beconies 100 by 100, That is surely too u: f“vlja‘:h

muore rumplitulmi m:ll\llli\s with prices as continuous variables provide a simpler approa‘(n:;]]e ytto
> ¢ 1S SOME red g e

I Chaptee 5. e readers might fear. We develop this “Algebra is our friend” n;ethod
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DEFENSE

Run Pass Blitz

Run
L
Short Pass
OFFENSE|—— |
Medium Pass

-

Long Pass

FIGURE 4.2 Representinga Zero-Sum Simultaneous-Move Game inaTable

In zeto-sum games, we can simplify the game table by showing the pay-
offs of just one player, generally the Row player. Those of the Column player are
left implicit. Figure 4.2 shows an example of this shorthand notation for a very
simplified version of a single play in (American) football. The team on the of-

fense is atlempting to move the ball forward to improve its chances of kicking a

field goal. It has four possible strategies: a run and one of three different-length

passes (short, medium, and long). The defense can adopt one of three strategies
to try to keep the offense at bay: a run defense, a pass defense, or 8 blitz of the
quarterback. The game is zero-sum; the offense tries (o gain yardage while the
defense tries to prevent it from doing so. Suppose we have enough information
about the underlying strengths of the two teams to work out the probabilities
of completing different plays and to determine the average gain in yardage that
could he expected under each combination of strategies. For example, when Of-
fense chooses the Medium Pass and Defense counters with its Pass defense, we
estimate Offense’s payoff to be 4.5 (yards).” Defense’s “payoff” is the loss of 4.5
yards, or negative 4.5 yards (—4.5, but this number is not explicitly shown in the
table. The other cells similarly show Offense’s payoff, with Defense’s payoff im-
plicitand equal to the negative of whatever Offense receives.

2 NASH EQUILIBRIUM

we need to consider how players choose their

To analyze simultaneous games,
one specific outcome—

actions. Return to the game table in Figure 4.1. Focus on

3Here is how the payoffs for this case were copstructed. When Offense chooses the Medium
Pass and Defense counters with its Pass defense, our estimate is that with probability 50% the pass
will be completed for a gain of 15 yards, with probability 40% the pass will fall incomplete (0 yards), and
with probability 107 thyes pass will bre Intercepted with
04X0+0.1%(-30)= 4.5yards. The pumbersin thetable
bors and friends convened by Dixit on oné fall Sunday afternoon. They receive

aloss of 30 yards; this makesan averageof 0.5 15+
Wire COnstin jeted by asmall panelofexpert neighs
d a liquid consultancy fee.
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namely, the one where Row chooses Low and Column chooses Middle; pa offs
tl'lere are 5 to Row and 4 to Column. Each player wants to pick an act’ionythat
y1e1¢'15 her the highest payoff, and in this outcome each indeed makes such a
choice, given what her opponent chooses. Given that Row is choosing Low, can
Column do any better by choosing something other than Middle? No bec‘aus
Left would give her the payoff 2, and Right would give her 3 neith.er 0% which ’e
better than the 4 she gets from Middle, Thus Middle is Colu,mn‘s best res onslz
to Row’s choice of Low. Conversely, given that Column is choosing MiddlI(:
Row do better by choosing something other than Low? Again no becaus:a i;n
f}:li:gffs hfrom switching to Top (2), High (3), or Bottom (4) would ali be no bettei
Chomv:()g;gvgl gets with Low (5). Thus Low is Row’s best response to Column’s
The two choices, Low for Row and Middle for Column, have the proper
Fhat each is the chooser’s best response to the other's action. If the werefn lt<y
ing these choices, neither would want to switch to anything diffgrent on Z '
rmm: lt):'“lhff!{_%_ﬁ.f’_l.{.liﬂn of a noncooperative game, the players are making thy (?r
choices independently; therefore such unilateral Cchanges are all { g‘eae%}l;
Eiaym Ic:m cqnl_em_plute. Because neither wants to make such”;change ftcis
N.';lslilrquunﬂf;ll-ll lﬂr state of affairs an eqmlibrgnm. This is exactly the concept of
To ‘state it a littie more formally, a Nash equilibrium’ in a game is a list of
str'flteg.les, one for each player, such that no player can get a better payoff b
switching to some other strategy that is available to her while all the othe}; 1 .
ers adhere to the strategies specified for them in the list. m

A. Some Further Explanation of the Concept of Nash Equilibrium

To understand the concept of Nash equilibrium better, we take another look
at the game in Figure 4.1. Consider now a cell other than (Low, Middle)—sa;
the .Orle .where Row chooses High and Column chooses Left. Car; this be a Nas)I,;
equilibrium? No, because, if Column is choosing Left, Row does better to choose
ls3;i>ntlti(1);nrl and get the payo.ff 5 rather than to choose High, which gives her only 4.
X y,. (Bo'ttom, L.eft) is not a Nash equilibrium, because Column can do bet-
er by switching to Right, thereby improving her payoff from 6 to 7.

*Thi i
his d :cltsoiglngfszz 1};{amed fo.r the mz‘alhematician and economist John Nash, who developed it in
which we consider ‘nl(o;E at Princeton in 1949, Nash also proposed a solution to cooperative games
theorists, REinhardlSelt apter 18, He shared Fhe 1994 Nobel Prize in economics with two other gamei
10, and 14, Syivia Nasa:“;“d John Harsanyi; we will treat some aspects of their work in Chapters 9,
was the (loose) basis fors fography of Nash, A Beautiful Mind (New York: Simon & Schuster, 1998),
plain the concept of N: ;mov.l? st_arrmg.Russell Crowe. Unfortunately, the movie’s attempt to ex-
and in Exercise S14 of Ca}fapf;]: ;l,lbrlum fails. We explain this failure in Exercise 512 of this chapter
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COLUMN

Left Middle Right

10,2

FIGURE 4.3 Variation on Game of Figure 4.1 with a Tie in Payoffs

brium does not require equilibrium choices to

: = P : -
be strictly better than other available choices. I-'.gu're 4.3 is the mmela :s‘:‘:‘g:; 4
4.1 except that Row's payoff from (Bottom, Middle) is clmn;i{,nd. 1o 5r. ;ﬂ i d:m -
: iddle hat, given Column's choice of Middie,
that from (Low, Middle). It is still true t : o
. when choosing Low. 5o neithe playe :
1d not do any berter than she doesw : . i
::fsun to change her action when the outcome is (Low, Middle), and that quali
it for a Nash equillbrium.h . ‘
o Il:ﬂ::rc important, a Nash ¢quilibrium does not have }u be jointly be;t1 rnrhli‘i‘::i
gure 4.1, the strategy pair (Bottom, Right) gives plalynf‘[s 9, H. w w;;
are better for both players than the (5, 4) of the Nas!\ OQUIII])TiulT;' : (?:l: m,-'.
playing independently, they cannot sustain (Bottom, Right). (,’M;n : 1‘: il
i {ate from Bottom to Low and g&
lays Right, Row would want to deviate 0 :
Eflg Gcigﬁng the jointly better payoffs of (9, 7) would require cooperative actior

ade suc ealing un 055! Wi amin this type of behavio later in
: ssible. We exé nine s 1 lat
that m de sul h “cheating 1 \! e

this chapter and in more detail in Chapter ‘111, Fof 110::1:;5 gisidissies
5 ilibori ; not be in the joint intere x
fact that a Nash equilibrium may no he jo e i
’ i ash equilibrium, look at the fo :
To reinforce the concept of Nas e s
i : 2 is choosing the Pass defense, then the :
of Figure 4.2. If the Defense is ¢ then the = o
for ﬂi‘:e Offense is Short Pass (payoff of 5.6 versus 5, :1,’..;. (l;r ;it]. {:uiwc;:;e::zwzfpim
i i 5 bass, then the Defense’s best ¢ho 58
Offense is choosing the Short Pass, : g
i 2 5.6 yards, whereas the Run :
defense—it holds the Offense down to b m—
i (pecte ancede 6 and 10,5 yards, respectively.
the Blitz would be expected (o concec e
5 in e 4 zero-sum game are the Row players p
ber that the entries in each cell of a zero-s : : -
(herefore the best choice for the Column player is the nm‘: tha:t yields tt'.ep;-‘;S ; ’:5 i
number, not the largest.) In this game, the strategy combination (Shu.rl r 2 mf’.
defense; is a Nash equilibrium, and the resulting payoff 1o the Offense is 5.6 yards.

The definition of Nash equili

players. In Fi

dle) with the payaffs of (5, 5) 1s miot itself o Nash equilibrium. 1f Row
ce would not be Midde; she could do better by choos
of them can be a

5But note that (Bottom, Mid ey

< e Bottom, Columun’s own best chol ; :

"Naséh‘::sllr:\gfact you can check all the other cells ity the table to verily that none
ing Right. i

Nash equiibrium.
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How does one find Nash equilibria in games? One can always check every
cell to see if the strategies that generate it satisfy the definition of a Nash equi-
librium. Such cell-by-cell-inspection, or enumeration, is foolproof but tedious
and unmanageable except in simple games or unless one is using a good com-
puter program for finding equilibria. Luckily, there are many other methods,
applicable to special types of games, that not only find Nash equilibria more
quickly when they apply, but also give us a better understanding of the process
of thinking by which beliefs and then choices are formed. We develop several
such methods in later sections.

B. Nash Equilibrium As a System of Beliefs and Choices

Before we proceed with further study and use of the Nash equilibrium concept,
we should try to clarify something that may have bothered some of you. We said
that in a Nash equilibrium each player chooses her “best response” to the oth-
er's choice. But the two choices are made simultaneously. How can one respond
to something that has not yet happened, at least when one does not know what
has happened?
People play simultaneous-move games all the time and do make choices.

To do so, they must find a substitute for actual knowledge or observation of the
others’ actions. Players could make blind guesses and hope that they turn out to
be inspired ones, but luckily there are more systematic ways to try to figure out
what the others are doing. One method is experience and observation—if the
players play this game or similar games with similar players all the time, they
may develop a pretty good idea of what the others do. Then choices that are not
best will be unlikely to persist for long. Another method is the logical process of
thinking through the others’ thinking. You put yourself in the position of other
players and think what they are thinking, which of course includes their put-

ting themselves in your position and thinking what you are thinking. The logic

seems circular, but there are several ways of breaking into the circle, and we

demonstrate these ways by using specific examples in the sections that follow.

Nash equilibrium can be thought of as a culmination of this process of thinking

about thinking, where each player has correctly figured out the others’ choice.

Whether by observation or logical deduction or some other method, you, the game

player, acquire some notion of what the others are choosing in simultaneous-move

games. It is not easy to find a word to describe the process or its outcome. It is not
anticipation, nor is it forecasting, because the others’ actions do not lie in the future
but occur simultaneously with your own. The word most frequently used by game
theorists is belief, This word is not perfect either, because it seems to connote more
confidence or certainty than is intended; in fact, in Chapters 7 and 8, we allow for

the possibility that beliefs are held with some uncertainty. But for lack of a better
word, it will have to suffice.
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This concept of belief also relates to our discussion of uncertainty in Chap-
ter 2, Section 2.1, There we introduced the concept of strategic uncertainty:
fven when all the rules of a game—the strategies available to all players and the
pavoffs for cach as functions of the strategies of all—are known without any un-
certainty external 10 the game, such as weather, each player may be uncertain
about what actions the others are taking at the same time. Similayly, if past ac-
{ions are not observable, each player may be uncertain about what actions the
others took in the past. How can players choose in the face of this strategic un-
certainty? They must form some subjective views of estimates about the others’
actions. That is exactly what the notion of belief captures.

Now think of Nash equilibrium in this light. We defined it as a configura-
tion of strategies such that each player's strategy is her best response 0 that of
the others. 1f she does not know the actual choices of the others but has beliefs
about them, in Nash equilibrium those beliefs would have to be correct—the
others' actual actions should be just what you believe them to be. Thus we can
define Nash equilibrium in an alternative and equivalent way: it is a set of strat-
egies, one for each player, such that (1) each player has correct beliefs about the
strategies of the others and (2) the strategy of each is the best for herself, given
her beliefs about the strategies of the othess.”

This way of thinking about Nash equilibrium has two advantages. First, the
concept of “best response” is no longer logically flawed. Each player is choos-
ing her best response, not to the as yet unobserved actions of the others, but
only to her own already formed beliefs about their actions. Second, in Chapters
= and B, where we allow mixed strategies, the randomness in one player’s strat-
egy may be better interpreted as uncertainty in the other players’ beliefs about
this player's action. For now, we proceed by using both interpretations of Nash
equilibrium in parallel.

You might think that formation of correct beliefs and calculation of best
responses is 100 daunting a task for mere humans. We: discuss some criticisms
of this kind, as well as empirical and experimental evidence concerning Nash
equilibrium, in Chapter 5 for pure strategies and Chapters 7 and 8 for mixed
strategies. For now, we simply say that the proof of the pudding is in the eat-

ing. We develop and illustrate the Nash equilibrium concept by applying it. We
hope that seeing it in use will prove a better way 10 understand its strengths and
drawbacks than would an abstract discussion at this point.

“ln this chapter we consider only Nash cquilibria in pure strutegies, namely the ones initially
Jisted in the specification of thie game, and pot mixtures of two or more of them. Therefore in such
an equilibrivm, eiich player has cerainty about the actions of the others; strategic uncertainty is
removed. When we consider mixed sieategy equiibyia in Chapters 7 and 8, the strategic uncertainty

for each player will consist of the probabilities with which the various strategies are played in the
ather players' equilibrium mixtures.
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3 pomINANCE

S .
O:rvr\xrzrgszntl;s have a;l special property that one strategy is uniformly better than
an another. When this is the case, it i i
L2 , it provides one way in which th
sear;l}l1 for Nash equilibrium and its interpretation can be simpliﬁZd e
COHSidZ :v:lsl;kno;/.vn ga;ntfl of the prisoners’ dilemma illustrates this concept well
ory line of the type that appears regularly in th isi .
Law and Order. Suppose that a h i e ben =
: usband and wife have been ai
suspicion that they were conspirators in th et
: e murder of a young w
tives Green and Lupo place the sus i e
pects in separate detention roo; i
rogate them one at a time. There is little i e o e
o concrete evidence linking the pair to th
giurdler,. although there is some evidence that they were involved in kipdna ine
- ; t\{mtlr?. Tt}lle (:;ectlves explain to each suspect that they are both lookfrfg agt
ime for the kidnapping charge, probabl; i
: . i ly 3 years, even if there is
sion from either of them. In addition e
. , the husband and wif indivi
ally that the detectives “know” wh s o il seen
at happened and “know” h
coerced by the other to partici i i it i e o
pate in the crime; it is implied that jail ti
. . tic ; jail time for
:olltary confessor will be significantly reduced if the whole story is committez
aop[:rll[:;r. (Ina s;ene dcommon to many similar programs, a yellow legal pad and
il are produced and placed on the table at this poi i
: . t.) Finally, th
that, if both confess, jail terms cor i oont i iy
) : uld be negotiated down but not
would be if there were one confession and one denial .
gamiointhvgtllisl;and zkiln;li wife are then players in a two-person, simultaneous-move
ch each has to choose between confessin i
: g and not confessing to the
;nme (.)f. murder. They 'both know that no confession leaves them eachgwith a
-yea; ]t:lll sentence for involvement with the kidnapping. They also know that, if
one of them confesses, he or she will : ,
: X get a short sentence of 1 year fi i
with the police, while the other will jai s bt
3 go to jail for a minimum of 25
years. If both
comi;a}sls, theY figure that they can negotiate for jail terms of 10 years each.
. Zchonces and o.utcomes for this game are summarized by the game table in
atgutre 4. The str:.ategles Confess and Deny can also be called Defect and Cooper-
o capture their roles in the relationship between the two players; thus Defect

WIFE
Confess (Defect) | Deny (Cooperate)
Confess (Defect)
HUSBAND ) 10yr, 10yr 1yr, 25yr
Deny (Cooperate) 25yr, 1yr 3yr,3yr

Fi i
GURE 4.4  Prisoners' Dilemma
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means to defect from any tacit arrangement with the spouse, and Cooperate
means to take the action that helps the spouse (not cooperate with the cops).

Payoffs here are the lengths of the jail sentences associated with each out-

come, so low numbers are better for cach player. In that sense, this example dif-

fers {rom those of most of the games {hat we analyze, in which large payoffs are
good rather than bad, We take this opportunity to alert you that “Jarge is good” is
hot always true. When payoff numbers indicate players’ rankings of outcomes,
people often use | for the best alternative and successively higher numbers for
successively worse ones. Also, in the table for a zero-sum game that shows only
one player’s bigger-is-better payoffs, smaller numbers are better for the other.
In the prisoners’ dilemma here, smaller numbers are better for poth. Thus, if
you ever write a payofl table where large numbers are bad, you should alert the
reader by pointing it out clearly. And when reading someone else’s example, be
aware of the possibility.

Now consider the prisoners’ dilermma game if
perspective. He has to think about what the wife will choose. Suppose he be-
{ieves that she will confess. Then his best choice is to confess; he gets a sentence
of only 10 years, when denial would have meant 25 years. What if he believes
the wite will deny? Again, his own hest choice is to confess; he gets only 1 year
instead of the 3 that his own denial would bring in this case, Thus, in this special
game, Confess is better than Deny for the husband regardless of his belief about
the wife's choice. We say that, for the husband, {he strategy Confess is a domi-
nant strategy or that the strategy Deny isa dominated strategy. Equivalently,
we could say that the strategy Confess dominates the strategy Deny or that the
strategy Deny is dominated by the strategy Confess.

If an action is clearly best for a player, no matter what the others might be
doing, then there is compelling reason 10 think that a rational player would
choose it. And if an action is clearly bad for a player, no matter what the others
might be doing, then there is equally compelling reason 1o think that a rational
player would avoid it. Therefore dominance, when it exists, provides a compel-
ling basis for the theory of solutions to simultaneous-move games.

1 Figure 4.4 from the husband's

A. Both Players Have Dominant Strategies

In the preceding prisoners’ dilemma, dominance should lead the husband to
choose Confess. Exactly the same logic applies t0 the wife’s choice. Her own
strategy Confess dominates her own strategy Deny; so she also should choose
Confess. Therefore (Confess, Confess) is the outcome predicted for this game.
Note that itis a Nash equilibrium. (In fact it is the only Nash equilibrium.) Each
player is choosing his or her own best strategy.

In this special game, {he best choice for each is independent of whether their
beliefs about the other are correct—that is the meaning of dominance—but
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each, attributing to the other the same rationality as he or she practices, should
be able to form correct beliefs. And the actual action of each is the best r:as s
to the actual action of the other. Note that the fact that Confess dominatesplgnse
for. bath players is completely independent of whether they are actuall fflnY
as m. many episodes of Law and Order; or are being framed, as haj ene)t; gu‘ﬂ?’:
movie LA Confidential. It only depends on the pattern of payoffs dIi)(I;)t oy the
various sentence lengths. ‘ PR NEE
s ::Igv{ia::; :‘Il!1. 111}’..sansu %en'eral payoff pattern as that illustrated in Figure
; generic label “prisoners’ dilemma.” More specifically, a pri
ers’ dilfnnmn has three essential features. First, each player has two sn:awprls{-m.
cooperate with one’s rival (deny any involvement in the crime, in our ¢ .55:1'35-]‘“
0; to defect from cooperation (confess to the crime, here). Se(.:oud eac;dp;:fyz:
:hseodlz’ei; .a dominant .strategyf Fto .contiess or to defect from cooperation). Finally,
it 1t.13nc<.a solution equilibrium is worse for both players than the none ui-
1l‘.)r1urln situation in which each plays the dominated strategy (to .
with rivals). oopereie
Games of this type are particularly important in the study of game theory f
tv.vo reasons. The first is that the payoff structure associated with the priso?: Or'
dllejn‘lma arises in many quite varied strategic situations in economic el:l
!Juiill'l:ill. and even biological competitions. This wide-ranging appllcabilil, ?1?::: '
itan important game to study and to understand from a strategic stand t:i}nl _”'35
who‘lfa of Chapter 11 and sections in several other chapters deal with itIs: slud. *
!he second reason that prisoners’ dilemma games are integral 1o an !:i
cussion of games of strategy is the somewhat curious nature of the equilitfriuls-
?utcome achieved in such games. Both players follow conventional wisclom
|r} choosing their dominant strategies, but the resulting equilibrium out .
vields them payoffs that are lower than they could have achieved if llmc"im;
ca!:h chosen their dominated strategies. Thus the equilibrium outcome i!;‘. :ﬁ
prisoners’ dilemma is actually a bad outcome for the players. They could fi ;
another outcome that they both prefer to the equilibrium outcome; the rc::)
1?-.“1 Is.huw tt:: guarantee that someone will not cheat. This parlicula; feali:re o-f
L’I(: QI);I ::) :z :1 edlilen'm:.u has re(:ei\f?-(l considerable attention from game theorists
e h sked an obvious question: What can players in a prisoners’ dilemma
o achieve the better outcome? We leave this question to the reader momen-

tarily, as we continue the di i i

e discussion of simultaneous gal
e m i
detail in Chapter 11. games, butzem (o2

B. One Player Has a Dominant Strategy

Wh i

pla;:r a rational pln?-'m‘ has a dominant strategy, she will use it, and the other

o <s:an safely believe this. In the prisoners’ dilemma, it applied to both play-
ome other games, it applies only ta one of them. If you are playing in a
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i onent does,
you do not have a dominant strategy but your 0pp

. : hoose
i i ill use her dominant strategy and so you can ¢

assume that shew i
ou can assume ! : ot
imir equilibrium action (your best rcapunse: at.t:::.ldu}rgp:].;w‘:d NT—
is cas i ame freq {
i te this case by using a g e
gwiwich 1sible for fiscal policy (taxes and government ::;1(; s
i i i " i A
i the Federal Reserve (Fed), which is in charge of monetary ]:gal ;e ;lums i
e 3 i < nlifies the game Lo its essel i
. ol T 7 1 a version that simpiiiies ; e
e I"“?S:Lal policy can have eithet a balanced budget or & dc!‘] g
ks eali e is no
LuTbm:&sel interest rates either high or low. In reality, the gam bibosvend
oo : : i il choices are s¢ .
[F( t‘l'lzmm.ms' not is who has the first move obhvious |l‘-.,l1;)‘:r:1 o
il\:::unsldm r‘he simultaneous-move version here, and in Ghaj
the outcomes differ for different rules of :?clsi::zz — .
Jower taxes, But thete E i :
s i Ith care, and so on- There ar
s . education, health care, ;
sovernment funds: defense, on; . I on e e
0:1 l.'(:.rwriuus politically powerful special interest gwup:,-—::“mem Eubsime,;,
:3 S(; i lt.iusu‘le-: hurt by foreign cmnpc(lliun—whu want g:wn,h ————
;"I“ m[ure the Congress is under constant pressute both to (}ieﬁm e
i e spending, But such behavior runs the budget 111tu. nmu.n s
"“C:iea; higher inflation. The Fed’s primary task is to preventin o Emmrmm
l'.Laali faces political pressure for lower interest rates fmn?l : w2274
it s“q especially homeowners who henefit from lu\?rcr u;m tfi:’ e
iim’:]rr:;‘s'l rates lead to higher demand for auiumuhllcs.l u:.:; n:;mn e
li::[vesu'ucnl by firms, and all this demand can c;:usc I;ign::as e iors
¥ s
o1 interest rates but only 50 . ot
. erally happy to lower 1 ‘ s
'-‘_: SET: :\nc); there is less threat of inflation when the guvcrnn?l: e
llwlc?qnl:(. with all this in mind, we construct the payoff matri
halance.
i e ith ¢ icit and low in-
ng{te‘t ress likes best (payoff 4) the gutcome with a hudg.el dei: sl
o P:et; This pleases all the immediate political consmuen]s. s
st rates. SO ; . O '
lL(r!:::hhz for the future, but political time Jorizons are short. For 7

155, which is respor

FEDERAL RESERVE

Low interest rates High interest rates

1,3
Budget balance 3,4
e e e
2,2
CoNaresS Budget deficit 4,1

FIGURE 4.5 Game of Fiscal and Monetary Policies

ar games are playe! n many other countries wit entral ban a ve operati onal in-
Simil m layed hi 1 h ¢ 1l ks that have ope

Y
dependen:e in the Cholcz of monetary policy. Fiscal policies may be chosen by different pol tical

i indi ntries.
entities—the executive or the legislature—in different cou
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Congress likes worst (payoff 1) the outcome with a balanced budget and high
interest rates. Of the other two outcomes, it prefers (payoff 3) the outcome with
a balanced budget and low interest rates; this outcome pleases the important
home-owning middle classes and, with low interest rates, less expenditure is
needed to service the government debt, so the balanced budget still has room
for many other items of expenditure or for tax cuts.

The Fed likes worst (payoff 1) the outcome with a budget deficit and low inter-
est rates, because this combination is the most inflationary. It likes best (payoff 4)
the outcome with a balanced budget and low interest rates, because this combi-
nation can sustain a high level of economic activity without much risk of infla-
tion. Comparing the other two outcomes with high interest rates, the Fed prefers
the one with budget balance because it reduces the risk of inflation.

We look now for dominant strategies in this game. The Fed does better by
choosing low interest rates if it believes that the Congress is opting for budget
balance (Fed's payoff 4 rather than 3}, but it does better choosing high interest
rates if it believes that the Congress is choosing to run a budget deficit (Fed’s
payoff 2 rather than 1). The Fed, then, does not have a dominant strategy. But
the Congress does. If the Congress believes that the Fed is choosing low inter-
est rates, it does better for itself by choosing a budget deficit rather than budget
balance (Congress’s payoff 4 instead of 3). If the Congress believes that the Fed is
choosing high interest rates, again it does better for itself by choosing a budget
deficit rather than budget balance (Congress’s payoff 2 instead of 1). Choosing
to run a budget deficit is then Congress's dominant strategy.

The choice for the Congress in the game is now clear. No matter what it be-
lieves the Fed is doing, the Congress will choose to run a budget deficit. The Fed
can now take this choice into account when making its own decision. The Fed
should believe that the Congress will choose its dominant strategy (budget defi-
cit) and choose the best strategy for itself, given this belief. That means that the
Fed should choose high interest rates.

In this outcome, each side gets payoff 2. But an inspection of Figure 4.5
shows that, just as in the prisoners’ dilemma, there is another outcome—
namely, a balanced budget and low interest rates—that can give both players
higher payoffs—namely, 3 for the Congress and 4 for the Fed. Why is that out-
come not achievable as an equilibrium? The problem is that Congress would
be tempted to deviate from its stated strategy and sneakily run a budget deficit.
The Fed, knowing this temptation and that it would then get its worst outcome
(payoff 1), deviates also to its high interest rate strategy. In Chapters 6 and 10,
we consider how the two sides can get around this difficulty to achieve their
mutually preferred outcome. But we should note that, in most countries and
at many times, the two policy authorities are indeed stuck in the bad outcome;

the fiscal policy is too loose, and the monetary policy has to be tightened to
keep inflation down.
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C. Successive Elimination of Dominated Strategies

The games considered so far have had only two pure st rategies available 10 each
player. In such games, it one stralegy is dominant, the other is dominated; so
choosing the dominant strategy is equivalent 1o eliminating the dominated one.
In larger games, some of a player’s strategies may be dominated eyen though no
single strategy dominates all of the others. If players find themselves in a game
of this type, they may be able to reach an equilibrium by removing dominated
strategies from consideration as possible choices. Removing dominated strate-
gies reduces the size of the game, and then (he "new" game may have another
dominated strategy, for the same player or for her opponent, that can also be
removed. Or the "new” game may even have a dominant siralegy for one of
the players. Successive or iterated elimination of dominated strategies uses
this process of removal of dominated strategies and reduction in the size of a
game until no further reductions can be made. If this process ends ina unigue
outcome, then the game is said to be dominance solvable; that outcome is the
Nash equilibrium of the game, and the strategies that yield itare the equilibrivm
strategies for each player.
We can use the game of Figure 4.1 to provide an example of this process.
Consider first Row’s strategies. If any one of Row’s strategies always provides
worse payolfs for Row than another of her strategies, then that strategy is
dominated and can be eliminated from consideration for Row's equilibrium
choice. Here, the only dominated strategy for Row is High, which is dominated
by Bottom; if Column plays Left, Row gets 5 from Bottom and only 4 from
High; if Column plays Middle, Row gets 4 from Bottom and only 3 from High;
and, if Column plays Right, Row gets 9 from Bottom and only 6 from High. So
we can eliminate High. We now turn to Column’s choices 1o se¢ if any of them
can be eliminated. We find that Column's Left is now dominated by Right (with
similar reasoning, 1 <2,2 < 3, and 6 < 7). Note that we could not say this before
Row's High was eliminated; against Row's High, Column would get 5 from Left
but only 4 from Right. Thus the first step of eliminating Row’s High makes pos-
sible the second step of eliminating Column’s Left. Then, within the remaining
sat of strategies (Top, Low, and Bottom for Row, and Middle and Right for Col-
umn), Row's Top and Bottom are both dominated by his Low. When Row is left
with only Low, Column chooses his best respnnsu-munuly. Middle.

The game is thus dominance solvable, and the outcome is (Low, Middle)
with payolfs (5, 4). We identified this outcome ds & Nash equilibrium when we
first illustrated that concept by using this game. Now we 5ce in better detail the
thought process of the players that leads to the formation of correct beliefs. A
rational Row will not choose High. A rational Column will recognize this, and
thinking about how her various strategies perform for her against Row’s remaining
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:t::t:ﬁles, wil.lt;lot ;hoose Left. In turn, Row will recognize this, and therefore will
oose either Top or Bottom. Finall i , i
e inally, Column will see through all this, and

o dg:::i: tga;nis may not be dominance solvable, or successive elimination

ated strategies may not yield a unique outco i
ated me. Even in such cases,
iofl‘le elimination may reduce the size of the game and make it easier to solve b
elsi:ligno?e ordmore of the techniques described in the following sections Thu}s,
ating dominated strategies can be a useful .

! step toward solving a large
simultaneous-play game, even when their elimination does not : ;
solve the game. S

. T;Iltsh far in our consideration of iterated elimination of dominated strate-
tgil::?' ) t?dpay(l)lff comparisons have been unambiguous. What if there are some

? Consider the variation on the precedin i
] g game that is shown in Fi
In that version of the game, Hi el
, High (for Row) and Left (for Col I imi
nated. And, at the next ste i i i A
5 p, Low still dominates Top. But the domi
over Bottom is now less clear-cut. Thy i e payalt
. The two strategies give Row 1
when played against Column's Middl o
e, although Low does give Row a hi
igher
Il;zyc:ff than Bo.ttom w.hen played against Column’s Right. We say that, f?'om
strwilg ; p(eirspt?ctlve at this point, Low weakly dominates Bottom. In contras't Low
ly dominates Top, because it gives strictly hi ; ,
: 3 ly higher payoffs than does To
vs.lhen Rlayed against both of Column’s strategies, Middle and Right, und g
sideration at this point. - e
domViVe give 'a mli)re precise definition of the distinction between strict and weak
nance in the Appendix to this chapter. Here,
‘ 2 , though, we provide d
warning. Successive elimination of weakly domi : e
om: i i
. ly inated strategies can get rid of
. DConsid:zr the game illustrated in Figure 4.6. For Row, Up is weakly dominated
y Down; if Column plays Left, then Row ,
s gets a better payoff by playi
than by playing Up, and, if Col i ek R
3 N umn plays Right, then Row gets th
from her two strategi imi ' i
gies. Similarly, for Column, Ri i
. e A , Right weakly dominates Left.
Dominance solvability then tells us that (Down, Right) is a Nash equilibrium'

COLUMN
Left Right
Up 0,0
ROW 1
Down 1.1 1,1

FIGU iminati
RE4.6 Elimination of Weakly Dominated Strategies
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d (Up, Right) also are .
That is true, but (Down, Left) an (Up O o .

Down eft en RO is ])laying Down,

1 b . i i W' t response
o .Y hn)g to nght and when Column 18 playmg Left, Row's bes P
by switc ’ )

is clear o play € verl Nas!
1 Yown. A IT O hat (Up. nght) also is a Na
simila asoning ver fies t
y h
equlhhnum.

Therefore,

Nash equilibria. Consider
ayoff

e to eliminate some strategies, itisa

. i C
if you use weak dominan any other

i ave missed
dea to make a quick cell-by-cell check 1o se€ if you have r g
; ed dominance solution seems 10 be a reasonabie

y Nash equilibrium of this si|1111!tar\e1)t|f%—!)1af}' Fx{nm.} \b;: :,1[
i i nsider the significance of multiple equilibria as w‘e bk
o lmport'a'm FO i selves. We address these issues in later (:11apmr:f‘ taking
= Oﬂ"er eq"mrllb(;iri?ﬂetrir;le equ.ilibria in Chapter 5 and {he interconnections be-
ltl\freiilz:i&:stial- and simultaneous-move games in Chapter 6.
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equilibria. The iterat
to predict as the likel

4 BEST-RESPONSE ANALYSIS

o ltaneous-move games have no dominant s:tmmp,ic‘s .amllm) ::::n,:_
o :}l*‘ Others may have one or several dominated :I,lmleglcs: =
oo 5“:“‘-3_3"‘5‘: 1 of clurnh;alml strategies will not yield a unique nm:ome‘“e
B 1 a next step in the process of finding a solution 10 I- e p,all “‘l
i::ch Uaﬁf{-‘;i ::;::f;: fora N;lsh equilibrium in which every pl:tycrrd;e:‘ l.l,];f, b):lw
o acti +r player(s), but we must oW res !
G cm?’ giv‘cn ?hc TI.?Tti?i;z:;r::.:E;n[:::a):a:n]of dominated strategies n:qx..uresi,.
3”“‘“«’5“’““""“‘3“ i 1nuLhcr systematic method for finding Na:sh equdu?r:x
Uclf& o dt:’[f l:::;ful in later analysis. We begin without iljl!pl)Slllg a re?(\iui!;
B e »y of beliefs. We take each player's perspective in turn n.1 ] ‘] ‘
wentof a.}lwcmf:si n: For each of the choices that the other player(s) might :.S
Ihek‘?“;:“::;:ftt:::i»?ﬁm choice for this player? Thus we find the best response:
making, what is the bes

COLUMN
Left Middle Right

23

ROW

Bottom

FIGURE 4.7 Best Response Analysis
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of each player to all available strategies of the others. In mathematical terms, we
find each player's best-response strategy, depending on, or as a function of, the
other players’ available strategies.

Return to the game of Figure 4.1, reproduced as Figure 4.7, and consider Row
first, If Column chooses Left, Row’s best response is Bottom, yielding 5. We show
this best response by circling that payoff in the game table. If Column chooses
Middle, Row's best response is Low (also yielding 5). And, if Column chooses Right,
Row's best choice is again Low (now yielding 12). As before, we show Row's best
choices by circling the appropriate payoffs. Similarly, Column’s best responses are
shown by circling her payotfs 3 (Middle as best response to Row’s Top), 5 (Left to
High), 4 (Middle to Low), and 7 (Right to Bottom).” We sce that one cell—namely,
(Low, Middle)—has both its payoffs circled. Therefore the strategies Low for Row
and Middle for Column are simultaneously best responses to each other. We have
found the Nash equilibrium of this game. (Again.)

Best-response analysis is a comprehensive way of locating all possible Nash
equilibria of a game. You should improve your understanding of it by trying it out
on the other games that have been used in this chapter. The cases of dominance
are of particular interest. If Row has a dominant strategy, that same strategy is
her best response to all of Column’s strategies; therefore her best responses are
all lined up horizontally in the same row. Similarly, if Column has a dominant
strategy, her best responses are all lined up vertically in the same column. You
should see for yourself how the Nash equilibria of the preceding prisoners’ di-
lemma and Congress-Fed games emerge from such a drawing.

There will be some games for which best-response analysis does not find a
Nash equilibrium, just as dominance solvability sometimes fails. But in this case
we can say something more specific than can be said when dominance fails. When
best-response analysis of a discrete strategy game does not find a Nash equilib-
riumn, then the game has no equilibrium in pure strategies. We address games of
this type in Section 8 of this chapter. In Chapter 5, we extend best-response analy-
sis to games where the players' strategies are continuous variables—for example,
prices or advertising expenditures. There, we construct best-response curves to
help us find Nash equilibria, and we see that such games are less likely—by virtue
of the continuity of strategy choices—to have no equilibrium.

®Alternatively and equivalently, one could mark in some way the choices that are not made. For
example, in Figure 4.3, Row will not choose Top, High, or Bottom as responses to Column’s Right;
one could show this by drawing slashes through Row’s payoffs in these cases, respectively, 10, 6, and
9. When this is done for all strategies of both players, (Low, Middle) has both of its payoffs unslashed;
it is then the Nash equilibrium of the game, The alternatives of circling choices that are made and
slashing choices that are not made stand in a conceptually similar relation to each other, as do the
alternatives of showing chosen branches by arrows and pruning unchosen branches for sequential-
move games. We prefer the first alternative in each case, because the resulting picture looks cleaner
and tells the story better.
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5 THE MINIMAX METHOD FOR ZERO-SUM GAMES

For zero-sum games, an alternative to best-response analysis works by using
(he special logic of strict conflict that exists in such games. This: approach, the
minimax method, works only for zero-sum games and relies ona thought pro-
cess that accounts for the fact that outcomes that are good for one player are, by
definition, bad for the other. In this method, each player is assumed to choose
her strategy by thinking: "Would this be the best choice for me, even if the other
player found out that 1 was playing it7" She must then consider her upponent‘s
best response 10 her chosen strategy. But in a zero-sum game, that best response
is the worst one for her. Inother words, each player believes that her opponent
will choose an action that yields her the worst possible consequences of each of
her own actions. Then acting on those beliefs she should choose the action that
leads to the least-bad outcome.

This logic may seeim extremely pessimistic, butit still relies on 2 ype ofbest-
response caleulation and it is appropriate for finding the equilibrivm of a zero-
sum game. In equilibriunt, each player is choosing her own best response, given
her beliefs about what the other will do. In anticipating such best responses,
each player will expect 10 receive the worst payoff associated with each action
and will choose her own action accordingly. She is thus choosing her best payofl
from among the set of worst payoffs.

suppose the payolf table shows the row player’s payoffs, and Row wants the
outcome o be a cell with as high a number as possible. Then Column wants the
putcome Lo be 2 cell with as low a number as possible. Using the pes:;'lmistic
Jogic just deseribed, Row figures that, for each of her TOWs, Column will choose
the column with the lowest number in that TOW. Therefore Row should choose
the row that gives her the highest among these lowest numbers, O the maxi-

mum among the minima—the maximin_for short. Similarly, Column reckons
that, for each of her columns, Row will choose the row with the largest num-
ber in that column. Then Column should choose the column with the smallest
pumber among these largest ONnes, or the minimum among the maxima—the
minimax. If Row’s maximin value and Colummn’s minimax value are in the same
cell of the game table, then that outcome is a Nash equilibrium of the zero-sum
game. This method of finding equilibria in yero-sum games should be called
the maximin-minimax method, but it is called simply the minimax method for
short, Itwill lead you to @ Nash equilibrium in pure strategies if one exists.

To illustrate the minimax method, we use {he football example of rigure 4.2.
We already know {he Nash equilibrium for that game, but now we obtain it by
using the minimax method. We reproduce the game table in Figure 4.8, adding
information that pertains o {he minimax argument.

T
HE MINIMAX METHOD FOR ZERO-SUM GAMES

DEFENSE
Run Pass Blitz
Run 2 5 13 min=2
OFFENSE Short Pass 6 56 105 | min=56
Medium Pass 6 = : . X
Long Pass 10 3 5 m:: : 12

max=10 max=5.6 _
FIGURE4.8 The Minimax Method mex=13

Begin by findin,
g the lowest number i
a A . er in each row (the offense’
o fro(:gy) and the highest number in each column ft‘t,lvorjt payoff
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b s e I(?rt Pass, 5.6; its worst payoff from Medium P:n li o
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PR , —2. We write the minimum for
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, 0.6; its worst payoff from Bli lte. i
for (fragh column at the bottom of that column ERREEREEEE
e next step i .
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KN um and the smallest column maximum. The I ot S
B t.h i,ss? t.he offefls? can ensure itself a gain of 5..6 yardirgest . Fhe
e ca,n . is its maxlrfnn. The lowest of the column maxim }',playmg
e sure of holding the offense down to a gai ey o
) g . s Pass defense. This is the defense’s minim S
ooking at these two strate; i >
hoices,
s gy C , we see that the maximi ini
S l’tl)d in the same cell of the game table. Thus the off]n an‘d maximin
iy NaShest re.ls.pbonse to the defense’s minimax and vice iﬂses oo have
equilibrium of this ga i e
S . game. That equilibrium entai
e ie lllort Pass while the defense defends against a P: o tioel
- galned by the offense (and given up by the def a)ss' & R
minimax method may fai i,
y fail to find ilibri i
sanies i a3 y fai an equilibrium in s
s & s ;r; ;)lur conclusion is similar to that when best-rgsm i
o St a; no Nash equilibrium in pure strategies Wep;(;lje a“aIY'
S chapter and examine mixed strategy equilibria in (?ESS .
- I,n i lf)eat, the minimax method cannot be applied to n e,
e peSSimgia:les, your o.pponent’s best is not necessarily oon_zero_
Rt stic assumption that leads you to choose the 53’ bl
m payoff as large as possible may not be your besrtatte g}t, -
strategy.
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B THREE PLAYERS

5o far, we have analyzed only games bhetween Iwo players. All of the methads of
analysis that have been discussed, howevern can be used Lo find thepure-strategy

Nash equilibria of any simultaneous-play game among any number of players.
When a game is played by more than two players, each of whom has relatively
small number of pure strategles, the analysis can be done with a game table, as
we did in the first five sections of this chapter.

In Chapter 3, we described a game among {hree players, each of whom had
two pure strategies, The three players, Emily, Nina, and Talia, had 10 choose
whether 1o contribute toward the creation of @ flower garden for their small
street. We assumed there thit the garden when all three contributed was no
better than when only two contributed and that a garden with just one contrib-
(hat it was as bad as 1o garden at all, Now, let us suppose
ir choices simultaneously and that there
fs. In particular, the

ULor was 50 Spal'lit‘
instead that the three players make the!
is a somewhat richer variety of possible outcomes and payo

i
f the garden will now differ according to the exact number of

size and splendor 0
contributors; three contributors will produce {he largest and best garden, 1wo
contributors will produce a medium garden, and one contributor will produce 8

small garden.
Suppose Emily is contemplating the possible outcomes of the street-garden

game. There are six possibilities 10 consider. Emily can choose either to contrib-
ute or not Lo contribute when both Nina and Talia contribute ot when neither
of them contributes or when just ong of them contributes. From her perspec-
tive, the best possible outcome, with a rating of 6, would be to take advantage
of her gond-hcartcd neighbors and to have both Nina and Talia contribute
while she does not. Emily could then enjoy & medium-sized garden without
putting up her own hard-carned cash. 1 both of the others contribute and
Emily also contributes, she gets 10 enjoy a large, very splendid garden but al
the cost of her own contribution; she rates this outcome second-best, or 5.

At the other end of the spectrum are the outcomes that arise when neither
Nina nor Talia contributes 10 the garden. If that is the case, Emily would again
prefer not to contribute, because she would foot the pill for a public garden that
everyone could enjoy she would rather have the flowers in her own yard. Thus,
when neither other player is contributing, Emily ranks the outcome in which
slie contributes as @ { and the outcome in which she dogs notas 2.

In between these cases are the situations in which either Nina or Talia con-
{ributes to the flower garden but not both. When one of them contributes, Emily
knows that she can enjoy a small garden without contributing; she also feels
that the cost of her contribution outweighs the increase in benefit that she gets
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TALIA chooses:

Contribute
Don't Contribute

NINA
NINA

Contribute | Don't
Contribute | Don't

Contribt
EMILY utef 555 | 3,63

Contrib
EMILY ute| 3,36 | 1,44

=
ont | 633 | 441

Don't 41,4 22,2

FIGURE 4.9 Street-Garden Game
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and, when Talia does not contribute, Emily also has a dominant strategy not
to contribute. Thus the best thing for Emily to do. regardless of what either of
the other players does, is not o contribute. similatly, we see that Nina’s domi-
nant strategy—in both pages of the able—is not Lo contribute. When we check
for a dominant stratcgy for Talia, we have 10 pe a bit more careful, We must
compare outcomes that keep Emily’s and Nina’s hehavior constant, check-
ing Talia's payolls from choosing Contribute versus Don't. That is, we compare
cells across pages of the table—the (op-left cell in the first page (on the left)
with the top-left cell in the second page (on the righy), and so on. As for the
first two players, this process indicates that Talia also has a dominant strategy
not to contribute.

Each player in this game has a dominant strategy, which must therefore be
her equilibrium pure strategy. The Nash equilibrium of the street-garden game
entails all three players choosing not to contribute to the street garden and get-
ting their second-worst payoffs; the garden is not planted, but no one has to
contribute either,

Notice that this game is yet another exampleof a prisoners’ dilemma. There
is a unique Nash equilibrium in which all players receive a payoff of 2. Yet there
is another outcome in the game—in which all three neighbors contribute 10
the garden—that for all three players yields higher payoffs of 5. Even though
it would be peneficial to each of them for all Lo piteh in to build the garden,
1o one has the {ndividual incentive 10 do so. As a result, gardens of this type
are either not planted at all or paid for through tax dollars—because the (own
government can require its citizens 10 pay such taxes. In Chapter 12, we will en-
counter more such dilemmas of collective action and study some methods for
resolving themn.

The Nash equilibrium of the game can also be found using the cell-by-cell
inspection method. For example, consider another cell in Figure 4.9—5a%
the one where Emily and Nina contribute but Talia does not, with the payoffs
(3, 3, 6). When Emily considers changing her strategy, as the row player she
can change only the Tow position of the game's outcome. Emily can move
(he outcome only from a given cell in @ given raw, column, and page 10 an-
other cell in a different TOW but the same column and same page of the table:

If she does that in this {nstance, she improves her payoff from 3 to 4. Similarly,
Nina can change only {he column position of the outcome, MOVIng it to a cell
in another column but in the same row and same page of the table, Doing 50
improves Nina's payoff from 3 10 4. Finally, Talia can change only the page posi-
tion of the game's putcome: She can move the outcome (0 a different page, but
the row and column positions must remain the same. Doing so would worsen
Talia's payoff from G to 5. Because at least one player can do better by unilater
ally changing her strategy, the cell that we examined cannot be the outcome of &
Nash equilibrium.

MULTIPLE EQUILIBRIA IN PURE STRATEGIES

TALIA chooses:

Contribute

Don't Contribute

NINA

NINA

Contribute| Don't C
ontribute| Don't

Contribute 55,5 3 ontribute 3,3 :
(= C
@:49

Don't ®&3.3 | @y S
, oo | @@ |G

FIGUR
E4.10 Best-Response Analysis in the Street-Garden Game

We can also use
the best-res
drawing chcles ponse method, as shown in Fi
Ny hera;z[t;r?d the best responses, as in Figure 4.7. Becau;iure N
p—— Elant str,ategy, all of Emily’s best responses are o?;h Pla)’e,l'
er Don't columns, and all of Talia’s on her Don't e

on't page. The

cell at the bottom Ilg]lt 1as all three best responses, therefore it gives us the Nash

7 MULTIPLE EQUILIBRIA IN PURE STRATEGIES

Each of the games considered in precedin, i
ach of the gan g sections has had a uni
equﬂibga'1:/3;1;11ﬁll.stlrntgem?ral, however, games need not ha(\l:elf:ir et_lsu:egy
o ations Aa oo ;1 e é:ns result by using a class of games that hgve -
R f:; mg,(b uety may be labeled coordination games. The plZ Ier;:I'ly
e oy not al\{vays completely) common interests By .
dependently (by virtue of the nature of noncooperativt; g:ItI’l::)-

the on of actions need y
. .
coordination of actions n ed to achieve a ]01ntl prefelred outcome is

A. Will Harry Meet Sally? Pure Coordination

To illustrate this idea, picture twi
e ’ o undergraduates, Harry and Sall: i
e conveiat;)l:rg;;f}}lz, are attracted to each other and would li}l:e‘/\t,f)lOc:::ie e
RO cf to go off to their separate classes. They arran; : Ltle
s Jor collee aer he asses are over at 4:30. Sitting separately in class : l(:
o ble chniceent f:;:nt they forgot to fix the place to meet. There a;eetavfl
S and Local Latte. Unfortunately, these locati .
e large campus; so it is not possible to try both Angrllisaare
) ry

and Sally have not exchanged cell- y 3
Wh g phone numbers, so they can't send messages
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Starbucks

Local Latte

FIGURE 4,11 Pure Coordination

Figure 4.11 illustrates this situation as a game and shows the payoff matrix.
Fach player has two chuiccs——SmﬂJucks and Local Latte. The payoffs for each are
1 if they meet and 0 if they do not. Cell-by-cell inspection shows at once that the
game has two Nash equilibria, one where both choose srarbucks and the other
where both choose Local Latte. It is jmportant for bath that they achieve one of
the equilibria, but which one is {mmaterial because the two yield equal payofis,
All that matters is {hat they coordinate on the same action; it does not matter
which action. That is why the game is said to be one of pure coordination.

But will they coordinate successfully? Or will they end up in different cafés,
each thinking that the other has let him or her down? Alas, that risk exists. Harry
might think that Sally will go t© Srarbucks because she said something about the
class to which she was going and (hat class is on the Grarbucks side of the cam-
pus. But Sally may have the opposite belief about what Harry will do. When there
are multiple Nash gquilibria, il the players are 0 select one successfully, they need
come way to coordinate their beliefs or expectations about each other's actions.

‘The situation is similar to that of the heroes of the «hich tire?” game in
Chapter 1, where we labeled the coordination device a focal point. in the pres-

fés may be generally known as the student

ent context, one of the two cal
hangout. But it is not enough that Harry knows this to be the case. He must
and so on. In other

know that Sally knows, and that she knows that he knows,
words, their expectations must converge on the focal point. Otherwise Harry
might be doubtful about where Sally will go because he does not know what she
is thinking about where he will go; and similar doubts may arise at the third or

fourth or higher level of thinking about thinking.”

9Thomas Schelling presented the classic treatment ol coordination games and developed the
his biok The Stralegy of Conflict (Cambridge: Harvard University Press,
1aB0); see pp. H4-50, Bo-118. His explanation of focal points ineluded the results gamered when he
posed several questions 1o his students and colleagues. The hest-remembered of these s “Suppost
you have armnged to meet somesnein New York Cliy ona particular day. Dt have failed 10 ATTANES
i spesific place or tine, and have no Wiy of eommunicating with the other person. Where will you
o amid at what (imet® Fifty years ago when the guostion wis first posed, the clock st Grand Central
it migght be the observation platform atop the Empire Sttt

concept of a focal point i

Station was the usual foeal plice; NOW
Building or Times Square. The focal time remaing twelve noot.
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When one of ixi
us (Dixit) posed thi :
is questio: L N
men generally cho a n to students
se Starl in his cla:
the local café in the caS tarbucks and the juniors and seniors enssj :he fos
e o — hmpus student center. These reSPOHSesag era:jly chose
, who have not been re understand-
on a nationwide chai . on campus long, foc )
ain , focus the i
have acquired the loc ]tillat }s known to everyone, whereas juni 1r. expectau? =
their peer ! abits, which they now regard B semiors
peers to believe likewise, gard as superior, and expect
If one café h :
ad an or
T T - motange decor and the other a crimson d ;
ton color, whereas at H AjASSRUelas a focal point because orange i .
person is a Princeton tarvard crimson may be focal for the Sarr%e 1'8 the Prince-
meet at all, either bec student and the other a Harvard student thleason' g
o —————— kau;e each thinks that his or her color “sh(; l;y el
inks that the other will be i uld” get priori
date him or h er will be inflexibl ; rity
er. Mo § e and so tri
re generally, whether players in coordinatio es to accommo-
n games can find

a focal point de

pends on their havi

wh Fstor ving some co .
ether historical, cultural, or linguistic mmonly known point of contact

B. Will Harry Meet Sally? And Where? Assurance

Now change the i
e gour . agierlrr;:apazoffsb a httl'e. "ljhe behavior of juniors and seni
et ybec; e .qu1te indifferent about which café thorsljug_
e thz b (;lttel' at one or the ambiance better at one. eC}), i
L formee; at 1's not the general student hangout, to e; T(;hey
e i rf oyfrl.ends or girlfriends. Suppose the‘ botzol the
et of each is 2 when they meet there versusyl h e
Boal e a.re tWoelx\/lv pﬁyoff I.n'atrix is shown in Figure 4.12 e
el e b W;s equilibria. But in this version of &he am
L eire both choose Local Latte. Unfortungatel& e:lm'h
e o e e 1; not guaranteed to bring it about. First of yilt nd
have to know the entir}; pa}J/(:ffemI;iZi?(ffts) };EV}? e —— knomedg:_sz:ﬁ
‘ , bo
on. Such detailed knowledge about the gamea::]:r:(:r(i:eovivftt}}llittg\(r)c:}ziimow' a:; s
scussed and

SALLY
Starbucks | Local Latte
Starbu
Ry cks 1,1 0,0
Local Latte 0,0 2,2

FIGURE4.12 Assurance
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vo cafés but simply forgot to decide defi-

relative merits of the (v
nitely ta meet at Local Latte. Even then, Harry might think that Sally has some
or think that she thinks that he does, and

other reason for choosing Starbucks,

so on. Without genuine convergence of expectations about actions, they may

choose the wWorse equilibrium or, WOTs® still, they may fail to coordinate actions
W

and get 0 each.

To repeat, playess in the
equilibrium outcome only if each has enough cet
other is choosing the appropriate action. For this reason, such games

assurance games.'®

In many real-life situations of this kind, such assur

given even a small amount of communication between
ests are perfectly aligned; if one of them says 1o the other, “T am going to Local
Latte,” the other has no reason o doubt the truth of this statement and will fol-
Jow to get the mutually preferred outcome. That is why we had to construct the
story with the two students isolated in different classes with no means of com-
munication. If the players’ interests conflict, truthful communication becomes
more problematic. We examine this problem further when we consider strategic
manipulation of information in games in Chapter 9.

In larger groups, communication can be achieved by scheduling meetings
or by making announcements. These devices work only if everyone knows that
everyone else is paying attention to them, because successful coordination re-
quires the desired equilibrium to be a focal peint. The players’ expectations must
converge on it everyone should know that everyane knows that . . . everyone is
choosing it. Many social institutions and arrangements pay this role. Meetings

circle facing inward ensure that everyone sees eve

where the participants sitina
eryone else paying attention. Advertisements during the Super Bowl, especially

when they are proclaimed in advance as major attractions, ensure 4t
ing them also. That makes such ads especially attrac-

sdiicts that are more Jesirable for any one buyer
such products include those produced
d Internet industries.""

agreed on the

game illustrated in Figure 4.12 can get the preferred
tainty or assurance that the
are called

ance is easily obtained,
the players. Their inter-

that many others are view
tive to companies making pre
wlien many others are buying them, 100

by the computen, relecommunication, an

[Mered is the stag It pseribed by the 18th-
century French philosophef Jean-jacques Rousseall. Severnl people can successfully hunt @ stag,
thereby getting a large quantity of meat if they collaborate. if any one of them f-sure that all of the
others will collaborate, he also stanils to benefit by Jotning the group. But If le is unsure whether the
group will be large enough, he will i better 1o hunt for asmaller animal, & Tasire, on T owit. However
it can be argued that Rousseall elievid that each hunter wanlid prefer to 50 after a hare regardless of
what the others were doing which wotild make the Stag hunt a multiperson ptlsmwr.ﬂ' ditemma, not
an assurance game. We distuigs this example in the context of collective action in Chapter 12,
iMichael Chwe develops this theme in Rational Ritual: Culture, roordination, wnd Common
Knowledge (Princeton: Princeton | Inlversity Press, 20013

10The classic example of an assurance gime usually o
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SALLY
Starbucks | Local Latte
Starbuck
HARRY ? 2 i
Local Latte 0,0 1,2

FIGURE 4.13 Battle of the Sexes

C. Will Harry Meet Sally? And Where? Battle of the Sexes

Now introduce another complicatio
e . n to the café-choice ga
pavolfbl f:;:; [;rrlif:tl; different cafés. So Harry might get aial;l:f.f (1?;) ;}:nﬂayers
e i ng at St.ar?ucks, and the other way around fro S{*“Y
s pam s Caﬁzﬂotf}i ;nl;atrul( is shown in Figure 4.13. et
. attle of the sexes. Th i
concocted for th: it
soncocted for w;sr :sal}:g;f :St;l;ctt;lz(; by gatr)ne theorists in the sexistf rl(;rélotshj\s}tligy
S oose between going to a boxi ! A
ecseltio o r(sfr;s?}rlxela;lii for evolutionary genetic reasmgrls) th(le) (I)lﬁ:bgalr]llgtvcvz iy
T bu?i Lrlrrlatch and the wife the ballet. The name hasssiESl;
et baat e i reexfam}?le—where either could easily have some
i Sexjpt er elthe'r of the two cafés—should make it cle:
What will happen in thi erd here o )
bl S C s game? There ‘are still two Nash equilibria. If H
it oty s £ os? S:farbucks, it is best for him to do likewise, arrzll
e A eit.herr iln}illar reas.ons, Local Latte also is a Nash (’aan'
9 S Cafz these equilibria and avoid the outcomes wllllm-
e i G S, }tlhe players need a focal point, or conver er(: o
i e fa]-;l t e. pure-coordination and assurance gamei BCe
o ilure 1s' gr('eater in the battle of the sexes. The .1 .
e et asymmztrilircn;;r;(c) é;tuat?ns’ but each of the two l.\Iash Sq?i]-
;a ir :
outcomes are in conflict. Harry prefers tI;le t:f:éolﬁlzf?;flr;izst::;v::en e
eet in Star-

bucks, and Sall
N y prefers to meet in L
breaking the e in Local Latte. They must find some way of

In an attempt to achieve hi

e o s or her preferred equilibrium,
i wi}t: jgidfgrll?wdthe- strategy leading to the bettere:;?liﬁllfr}ilzr o
(hot playere 1o et in detail such advance devices, called strategic s
Ot ench eyt 1o i ! e.s can ad.opt to try to achieve their preferred (g)utmovesj
B0k (o T nice, leading to the unfortunate situation wh arry
ecause he wants to please Sally, only to find thair:hlz?;lrzrly
s
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DEAN
Swerve (Chicken) | Straight (Tough)
Swerve (Chicken) 0,0 -1,1
JAMES
Straight (Tough) 1,-1 2,2

FIGURE 4.14 Chicken

chicken, or weak. Fourth, the payoffs when both players are tough are very bad
for both players. In games such as this one, the real game becomes a test of how
to achieve one’s preferred equilibrium.

We are nowbackin asituation similarto that discussed for the battle-of- the-sexes
game. One expects most real-life chicken games to be even worse as battles than
most battles of the sexes—the benefit of winning is larger, as is the cost of the
crash, and so all the problems of conflict of interest and asymmetry between the
players are aggravated. Each player will want to try to influence the outcome.
It may be the case that one player will try to create an aura of toughness that
everyone recognizes so as to intimidate all rivals.” Another possibility is to come
up with some other way to convince your rival that you will not be chicken, by

making a visible and irreversible commitment to going straight. (In Chapter 10,

we consider just how to make such commitment moves,) In addition, both play-
ers also want to try to prevent the bad (crash) outcome if at all possible,

As with the battle of the sexes, if the game is repeated, tacit coordination Is

4 better route to a solution. That is, if the teenagers played the game every Sat-
urday night at midnight, they would have the benefit of knowing that the game

had both a history and a future when deciding their equilibrium strategies, In
such a situation, they might logically choose to alternate between the two equi-
libria, taking turns being the winner every other week. (But if the others found
out about this deal, both players would lose face.)

There is one final point, arising from these coordination games, that must
be addressed. The concept of Nash equilibrium requires each player to have
the correct belief about the other's choice of strategy. When we look for Nash
equilibria in pure strategies, the concept requires each to be confident about the
other’s choice. But our analysis of coordination games shows that thinking about
the other's choice in such games is fraught with strategic uncertainty. How can

"Why would a potential rival play chicken against someone with a reputation for never giving in?
The prablem Is that participation in chicken, as in lawsuits, is naot really voluntary, Put another way,
chonsing whether to play ehicken is itself a game of chicken, As Thomuns Schelling says, "I you are

publicly invited to play chicken and say you would rather not. then you have just played [snd lost)*
(Arms and Influence, New Haven: Yale University Press, 1965, poliay
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¢ 7, we introduce the
andomly among the

ach generalizes ihe concept of Nash equilibrium to

out each other’s actions.

¢ such uncertainty in our analysis? In Chapte

we incorporal
where actual choices are made

conceptof @ mixed strategy,
available actions. This appro

sitnations where the players may be unsure ab

8 NO EQUILIBRIUM IN PURE STRATEGIES

Each of the games considered so far has had at least one Nash equilibrium in pure
strategies. Some of {hese games, such 45 those in Section 7, had more than one
equilibrium, whereas games in earlier sections had exactly one. | Jnfortunately, not
all games that we come across in the study of strategy and game theory will have
such easily defin able outcomes in which players always choose one particular ac-
tion as an equilibrium stAtegy. I this section, we look at games in which there is
not even one pure-strategy Nash equilibrium—games in which none of the play-
ers would consistently choose one strategy as that player’s equilibrium action.
A simple example of a game with no equilibrium in pure strategies is that
of a single point in a tennis match. Imagine a match between the two all-time
best women playcrs——Martina va and Chris Evert.! Navratilova at the

Navratilo
et has just volleyed a ball to Evert on the baseline, and Evert is about to attempt
a passing shot. She can try o send the

ball either down the line (DL; a hard,
straight shot) oF crosscourt (CC; a softer, diagonal shot). Navratilova must fike-
wise prepare [0 Cover one side or the other. Each player is aware that she must
not give any indication of her planned action to her opponent, knowing that
such information will be used against her. Navratilova would move to cover the
side to which Evert is planning to hit or Evert would hit to the side that Navrati-
jova is not planning 10 cover, Both mus
are equally good at concealing their intentions until the last

a second, and both
possible moment;
therefore their actions are effectively simultaneous, and we can

analyze the
pointasa wo-player simultaneous-move game.
he fraction of times & player

Payoffs in this tennis-point game are given by t
ticular combination of passing shot and covering play.

1 act in a fraction of

wins the point in any pat

w who remember only the latest phenom who shines for 4 couple of
o mnizing facts about these two, who were al the top levels
rable rivalry all that ime. Mavratilova was a

Upor those among Yo
years and then bupms ok, hene are spm

of the game for alimost wo decades and fn o me it

left-handed sepve-and-volley player: i grand-siam tournaments, she won 18 singhes titles, 31 dovi-
Bles, and 7 mixed doubles. In all tournaments, she won 167, a record. Bvert, & lig'nl-lmndm! base:
Jiner, had a record win-loss Percentigs (90% wins) in ter carcer and 150 titles, of which 18 were
for singles I grand stam (ourmaments. She probably {rwented (and certainly pn]m!nrizcd: the wo-
handed backhand that is now 50 common, From 1973 to 1988, the two played each other B0 HMes
andl Navratilova ended up with aslight vdge. 43-37.
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NAVRATILOVA
L cc
DL
EVERT el 80
£C 90 20

FIGU ili
RE4.15 No Equilibrium in Pure Strategies

Given that a down-the-line passi i
e that & down : ing shf)t is stronger than a cross
oron <o of 1 i;kueiil :I(‘)’evsg:nt:; lr:)l:nnt when Navratilova movzgltl;tcs:\?etrat?li
o , : out a reasonable set of pa;
pert I suce Crossc\gr;tﬁ.as }(lls\fvn-the—hne passing shot 80% of tﬁe};?rﬁsel isful\lfpo'se
oy covers Navramov; Cov;s szccessful with the down-the-line shot onl a;,(l)il/-
hercosscoumpesthaat il Or; own th.e line. Similarly, Evert is successfu)llw'tl:
T8 e b % of the time if Navratilova covers down th l'1
St i 20%7 er than' when Navratilova covers crosscourt, i ) l'ne.
Clearly, the fraztionot?ffttitrlr(le m?k? : o
e gty 1 es that Navratilova wins this tenni int is j
. Zero%zz‘,:;f; ;0(1% fmd the fraction of time that Ev(:rltrl \l/jirr:: lfl"l;)fsjzlhs \
o T e s :)S eectlselly, constant-sum, because the two pa.yoffs s :
o Evertr'l all the necessary information in the payoff t ‘:)‘]n
= Eveut'l e.ach cell. Figure 4.15 shows the payoff tablea g
e ;f t\:/111.13 the point against Navratilova in each ofatllll
The rules for solving simult S, G e
o Soie e S aneous-move games tell us to look first for domi
ame onueetcelL el ignes an(‘:l then to try minimax (in that this is a zer omi-
e s?ectlon to find a Nash equilibrium. It is a use(f)-fum
i Rt tlrlrunanjc strategies exist here. Going on to cell—bu N
L e e choice of DL for both players. From that outcy-Ceu
o i e 1<;ess from 50% to 90% by choosing CC insteadorlgle‘
0 e \t/ert down to 20% by choosing CC. After this E "
N % . ;) 80% by making her shot DL, and Navratilrov‘;e'rt
i Py t ) fv;ry cell, one player always wants to change hln
P i st eta le.r end¥essly without finding an equilibrilglm ”
e Onge . j/\;:}(])nt.alr.]ed in the absence of a Nash equi]ibrium.'
Dy o Wh. X lat is important in games of this type is not hu’1
Zi}iould neither always nor s;stgr?alzrcsa]slill(;ﬂi ;le: g p‘{;y:;
S ick the same shot w] i i
o tak:z:{ :r]lzzez zrflgages i.n any determinate behavilzlre Eff i‘;‘;‘st"‘” t: ﬂlllls
N ge of it. (So if Evert consistently went crossco yp ey
ilova would learn to cover crosscourt every timeuerl;‘(limh h]e(;
wou
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thereby reduce Evert’s chances of success with her crosscourt shot.) The most
T(’.leD\l‘i\blt‘f thing for players to do here is to act somewhat unsystematically, hop-
ing for the clement of surprise in defeating their opponents. An unsystematic ap-
proach entails choosing each strategy part of the time. (Evert should be using her
weaker shot with enough frequency 10 guarantee {hat Navratilova cannot predict
which shot will come her way. She should not, however, use the two shots in any
set pattern, because that, tho, would cause her to lose the element of surprise.)
This approach, in which players randomize their actions, is known as mixing
strategies and is the focus of Chapters 7 and 8, The game illustrated in Figure 415
may not have an equilibrium in pure strategies, but it can still be solved by look-
ing for an equilibrium in m ied strategies, as we do in Chapter 7, Section 1.

SUMMARY

In simulianeous-Move games, players make their strategy choices without knowl-
edge of the choices being made by other players. Such games are illustrated by
game tables, where cells show payoffs to each player and the dimensionality of
the table equals the number of players. Two-person zero-swm games may be illus-
trated in shorthand with only one player’s payoffin each cell of the game table.

Nash equilibrium is the solution concept used to solve simultaneous-move
games; such an equilibrium consists of a set of strategies, one for each player,
such that each player has chosen her best response to the other's choice. Nash
equilibrium can also be defined as a set of strategies such that each player has
correct beliefs about the others’ strategies and strategies are best for each player
given beliefs about the other's strategies. Nash equilibria can be found by using
cell-by-cell inspection, through a search for dominant strategies, by successive
elimination of dominated strategies, o with best-response analysis. Zero-sum
games can also be solved by using the minimax method.

There are many classes of simultanepus games. Prisoners’ dilemma games
appear in many contexts. Coordination games, such as assurance, chicken, and
battle of the sexes, have multiple equilibria, and the solution of such games
requires players t0 achieve coordination by some means. 1f a game has no equi-
librium in pure strategies, we must look for an equilibrium in mixed strategies,
the analysis of which is presented in Chapters 7 and 8.

S1.

S2.
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KEY TERMS

assurance game (114)

e iterated elimination of dominated

s stra{tegies (102)
best response (93) nmli)::z N (106)
- i .
best respon.se analysis (105) minimax Enofl)l
cell-by-cell inspection (95) mixed strat:gy(:g()()lom

chicken (116)

constant-sum game (91)
convergence of expectations (114)
coordination game (111)
dominance solvable (102)
dominant strategy (98)
dominated strategy (98)
enumeration (95)

Nash equilibrium (93)
normal form (90)

payoff table (90)

prisoners’ dilemma (97)

pure coordination game (112)
pure strategy (90)
strategic form (90)
successive elimination of

focal point (112
it (9(:) dominated strategies (102)
N R 60 zero-sum game (91)

SOLVED EXERCISES

pla
If a yer has a dominant strategy in a simultaneous-move game the
d n

she is sure to i
shels sure get her best possible outcome.” True or false? Explai i
ple of a game that illustrates your answer. SR

Find all Nas g !
Nash equ1hbr1a In pure strategie for the following zero-sum
gles fol
games. First check for do ar rategie: neithe as a domi-
strategies. I T player h

nant strategy, use iter; imi
ated elimination i

s N .
e f dominated strategies to find the

(a)

COLUMN

Left Right

u
ROW = ! ’

Down 2 1
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(b)

COLUMN

Up

Down

()
COLUMN

“ COLUMN

North South East

e the mini 1aX 1T el]md to nd the Nash equlhbna for the ames 1n
8

$3. Us

Exercise 52. ‘
ies i on-zero-sum

i h equilibria in pure strategies in the followm.g.n )

S eseibe that you used in finding the equilibria.

games. Describe the steps

{a)

COLUMN

Left Right

1,0

Up 2,4
ROW o
Down

EXERCISES

(b}
COLUMN
Left Right
Up 1,1 0,1
ROW
Down 1,0 1,1
(<)
COLUMN
Left Middle Right
Up 0,1 9,0 2,3
ROW Straight 59 7,3 17
Down 7,5 10,10 3,5
(d)
COLUMN
West Center East
North 2,3 8,2 7.4
Up 3,0 4,5 6,4
ROW
Down 10,4 6,1 3,9
South 4,5 2,3 52
§5. Consider the following table:
COLUMN
North South East West
Earth 1,3 3,1 0,2 1,1
Water 1,2 1,2 2,3 1,1
ROW
Wind 3,2 2,1 1,3 0,3
Fire 2,0 3,0 1,1 2,2
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i ¢ Explain why oF
. qve a dominant strategy
o Row or Column have
(a) Does either
why not. ‘
Use iterated € o :
o much as possible. Give the order in which
: ) f the game. .
sive the reduced form © Jj— i
l{':;his game dominance solvable? lmp!:?m “h:;.r r:r “m)e
l(:ll! ‘;hle {he Nash equilibrium (or equilibria) of this &

; i reduce the game as
inati nated strategies 10
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Y Crossin he street. {lnly one erson I
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two peo| lein it E\’lclll"\' vho can 1] have to choc '38{! wiltaneo wsly
. h of us wi i '|')|(.'S1.L\{'-‘ 1 S

Wheth"i‘ to do s Eacl fus wi 1l get asure w rib 3 from her suc ess

Cr W ps T But ed ch one wi poes i 1 a cos

(no matter ho hel her). i il who goe: llhl’i y will bear a € 1

( . £ alue of our time taken up in hclplng, If neither ])l'&]"(.‘l

of 1 this bein the vi

i : i as a game. Write the
1ps, the payoff for each player is 210 Set 1\\1:;1‘\11': as a
PipS, i A i
T)l'l:rn'.'f table, and find all pure-strategy Nash equi -
‘ ‘ i lab or a new theat@
whether to build a new : o
¥ sw lab built, and th
vould rather see @ new .
‘e w theater. However, the funding for the
is conti { on unanimous sup-
i it to be) is contingen ! 1
o ‘hichever it may turn ou . % el e
plc;lle?:u{r: the faculty. If there is (1[5&{;1‘&&&1‘\:1‘11. m.:l:]c‘; I;I: w|0 . I,ay(,[m-hc
i3 ith no new building an
saving each group with ; o
wanl-_ l"i of gthe two separate faculty groups on Wlhlc!‘l prlulL 8
" " jven in owing lable:
:::cur s?muhaneo'.ls‘ly. with payoffs given in the fol £

A university is contemplating

on campus, The science facult y
4 il

humanities faculty would prefera?t

HUMANITIES FACULTY

Theater

h equilibria of this game?

(a) What are the pure—strate.:gy Nas
(b) Which game described in this ch
plain your reasoning.

i imi is game? Ex-
apter is most similar to this g
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$8. Suppose two game-show contestants, Alex and Bob, each separately select

one of three doors numbered 1, 2, and 3. Both players get dollar prizes if
their choices match, as indicated in the following table.

B
1 2 =
1 10,10 0,0 0,0
A E 0.0 15,15 0,0
= 00 0.0 15,15

(a) What are the Nash equilibria of this game? Which, if any, is likely to
emerge as the (focal) outcome? Explain.

(b) Consider a slightly changed game in which the choices are again just
numbers, but the two cells with (15, 15) in the table become (25, 25).
What is the expected (average) payoff to each player if each flips a coin
to decide whether to play 2 or 32 Is this better than focusing on both
choosing 1 as a focal equilibrium? How should you account for the risk
that Alex might do one thing while Bob does the other?

S9. Marta has three sons: Arturo, Bernardo, and Carlos. She discovers a broken

S10.

lamp in her living room and knows that one of her sons must have broken
it at play. In reality, Carlos was the culprit, but Marta doesn't know this. She
cares more about finding out the truth than she does about punishing the
child who broke the lamp, so Marta announces that her sons are to play the
following game.

Each child will write down his name on a piece of paper and write down
either “Yes, I broke the lamp,” or “No, I didn't break the lamp.” If at least one
child claims to have broken the lamp, she will give the normal allowance of $2
to each child who claims to have broken the lamp, and $5 to each child who
claims not to have broken the lamp. If all three children claim not to have

broken the lamp, none of them receives any allowance (each receives $0).

(a) Write down the game table. Make Arturo the row player, Bernardo the
column player, and Carlos the page player.

(b) Find all the Nash equilibria of this game.

(c) There are multiple Nash equilibria of this game. Which one would you
consider to be a focal point?

=

Consider a game in which there is a prize worth $30. There are three contes-
tants, Larry, Curly, and Moe. Each can buy a ticket worth $15 or $30 or not
buy a ticket at all. They make these choices simultaneously and indepen-
dently. Then, knowing the ticket-purchase decisions, the game organizer
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awards the prize. if no one has bought a ticket, the prize is not awarded.
Otherwise, the prize is awarded to the buyer of the highest-cost ticket if
there is only one such player or is split equally between wwo or three if there
are ties among the highest-cost ticket buyers, Show this game in strategic
form, using Larry as the Row player, Curly as the Column playern, and Moe
as the Page player. Find all pure-strategy Nash equilibria. 2

S11. Anne and Bruce would like to renta movie, but they can’t decide what kind

S12.

of movie to get: Anne wants to renta comedy, and Bruce wants to watch a
drama. They decide 10 choose randomly by playing “Evens or 0dds.” On
the count of three, each of them shows one or two fingers. If the sum is
even, Anne wins and they rent the comedy; if the sum is odd, Bruce wins
and they rent the drama. Each of them earns a payoff of 1 for winning and
0 for losing “Evens or 0dds.”

(a) Draw the game table for “Evens Or 0Odds.”

(b) Demonstrate that this game has no Nash equilibrium in puré strategies.

in the film A Beautiful Mind, john Nash and three of his graduate-school
colleagues find themselves faced with a dilemma while at a bar, There are
four brunettes and a single blonde available for them to approach. Each
young man wanis to approach and win the attention of one of the young
women. The payoff to each of winning the blonde is 10; the payoff of win-
ning a brunette is 5, the payoff from ending up with no girl is zero. The
catch is that if two or more young men go for the blonde, she rejects all of
them, and then the brunettes also reject the men because they don’t want
to be second choice. Thus, each player gets 2 payoff of 10 only if he is the
sole suitor for the blonde.

(a) First consider a simpler situation in which there are only two YOung
men instead of four. (There are two bruneties and one blonde, but
these women merely respond in the manner just described and are not
active players in the game.) Show the playoit table for the game, and
find all of the pure-strategy Nash equilibria of the game.

Now show the (lhrce»dimensiunail table for the case in which there are
three young men {and three bruneties and one blonde who are not ac-
tive players). Again, find all of the Nash equilibria of the game.

(c) Without the use of a table, give all of the Nash equilibria for the case
in which there are four young men (as well as four brunettes and 2
blonde).

(Optional) Use your results to parts (a), (b), and (©) to generalize your
analysis to the case in which there are n young men. Do not attempt
o write down an n-dimensional payoft table; merely find the payoff 10
one player when & of the others choose Blonde and (n— k-1 choose
Brunette, fork=0,1,... (n-1). Can the outcome specified in the movie

(b

=

(d
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as the Nash quilibrium o e— al oung men choose
m of the gan th
1e N e lib t at of the Yy g
g — y asl equlhbrlum
to go for brunettes—ever really be a N h of the game?

UNSOLVED EXERCISES
Ul. Find all N: i
ash ibria i
oo :sql.t])lllbl‘la m. pure strategies for the zero-sum i
P y checking for dominant strategi e
s ategies and using iterated
(a)
COLUMN
Left Right
U
ROW g 1 2
Down 2 3
(b}
COLUMN
Left Right
u
ROW E 1 2
Down 4 3
(c)
COLUMN
Left Middle Right
Up 5 3 2
ROW Straight 6 4
3
Down 1 6 2
(d)
COLUMN
Left Middle Right
Up 5 1 3
ROW Straight 6 1
2
Down 1 0 0
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i r the games 1 COLUMN
inimax method to find the Nash equilibria fo 3 \I B

U2. Use the mint Left Middle Right
Exercise UL ) -

Jibria in pure strategies in the fonowmg.no.n . Up 4,3 2,7 0,4

3. Find all Nash equilibria In P o in finding the equilibria. oW
. games Describe the steps that you us 2 Down 5,0 5,-1 —4,-2
: &

U5. Find all of the pure-strategy Nash equilibria for the following game. De-
scribe the process that you used to find the equilibria. Use this game to ex-
plain why it is important to describe an equilibrium by using the strategies
employed by the players, not merely by the payoffs received in equilibrium.

(a}

COLUMN
Left Center Right
s
(b} Up 1,2 2,1 1,0
ROW Level 0,5 1,2 7.4
Down =il 3,0 52

U6. Consider the following game table:

COLUMN

Left Center Right

Top 4, 2 3.1
ROW Middle 3,5 Reii=s 2
Bottom —8 3,4 4,2

(a) Complete the payoffs of the game table above so that Column has a
dominant strategy. State which strategy is dominant and explain why.
(Note: there are many equally correct answers.)

(b) Complete the payoffs of the game table above so that neither player
has a dominant strategy, but also so that each player does have a dom-
inated strategy. State which strategies are dominated and explain why.

Straight (Again, there are many equally correct answers.)

U7. The game known as the Battle of the Bismarck Sea (named for that part of
the southwestern Pacific Ocean separating the Bismarck Archipelago from
Papua-New Guinea) summarizes a well-known game actually played in a

of domina ed strate| eslusnlvelhe ollowin: game.
aNash equi]ibnum-

ive elimination L
4. Usesuccessive ed. Show that your solutionis

Explain the steps you follow
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i 1d War
ited States and Japan during Wor
ment between the Unite .
i ;’;‘f: g: Japanese admiral was ordered to move a convoy of (sihlpssu :10
g Guim,aa' he had to choose between a rainy northern ro.u'te an. a .
N'e 9 uther,n route, both of which required three days' sailing tgne. =
ol fi(::ans knew that the convoy would sail and wanted to senim orr'lcans
i i
AfI:: it, but they did not know which route it would take. ’xlh;, ' heer oo
;ad to'send reconnaissance planes t0 scout for the convoy, . ut Both .
only enough reconnaissance planes 10 explore one rolufe ata t.u}rlle. i
]apznese and the Americans had to make their decisions with no
i her side.
the plans being made by the ot .
&= ;)ffth: cponvoy was on the route that the Americans explored {:‘nst, ;hiy;
. Po
could send bombers right away; it not, they lost a day o‘f boml:n}\?\ e
ather on the northern route would also hamper bombing. !lf the .
o > right away, the
te and found the Japanese ng 3
cans explored the northern rouf i s et P
hree) good bombing days; i
could expect only two (of t gl
had gone south, they
ute and found that the Japanese .
n{)ﬁ}:ae):-nez? two days of bombing. If the Americans chose 10 c).ipln.\;ct }l::e
:osuthefn route first, they could expect three fill days of 'bon‘1fb1}111g xfoung
found the Japanese right away but only one day of bombing if they
that the Japanese had gone north. o
Tiustrate this game in a game table. .
((:1))) Identify any dominant strategies in the game and solve for the Nas!
equilibrium. .
ut in separate rooms. Then each is told the

. Two players, Jack and Jill, are p . : e
o rulZspof}tlhe game. Each is to pick one of six letters: G, K, L, QR 0orW.

two happen to choose the same letter, both get prizes as follows:

Jack's Prize

3 2 6 3
EXENENER
. . d
If they choose different letters, each gets zero. This whole schedule is reveale

to both players, and both are told that both know the schedules:., .anfi s,f)non.me
(a) Draw the table for this game. What are the Nash equilibria in P!

1ill's Prize

strategies? . . . .
(b) Can one of the equilibria be a focal point? Which one? Why

. , P i
U9. Three friends (Julie, Kristin, and Larissa) independently go shr.:pp.u;;, ‘:(:s
' i . On reaching the store, each girl se&
sses for their high-school prom . 4
?:1 three dresses worth considering: one hlack, one lavender, ;fnd @::3:\0
lowaaCh girl furthermore can tell that her two friends would conside

imi stes.
same set of three dresses, because all three have somewhat similar ta
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Each girl would prefer to have a unique dress, so a gitl’s utility is zero

if she ends up purchasing the same dress as at least one of her friends. All
three know that Julie strongly prefers black to both lavender and yellow, so
she would get a utility of 3 if she were the only one wearing the black dress,
and a utility of 1 if she were either the only one wearing the lavender dress
or the only one wearing or the yellow dress. Similarly, all know that Kris-
tin prefers lavender and secondarily prefers yellow, so her utility would be
3 for uniquely wearing lavender, 2 for uniquely wearing yellow, and 1 for
uniquely wearing black. Finally, all know that Larissa prefers yellow and
secondarily prefers black, so she would get 3 for uniquely wearing yellow, 2
for uniquely wearing black, and 1 for uniquely wearing lavender.
(a) Provide the game table for this three-player game. Make Julie the Row

player, Kristin the Column player, and Larissa the Page player.
(b) Identify any dominated strategies in this game, or explain why there

are none.

(c) What are the pure-strategy Nash equilibria in this game?

U10.Bruce, Colleen, and David are all getting together at Bruce's house on Fri-
day evening to play their favorite game, Monopoly. They all love to eat sushi
while they play. They all know from previous experience that two orders of
sushi are just the right amount to satisfy their hunger. If they wind up with
less than two orders, they all end up going hungry and don't enjoy the eve-
ning. More than two orders would be a waste, because they can’t manage to
eat a third order and the extra sushi just goes bad. Their favorite restaurant,
Fishes in the Raw, packages its sushi in such large containers that each in-
dividual person can feasibly purchase at most one order of sushi. Fishes in
the Raw offers takeout, but unfortunately doesn't deliver.

Suppose that each player enjoys $20 worth of utility from having
enough sushi to eat on Friday evening, and $0 from not having enough to
eat. The cost to each player of picking up an order of sushi is $10.

Unfortunately, the players have forgotten to communicate about
who should be buying sushi this Friday, and none of the players has a cell
phone, so they must each make independent decisions of whether to buy
(B) or not buy (N) an order of sushi.

(a) Write down this game in strategic form.

(b) Find all the Nash equilibria in pure strategies.

(c) Which equilibrium would you consider to be a focal point? Explain
your reasoning.

Ull.Roxanne, Sara, and Ted all love to eat cookies, but there's only one left in
the package. No one wants to split the cookie, so Sara proposes the fol-
lowing extension of “Evens or Odds” (see Exercise S11) to determine
who gets to eat it. On the count of three, each of them will show one or two
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P inder
fingers ﬂ’ley'u add them up, and then divide the sum by 3, If the remainde
gers,

i i i ifitis
Roxanne gets the cookie, if the remainder is 1 Sara gets it, and if
o Ro:

Sl £ of 1 for winning (and eating the

2 Ted gets it. Each of them receives a payo
je) and zero otherwise. ‘ .
CO)OkII{?presem this three-player gamie in normal form, with Boxar;:ee §
(a Row player, Sara as the Column player, and Ted 'tas the Fa%e f)hi syga.me .
(b) Find all the pure-strategy Nash equilibria of‘ this game. hs e
fair mechanism for allocating cookies? Explain why or why not.

i - me that
U12. (Optional) Construct the payoff matrix for your own tvx{o }fla’zr hg:\le e
. atli)sﬁes the following requirements. First, each player s .0 e s
Strate ies. Second, the game should not have .an.y dommanh fm i s
'Sl“hirdgthe; game should not be solvable using mmm.laxi)me:ite ,your iame

' _strategy Nash equilibria. Provi
should hiave sy e lglyof the above cohditions are true.

matrix, and then demonstrate that al

Simultaneous-Move Games
with Pure Strategies II:
Continuous Strategies and
II: Discussion and Evidence

HE DISCUSSION OF SIMULTANEOUS-MOVE GAMES in Chapter 4 focused on
games in which each player had a discrete set of actions from which to
choose. Discrete strategy games of this type include sporting contests in
which a small number of well-defined plays can be used in a given situa-
tion—soccer penalty kicks, in which the kicker can choose to go high or low, to
a corner or the center, for example. Other examples include coordination and
prisoners’ dilemma games in which players have only two or three available
strategies. Such games are amenable to analysis with the use of a game table, at
least for situations with a reasonable number of players and available actions.
Many simultaneous-move games differ from those considered so far; they
entail players choosing strategies from a wide range of possibilities. Games in
which manufacturers choose prices for their products, philanthropists choose
charitable contribution amounts, or contractors choose project bid levels are ex-
amples in which players have a virtually infinite set of choices. Technically, prices
and other dollar amounts do have a minimum unit, such as a cent, and so there
is actually only a finite and discrete set of price strategies. But in practice the unit
is very small, and allowing the discreteness would require us to give each player
00 many distinct strategies and make the game table too large; therefore it is
simpler and better to regard such choices as continuously variable real numbers.
When players have such a large range of actions available, game tables become
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