
FROM WEAK TO STRONG, DEAD OR ALIVE?
AN ANALYSIS OF SOME MUTATION TESTING ISSUES.

M.R.Woodward and K.Halewood

Department of Computer Science, University of Liverpool,
P.O. Box 147, Liverpool, L69 3BX, U.K.

Abstract.
Despite the intrinsic appeal of the mutation approach to

testing, its disadvantage in being computationally expensive
has hampered its widespread acceptance. When weak muta-
tion was introduced as a less expensive and less stringent
form of mutation testing, the original technique was renamed
strong mutation. This paper argues that strong mutation test-
ing and weak mutation testing are in fact extreme ends of a
spectrum of mutation approaches. The term firm mutation
is introduced here to represent the middle ground in this

t spectrum . This paper also argues, by means of a number
of small examples, that there is a potential problem concem-
ing the criterion for deciding whether a mutant is ‘dead’ or
‘live’. A variety of solutions are suggested. Finally, practi-
cal considerations for a firm mutation testing system, with
greater user control over the nature of result comparison, are
discussed. Such a system is currently under development as
part of an interpretive development environment.

1. Introduction.
Mutation testing is akin to the technique of fault simu-

lation [8] used in the design and evaluation of circuits. This
technique is well established in the hardware community, but
use of the software analogue has been hindered by its per-
ceived expense and also, no doubt, by a shortage of com-
mercially available tools. The underlying philosophy of
mutation testing is the assumption that experienced program-
mers often write almost correct programs. Hence by con-
centrating on small perturbations of the original program it
is hoped that any surviving errors will be discovered.

The idea of strong mutation testing [1,2.3,4] is to
make many small changes, one at a time, to a given pro-
gram. Then an attempt is made to provide test data which
distinguishes each of these so-called ‘mutants’ from the ori-
ginal program. If a mutant gives a different outcome from
the original with some test data, it is said to be dead. Since

t The term fm mutation was in part inspired by the sequence of syn-
tactic positions in Algol 68, namely: strong, fm, meek and weak.

it has been distinguished from the original it need no longer
be considered. If on the other hand, a mutant gives the
same outcome as the original with the test data, then it is
said to be live. Further investigation should be able to
reveal whether the test data could be enhanced to ‘kill’ this
live mutant or whether no test data could ever be con-
structed to kill the mutant. In the former case the original
test data can be considered to have been inadequate and
hence has been improved by the mutation test. In the latter
case the mutant program is ‘equivalent’ to the original pro-
gram. A major disadvantage of strong mutation testing is
the potentially large number of mutants that could be con-
structed. Since each of the many mutants needs to be exe-
cuted to completion with test data in order for a comparison
to be made between the outcome of the mutant and the out-
come of the original, the method is computationally expen-
sive. Partly as an answer to this problem, the idea of weak
mutation testing was proposed.

The fundamental concept of weak mutation testing [7]
is to consider elementary program components and simple
errors in them. For example a simple error in a variable
reference component might be to reference the wrong vari-
able. One then seeks test data such that the component
would give a different outcome on at least one execution of
the component. For the case of a variable reference, the
value of the variable needs to be different from the values of
all other variables at that point in time, for the wrong vari-
able mutant to give a different outcome. Weak mutation is
not so expensive for two reasons. First, the necessary condi-
tions for test data to ‘kill’ mutant components can be deter-
mined in advance, so in fact mutants need never be con-
structed explicitly. Secondly, since individual executions of
components are being considered rather than the complete
execution of the entire program, many mutant components
can be considered in the same program test run. A disad-
vantage of weak mutation is that test data may be such that
it satisfies the weak mutation testing criteria for a certain
component yet under strong mutation of the same com-
ponent the test data is inadequate.

152
TH0225-3/88/oooO/0152$01.~ 0 1988 IEEE

In the next section the notion of firm mutation testing
is introduced as an intermediate form of mutation testing
between the existing techniques of weak mutation and strong
mutation.

2. Firm mutation testing.
The basic idea of mutation testing in all forms is to

make a small change in a program and compare outcomes of
original and changed versions. Yet, within this framework
there are a number of factors that may vary. These can
affect the way the technique is applied and the conclusions
that can be drawn. Consider statements such as those inside
loops that may be executed more than once in a test run. If
a change in such a statement is allowed to operate on at
least one execution, but possibly not every execution, the
following parameters may be altered and may give rise to
different mutation testing results:-

(i). tchange , the stage in the program execution at
which the change is made,

(ii). tundo , the stage in the program execution at
which the change is reversed and outcomes
are compared,

(iii). the precise nature of what is being compared.
It is important to note that, in what follows, it is considered
that at stage fundo , not only is the mutant change reversed,
but also the effect of executing with the change is reversed.
That is, execution continues from rchange with the original
unchanged version. The mechanism by which this might be
achieved is discussed later. The reason for requiring it is the
desirability of a framework which enables more than one
such change with a short lifetime to be made independently
in the same test run.

Weak mutation corresponds to the situation where
tcknge and tluldo are immediately before and after each sin-
gle execution of a component. Strong mutation corresponds
to the situation where tchge and tundo are before and after
execution of the entire program. Hence there are a range of
possible altematives where the duration of a change as
specified by tcknge and tundo , consists of some proper slice
of the program execution but at least as long as the execu-
tion of a single statement. There would be little point in
selecting an execution slice which did not include execution
of the statement under change. Firm mutation is thus the
situation where a simple error is introduced into a program
and which persists for one or more executions, but not for
the entire program execution.

To specify tchge and tundo it is necessary to relate
them to positions in the program text and indicate details of
which execution is being referred to, if more than one is
possible. In order to resolve problems of result comparison,

as explained later, it is envisaged that in firm mutation the
positions of tcknge and tundo will bracket a reasonably self-
contained region of program text. The specification of the
time span for the change could be stated in a variety of
ways, either in terms of component execution counts or in
terms of values of data objects in the program. Although it
would be possible to compare outcomes at some point other
than tundo , there would seem to be little merit in the extra
complication that ensues. However, a viable alternative to
having some fixed point tundo , would be to perform con-
tinuous monitoring of the program state after tchange and
then undoing the change at what would be the f i s t deviation
from the execution of the original. There is also the possi-
bility that fundo is never reached if the mutation introduces
an endless loop or infinite recursion for example. In such a
case first deviation from the original execution or an altema-
tive such as expiry of some appropriate time slice may be
essential to distinguish outcomes.

The next section is devoted to a discussion conceming
the entities that may be compared in mutation testing. Then
section 4 gives an extended example for illustrative purposes
and section 5 deals with some practical considerations for
implementing firm mutation.

3. Dead or alive?
Dependency on the entities being compared.

When attempting to provide automated assistance for
the strong mutation testing approach, a problem arises in
how to decide whether a mutant is dead or live. In [4]
DeMillo et al say a mutant is live if it "gives the same
resufrs" as the original. Similar phrases have been used
elsewhere and also indeed earlier in this paper. What enti-
ties should be compared to decide if the result is the same?

In many ways the simplest option is to capture in a file
the sequence of characters written to output devices and then
do a comparison between the output file of the original and
the output fie of each mutant. Lipton et al [9] recognised
that a character by character comparison might in some cir-
cumstances be too stringent. They proposed also the altema-
tive of comparing only non-blank characters.

This concentration on the output to compare outcomes
soon reveals inadequacies in the approach. Consider, for
example, the extreme, and admittedly unlikely, case of a
program which produces no output. All of its mutants
would remain live. At the other extreme, with sufficient
appropriate print statements inserted, every mutant output
can be made to appear different from the original and hence
dead. All of this means that mutants that get to the correct
final result by a different route from the original or perhaps
with a redundant computation can be classified as either
dead or alive, depending on the fineness of detail in any
intermediate printing.

Example 1:
Consider for example the Pascal version given in Fig-

ure 1 of the Fortran subroutine used by DeMillo et a1 in 141,
which determines the index of the f i t Occurrence of a max-
imum element in a one-dimensional integer array.

PROGRAM max-index (input, output);
CONST n = IO;
TYPE index = I..n;
VAR j, k, imax : index;

BEGIN
a : ARRAY[index] OF INTEGER;

FOR k := 1 TO n DO read (a[k]);
imax := 1;
FORj : = 2 T O n
DO BEGIN

IF aul > a[imaxl
THEN imax := j;
writeln (’First’, j, ’ elements scanned - ’,

‘ index of first maximum is’, imax)
END;
writeln (‘All elements scanned - ’,

’ index of f i i t maximum is’, imax)
END.

Figure 1. Pascal program “ax-index’.

The mutant with the loop index starting at 1 instead of
2 merely performs one extra redundant comparison of a[1]
with itself. Since the fiial outcome, as viewed by the value
of imax is unchanged, one would expect to classify this
mutant as live and in fact equivalent to the original. How-
ever, the effect of performing the extra time around the loop
with the write statement inside the loop would be to change
the overall output and any automatic output comparison
would classify the mutant as dead.

In weak mutation notional changes are made to com-
ponents and test data is required which would give a dif-
ferent outcome to the component when the change is present
from the outcome of the same component without the
change. The emphasis is entirely on components, which
may be but a small part of a program statement or construct.
Hence a mutated component may indeed give a different
outcome to the component on one execution, but the net
result of the statement as a whole on the same execution
may not be changed.

Example 2:
x := a**2 + b**2

Suppose on one execution of this statement a has the
value -1 and b has the value +1 and both of these values are

different from the values of all other variables at the current
instant. Then the weak mutation criterion is satisfied for the
references to both variable a and variable b. However, in
fact the two mutants obtained by replacing a by b and vice
versa will both store the value of 2 in the variable x, which
is the same as the value stored in the non-mutated version.

Example 3:
IF a < b THEN ...

Suppose on one execution of this statement a has the
value +I and b has the value +2 and both of these values are
different from the values of all other variables at the current
instant. Then once again the weak mutation variable refer-
ence criterion is satisfied for both variable references, yet
there may be many mutants obtained by replacing a or b by
other variables for which the predicate outcome is true and
so the THEN clause will be executed, exactly as in the non-
mutated version.

Example 4:
c := array [i I + array [j 1

In this expression the variable array indices i and j may
have values different from each other and indeed all other
variables on one execution. However, the values of array[i]
and arrayti] may in fact be identical. This means that the
mutants obtained by replacing i by j and j by i would make
no difference to the value of c from that of the non-mutated
version.

These small examples have shown that the looseness of
the definition about what entities are to be compared in
strong mutation may lead to ambiguity in the decision about
what is live and what is dead. On the other hand, although
weak mutation prescribes exactly what shall be compared,
namely the outcome of the component being notionally
mutated, there are many common circumstances when a dif-
ferent component outcome would not affect the outcome of
the statement in which the component is embedded, let alone
any global behaviour of the module or program.

4. Firm mutation example.
Consider the Pascal selection sort program given in

Figure 2, when run with the test data set having n = 4 and
array a = (1, 0, 1, 2). Note that the program sorts integer
array a into descending order. For each of i = 1, 2, ..., n-1,
it finds the index of the first maximum in the current array
slice a[i..n] and then swaps the maximum with element a[i].
The state of the given test data array as the program
proceeds is given in Table 1.

I54

PROGRAM sort (input, output);
CONST n = 4;
TYPE index = l..n;
VAR i, j , k, imax : index;

temp : INTEGER,
a : ARRAY[index] OF INTEGER;

FOR k := 1 TO n DO read (a[k]);
FOR i := 1 TO n-1
DO BEGIN

BEGIN

imax := i;
FOR j := i+l TO n
DO BEGIN

IF ab] > a[imax]
THEN imax := j

END;
temp := a[i];
a[il := a[imaxl;
a[imax] := temp

END;
writeln (’Sorted array is:’);
FOR k := 1 TO n DO write (a[k])

END.

Execution

i=l j=2
i=l j=3
i=l j=4
i=2 j=3
i=2 j=4
i=3 j=4

Figure 2. Pascal program ‘sort’.

Component outcome

Original Mutant
atil j
0 2
1 3
2 4
1 3
1 4
1 4

Table 1. Test data array as ‘sort’ proceeds.

In this section four different ways of applying the
mutation operator which replaces the only occurrence of au]
by j in the predicate of the conditional, will be considered.
The four ways correspond to selecting the positions of
tchange and tundo to encompass four different components, all
containing the change, but of gradually increasing scope.
Just for simplicity in this example, the times at which fchange
and tundo are considered to operate, are each entry into the
chosen component, and each subsequent exit from it respec-
tively. In other words, individual executions of the chosen
component are considered. In each case the outcome of the
original is compared with what the outcome would be for
the mutated component.

Component 1:
The variable reference au] is treated as a component

entity on its own with its outcome being none other than the
value of the item referenced.

Original Mutant /+I
There are six executions of the component and on each of
these the value of the component with the change would be
different from the value of the component without the
change as detailed below.

Live/Dead

dead
dead
dead
dead
dead
dead

Component 2:

so the original and the mutated components are as follows:
The component selected is the entire conditional clause

The outcome of this component is considered to be the value
of imax. As has been seen the value of j would be different
from aU] on each of the six executions. However, the value
of imax under the mutation would be the same as the origi-
nal on three executions as shown below.

Component outcome

LiveDead

dead
dead
live
live
dead
live

I55

Component 3:

so the original and mutated components are as follows:
The component selected is the entire loop with index j,

I ZND I END

Original I Mutant

FOR j := i+l TO n
DO BEGIN

IF aul > a[imaxl
THEN imax := j

END

FOR j := i+l TO n
DO BEGIN

IF j > a[imax]
THEN imax := j

END

Once again the component outcome is the value of imax, but
this time after execution of the entire loop. There are three
executions of this component corresponding to i = 1, 2, 3.
The first and last of these would give the same final value
of imax when mutated.

I Component outcome I
Execution Original Mutant

imax imax
Livemead

i= 1 live
i=2 I I dead
i=3 4 4 live

Component 4:

index i.
The component selected is the entire main loop with

Original

FOR i := 1 TO n-1
DO BEGIN

imax := i;
FOR j := i+l TO n
DO BEGIN

IF au] > a[imax]
THEN imax := j

END;
temp := a[i];
a[i] := a[imaxl;
a[imax] := temp

Mutant

FOR i := 1 TO n-1
DO BEGIN

imax := i;
FOR j := i+l TO n
DO BEGIN

IF j > a[imax]
THEN imax := j

END;
temp := a[i];
a[i] := a[imax];
a[imax] := temp

The component outcome is the final contents of array a
which would be different as indicated below if the mutant
were executed.

Component outcome

i=1,2,3 I 2 1 1 0 2 1 0 1 I dead

The mutation results for the four components which
have just been considered, are summarised in Table 2. Finn
mutation of the first component is rather similar to, though
not quite the same as, weak mutation. The distinction is that
for a variable reference to satisfy the weak mutation testing
criteria there should exist at least one execution of the com-
ponent for which all variable replacements would give a dif-
ferent outcome. Situations 2 and 3 are clear examples of
f i i mutation and situation 4 is basically strong mutation of
the entire program.

It can be seen from this example that f i i mutation
does indeed bridge the gap between weak and strong muta-
tion and that the same change may remain live under f i
mutation yet under both weak and strong mutation, the
change is dead with the same test data. The converse is also
true, though not demonstrated by this example, namely that
a change may be dead under f m mutation testing but live
under weak and strong mutation with the same test data.

5. Firm mutation practical considerations.
There seem to be several approaches which a f i i

mutation testing aid might employ in its implementation.
One technique might be to create a physical copy of the
selected region with the change and execute this in parallel
with the original. A rendezvous would be required on exit
from the region so that comparison of outcomes could take
place and the result be recorded. However, in this way, an
original test execution could proceed almost unimpeded. An
altemative technique would be to execute the component
with the change, save the outcome, perform reverse execu-
tion to the start of the component, execute the original
without the change, compare outcomes and continue normal
execution. The reverse execution could be performed by
restoring the state of the program to that saved at point
tchange . Such a scheme could be handled most naturally in
an interpretive environment where tchange and tmd0 would in
many ways resemble traditional debugging breakpoints.
This contrasts with the ‘batch’ mode of operation to be
found in the mutant execution phase of several mutation
tools which assist either with strong mutation testing [3] or
weak mutation testing [5].

In an interpretive environment, firm mutation would
offer the user a greater degree of control in a number of
ways including:

(i) the code selection process,

(ii) result comparison,
(iii) mutant operator selection.

Each of these is now considered in turn.

I56

Table 2.
Summary of firm mutation outcomes.

i=l j=2 dead
j=3 dead
j=4 dead

Execution /.. Component

IF au] > a[imax]
THEN imax := i DO ... DO ...

FOR j := i+l TO n FOR i := 1 TO n-1

live
dead

dead dead

live live

5.1 The code selection process

Traditionally strong mutation has been applied to a
whole program or to a module (SUBROUTINE or pro-
cedure) within a program. The mutation of modules pro-
vides a clue as to how to tackle smaller structural areas. By
considering a selected portion of a program as a headerless
procedure it is possible to limit mutations to the selected
area. Selectable regions can be any program structure or
sequence of structures which, when surrounded by an ima-
ginary begin - end pair, can be thought of as forming an
inline procedure. Static data flow analysis can be used to
construct a genuine procedure header detailing the interface
between it and the surrounding area of program. Values for
input parameters could be provided as test data, if f i i
mutation of the component is being performed in isolation.
Values of output parameters can be used for result com-
parison.

It should also be possible to create subareas within the
selected area that are mutation immune. These correspond
to sections which have been tested thoroughly and which are
masked out for the current mutation activities. The main
benefit of selectable program areas for the mutation process
is that mutation testing can proceed on partially completed
programs or modules. That is to say mutation testing
becomes part of the development process.

5 2 Result comparison.
Once a region of program text has been selected and

the interface has been determined, those objects that are
either defined or referenced and defined, can be used in the
result comparison. For example, when the ‘FOR j’ loop is
selected in the sort example program used in section 4, the
input and output parameters are as follows:

input: i, imax, n, a
output: imax

The variable imax being referenced and then defined appears
as both an input and an output parameter. Being the sole
output parameter, it alone is used for outcome comparison to
decide whether an execution of the component is live or
dead.

It may be that the user may wish to select just a subset
of output parameters for result comparison. For example,
when the ‘FOR i’ loop is selected in the sort program, both
of the variables temp and imax are defined objects, but both
can be considered as local to the loop and hence not needed
in the result comparison. Altemative candidates for result
comparison could include:

data definition trace,

control flow trace,
actual physical output,

data reference and definition trace,

or perhaps a combination of these. The trace output com-
parison may be useful for giving a clearer understanding of
exactly how the execution of the mutant differs from the ori-
ginal. However, it gives more scope for distinguishing
between mutant and original and so, in that sense, may be
less interesting. A very similar point has been made by
Hamlet [6] in describing a testing system to determine
expression substitutions which are ‘simpler’ than the origi-
nal. He stated that few live substitute expressions are found
which surprise the programmer, when exact equivalence of
detailed runtime history is demanded.

5.3 Mutant operator selection.

It would be possible to guide the user in what mutant
operators to select based upon frequency of applicability in
the selected region or the range of influence of a change.
Further restrictions which the user might enable are those
which depend upon scope. In variable replacement, for

I57

example, the user might wish to state whether a substitution
candidate must be chosen from the selected region, an
enclosing range or the global range.

6. Conclusions.
When the technique of weak mutation testing was pro-

posed, its shortcomings were explicitly pointed out. Basi-
cally, what is womsome with weak mutation is that different
components (data access, data store, relational expression
etc.) of the same program statement or construct can give
different outcomes from the original on different executions
when considered under the notional mutant change, yet
somehow events can combine to give the overall correct out-
come to the statement concemed or indeed to the entire pro-
gram execution. Hence to have achieved complete weak
mutation testing can give a false sense of security. Although
strong mutation does not suffer this problem, it does insist
on complete program executions and hence is expensive to
perform.

mutation can be summarised as follows:
The advantages of f i mutation over weak and strong

Firm mutation is more mansparent than weak
mutation and can insist that mutants cause a distin-
guishable difference at the statement level. Since
actual changes are made to program statements it
is easier to identify what mutants have been
attempted and what difference in outcome resulted.

Firm mutation is less restricted than weak mutation
in terms of mutation operators and components to
which they may be applied. As yet, weak muta-
tion has been concemed solely with certain funda-
mental low level components.
Firm mutation is potentially less expensive than
strong mutation in that partial executions of
mutated components are performed rather than
complete executions.
Firm mutation provides more control than both
weak and strong mutation over result comparison.
The user can in effect specify what shall be
deemed sufficient to kill a mutant.

Of course there are disadvantages with firm mutation. These
include:

It is not easy to relate what has been achieved in
deriving test data which kills mutants using firm
mutation testing, to either weak or strong mutation
test data adequacy.

There is no obvious systematic basis on which to
select the areas of program code for firm mutation
testing.

Nevertheless, f i mutation, as proposed in this paper,
does combine the best aspects of weak and strong mutation.
It can be viewed either as strong mutation, but using any
partial execution of program components so that many
mutants can be considered in the same test run, or as weak
mutation, but using components with more extensive scope.
It is difficult to imagine f i i mutation being applicable in
anything other than an interpretive system. The authors are
currently building facilities of the sort described into a
comprehensive programming environment. It is hoped that,
once experience has been gained, that the importance of the
advantages and disadvantages can be assessed.

Acknowledgement.
K.Halewood wishes to acknowledge the United King-

dom SERC for the award of a Research Studentship.

References.
T.A.Budd, R.A.DeMillo, R.J.Lipton and F.G.Sayward,
"Theoretical and empirical studies on using program
mutation to test the functional correctness of programs",
7th ACM Symposium on the Principles of Programming
Languages, Las Vegas, Jan. 1980.
T.A.Budd, R.J.Lipton, R.A.DeMillo and FGSayward,
"Mutation Analysis", Technical Report No. 155,
Department of Computer Science, Yale University,
April 1979.
T. A.Budd, R. J.Lipton, F.G.Sayward and R. A.DeMillo,
"The design of a prototype mutation system for pro-
gram testing", National Computer Conference, AFIPS
Proceedings, Vol. 47, pp. 623-627, 1978.
R.A.DeMillo. R.J.Lipton and F.G.Sayward, "Hints on
test data selection: help for the practicing programmer",
IEEE Computer, Vol. 11, No. 4, pp. 34-41, April 1978.
M.R.GUgis and M.R.Woodward, "An integrated system
for program testing using weak mutation and data flow
analysis", Proceedings of the 8th International Confer-
ence on Software Engineering, pp. 313-319, IEEE
Computer Society Press, London, August 1985.
R.G.Hamlet, "Testing programs with the aid of a com-
piler", IEEE Trans. Sofmare Engineering, Vol. SE-3,

W.E.Howden, 'Weak mutation testing and complete-
ness of test sets", IEEE Trans. Software Engineering,

Y.Levende1 and P.R.Menon, "Fault simulation",
Chapter 3, pp. 184-264 in "Fault-tolerant computing:
theory and techniques", Vol. 1, Editor D.K.Pradham,
Prentice-Hall, 1986.
R.J.Lipton and F.G.Sayward, "The status of research on
program mutation", Digest for the Workshop on
Software Testing and Test Documentation, Fort Lauder-
dale, Florida, pp. 355-372, Dec. 1978.

NO. 4, pp. 279-290, July 1977.

Vol. SE-8, NO. 4, pp. 371-379, July 1982.

I58

