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Abstract Intestinal microbial community structure is

driven by host genetics in addition to environmental factors

such as diet. In comparison with environmental influences,

the effect of host genetics on intestinal microbiota, and

how host-driven differences alter host metabolism is

unclear. Additionally, the interaction between host genetics

and diet, and the impact on the intestinal microbiome and

possible down-stream effect on host metabolism is not

fully understood, but represents another aspects of inter-

individual variation in disease risk. The objectives of this

study were to investigate how diet and genetic background

shape microbial communities, and how these diet- and

genetic-driven microbial differences relate to cardiometa-

bolic phenotypes. To determine these effects, we used the 8

progenitor strains of the collaborative cross/diversity out-

bred mapping panels (C57BL/6J, A/J, NOD/ShiLtJ, NZO/

HILtJ, WSB/EiJ, CAST/EiJ, PWK/PhJ, and 129S1/SvImJ).

16s rRNA profiling of enteric microbial communities in

addition to the assessment of phenotypes central to car-

diometabolic health was conducted under baseline

nutritional conditions and in response to diets varying in

atherogenic nutrient (fat, cholesterol, cholic acid) compo-

sition. These studies revealed strain-driven differences in

enteric microbial communities which were retained with

dietary intervention. Diet–strain interactions were seen for

a core group of cardiometabolic-related microbial taxa. In

conclusion, these studies highlight diet and genetically

regulated cardiometabolic-related microbial taxa. Further-

more, we demonstrate the progenitor model is useful for

nutrigenomic-based studies and screens seeking to inves-

tigate the interaction between genetic background and the

phenotypic and microbial response to diet.

Introduction

The intestinal microbiome is associated with susceptibility

to and development of several chronic metabolic diseases

including diabetes (Larsen et al. 2010), obesity (Turnbaugh

et al. 2008), and cardiovascular disease (Karlsson et al.

2012). Negative changes in host adiposity, metabolic syn-

drome status, and insulin sensitivity can be directly induced

by microbial dysbiosis (Ridaura et al. 2013; Vijay-Kumar

et al. 2010; Vrieze et al. 2012). Considering the inter-

individual variability at the level of the microbiome

(Eckburg et al. 2005; Qin et al. 2010), detailed studies

integrating the intestinal microbiome with disease risk

complements current genome wide association studies and

other efforts seeking to understand heterogeneity in health

and disease status. We, among others (Kaput 2008; Perez-

Martinez et al. 2013) recognize that a ‘one size fits all’

approach to optimal nutritional and health status is not

addressing the current epidemics of obesity, cardiovascular

disease, and diabetes. In particular, understanding how
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microbial diversity and specific microbial species affect

clinical phenotypes and risk of disease is necessary.

Research models which simultaneously permit both die-

tary- and genetic-driven perturbations are an essential step

in developing personalized approaches to nutrition and

medicine.

As the role of genetics in driving disease-susceptibility

is being more fully elucidated, the influence of genetic

background on the regulation of microbial diversity is also

becoming established. Several groups have reported that

enteric microbial composition is a heritable trait (Tims

et al. 2013; Turnbaugh et al. 2010), although results from

twin studies have been discordant (Turnbaugh et al. 2009).

However, studies using mouse genetic panels, as well as

those exploiting single-gene mutations, have consistently

shown an effect of host genetics on intestinal microbial

community structure (Benson et al. 2010; Kovacs et al.

2011; McKnite et al. 2012; Parks et al. 2013a; Spor et al.

2011; Toivanen et al. 2001), and may have increased power

to detect genotype-driven microbial differences, as murine

studies allow for tight control over environmental factors

(Benson et al. 2010).

In addition to the influence of genetic background, sig-

nificant advances have been made in understanding envi-

ronmental determinants of microbial structure including

maternal effects, cage mates, gender, and diet (Spor et al.

2011). As a source of essential nutrients for the intestinal

microbiota, host-consumed diet is an important determi-

nant of microbial community structure in the intestine, and

dynamic changes in both mouse and human microbial

populations occur in response to dietary intervention (Spor

et al. 2011). Although environmental influences have a

strong effect, and can be dominant in certain cases, geno-

type–environmental interactions have been shown to con-

tribute to microbial diversity (Parks et al. 2013a), as well as

risk of disease (Parks et al. 2013a; Srinivas et al. 2013).

It is not known how host genotype-driven differences in

the intestinal microbiome are related to host cardiometa-

bolic phenotype. Using a segregating panel of mice phe-

notyped for clinically relevant metabolic and atherogenic

makers, the objectives of this study were to identify host-

genetic-derived differences in the intestinal microbiome

and determine how these differences are related to host

phenotype under baseline nutritional intake, and following

consumption of an atherogenic diet. Recently, a ‘‘multi-

parent advanced generation inter-cross’’ (MAGIC) popu-

lation was developed from 8 inbred mouse strains, and is

referred to as the diversity outbred (DO) mouse population

(Churchill et al. 2012). The DO mice are mosaics of

C57BL/6J, A/J, NOD/ShiLtJ, NZO/HILtJ, WSB/EiJ,

CAST/EiJ, PWK/PhJ, and 129S1/SvImJ, and these mice

complement another large endeavor called the collabora-

tive cross (CC)(Aylor et al. 2011). These eight founder

strains of the CC/DO are genetically diverse and capture

*90 % of the known genetic variation in the mouse

(Roberts et al. 2007). Here we present data investigating

the microbial community diversity in the CC/DO founder

stains. Discriminatory microbiota are related to cardio-

metabolic phenotypes, and the microbial and phenotypic

response to dietary factors is investigated and discussed.

We demonstrate that this model is useful for nutrigenomic-

based studies seeking to investigate the interaction between

genetic background, and the phenotypic and microbial

response to diet.

Materials and methods

Mouse handling

All experiments were approved by the Institutional Animal

Care and Use Committee (IACUC) at the North Carolina

Research Campus (NCRC). All mice used in these studies

were female. Mice were purchased from Jackson Labora-

tories (Bar Harbor, ME, USA) at 4 weeks of age. Mice

were group housed by strain (2 cages/strain, 4 animals/

cage) under standard conditions (12 h light:dark, temper-

ature- and humidity-controlled conditions), and received ad

lib access to water and a nutritionally complete purified

synthetic diet containing 9.4 % kcal from fat, 75.9 % kcal

from carbohydrate and 14.7 % kcal from protein (AIN-

93M; (#D10012M); Research Diets Inc, New Brunswick,

NJ, USA). After 4 weeks on AIN-93 M, mice were ran-

domized to diet (n = 4/diet group) for a further 16 weeks

as follows: (1) a defined atherogenic diet, containing 20 %

kcal as fat, 20 % kcal as protein, 40 % kcal from carbo-

hydrate, 1.25 % cholesterol, and 0.5 % cholic acid,

(#D12109C, Research Diets Inc, New Brunswick, NJ,

USA), abbreviated to high fat cholic acid (HFCA) diet; or,

(2) a low-fat cholesterol-containing diet without cholic acid

(10 % kcal as fat, 20 % kcal as protein, 70 % kcal as

carbohydrate, 1.25 % cholesterol) (#D12104C, Research

Diets Inc, New Brunswick, NJ, USA), abbreviated to low-

fat (LF) diet. The protein sources (casein and L-cystine)

were consistent across diets, as were sources of carbohy-

drate (cornstarch, maltodextrin, sucrose). Additionally, the

type and amount of polysaccharide (cellulose) were com-

parable between diets. The source of fat (soybean oil for

AIN-93M versus soybean oil plus cocoa butter for HFCA

and LF) varied between the diets. The increased levels of

cholic acid, cholesterol, and dietary fat were selected to

induce hyperlipidemia and atherosclerosis (Getz and

Reardon 2006). A 16 weeks dietary intervention is suffi-

cient to observe aortic lesion formation (Hyman et al.

1994).
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Body composition

Body composition (proportion of fat mass) was assessed

using EchoMRITM-100H (Echo MRI LLC, Houston, TX,

USA).

Plasma metabolic markers

Mice were fasted for 4 h before blood draw via retro-orbital

bleed. Blood was collected into EDTA-containing tubes and

plasma separated by centrifugation at 10,0009g for 10 min.

Plasma triacylglycerol (TAG), total cholesterol, and glucose

were measured by Biolis 24i Analyzer (Carolina Liquid

Chemistries, Winston-Salem, NC). Insulin was quantified

using the Alpco Mouse Ultrasensitive Insulin ELISA assay

(Alpco, Salem, NH); samples and controls were run in

duplicate, and optical densities were measured at 450 nm

using a microplate reader and analyzed with Gen5 Data

Analysis Software (Bio-Tek, Winooski, VT, USA). Plasma

TMAO quantification was performed at the UNC Chapel Hill

NORC Choline Metabolite Core using liquid chromatogra-

phy-stable isotope dilution-multiple reaction monitoring

mass spectrometry (LC-SID-MRM/MS). Briefly, plasma

was extracted with three volumes of acetonitrile spiked with

internal standards TMAO-d9 (DLM-4779-1, Cambridge

Isotope Laboratories), incubated on ice for 10 min, and

centrifuged at 15,0009g for 2 min. Supernatants were then

collected for instrumental analysis. Chromatographic sepa-

rations were performed on an Atlantis Silica HILIC 3 lm

4.6 9 50 mm column (Waters Corp, Milford, USA) using a

Waters ACQUITY UPLC system. The column was heated to

40 �C, and the flow rate was maintained at 1 mL/min. The

gradient was 5 % A for 0.05 min, to 15 % A in 0.35 min, to

20 % A in 0.6 min, to 30 % A in 1 min, to 45 % A in

0.55 min, to 55 % A in 0.05 min, at 55 % A for 0.9 min, to

5 % A in 0.05 min, at 5 % A for 1.45 min, where A is 10 %

acetonitrile/90 % water with 10 mM ammonium formate

and 0.125 % formic acid and B is 90 % acetonitrile/10 %

water with 10 mM ammonium formate and 0.125 % formic

acid. TMAO and its corresponding isotope were monitored

on a Waters TQ detector using characteristic precursor-

product ion transitions: 76 ? 58 for TMAO, 85 ? 66 for

TMAO-d9. Concentrations of each metabolite in samples

were determined from its calibration curve using peak area

ratio of the metabolite to its isotope.

Microbiome Sample Processing

At baseline (on the AIN-93 diet), the mice were singly

housed for 24-h prior to fecal collection. For the final 4-h

of this period, mice were transferred to fresh bedding, food

was removed and feces were collected from each cage at

the end of this 24-h period for use in down-stream

microbiome studies. After 16 weeks of diet treatment, mice

were fasted for 4 h, blood samples collected and mice were

euthanized by isoflurane overdose and cecal samples col-

lected. Frozen (-80 �C) fecal samples (1 pellet per animal)

or cecal contents (0.5 mg per animal) were homogenized in

lysis buffer (TissueLyser LT; Qiagen, Germantown, MD,

USA) (50 oscillations/second) for 120 s. DNA was

extracted from samples using the Maxwell� 16 Tissue

DNA Purification Kit (Promega, Madison, WI) on a

Maxwell� 16 Instrument (Promega, Madison, WI, USA).

One StepTM PCR Inhibitor Removal Kit (Zymo Research

Corp., Irvine, CA, USA) was used to remove contaminants

which may inhibit downstream PCR. Isolated DNA was

stored at -20 �C until further use. Microbial community

composition was assessed by 16s rRNA gene sequencing.

Briefly, DNA encoding the V4 region of the 16s rRNA

gene was amplified using bar-coded fusion primers (F515/

R806) (Caporaso et al. 2012). The reverse PCR primer is

barcoded with a 12-base error correcting Golay code to

facilitate multiplexing, and both PCR primers contain

sequencer adapter regions [for full primer details see (Ca-

poraso et al. 2012)]. Briefly, genomic DNA samples

(10 ng/reaction) were amplified in triplicate (KAPA HiFi

PCR Kit, KAPA BioSystems, Woburn, MA, USA) with

10 lM final primer concentration. Reactions were held at

95 �C for 3 min to denature DNA, followed by 35 ampli-

fication cycles of 94 �C for 30 s, 50 �C for 60 s, and 72 �C

for 90 s, with a final 10 min extension at 72 �C. Each set of

triplicate amplicons were cleaned using the Wizard�

SVGel and PCR System (Promega, Madison, WI, USA),

and quantified using Qubit dsDNA HS Assay kit (Invitro-

gen, Oregon, USA). PCR products were run on an Expe-

rionTM 1 K DNA Chip (Bio-Rad, Hercules, CA, USA) to

assess DNA quality and confirm PCR product size. A

composite sample for sequencing was created by combin-

ing equimolar ratios of amplicons from the individual

samples. This amplicon mixture was sequenced

(2 9 250 bp paired end) on a MiSeq� System (Illumina;

San Diego, CA, USA).

16s ribosomal RNA sequencing-based analysis

of intestinal microbial community structure

Raw sequence data were analyzed using Quantitative

Insights Into Microbial Ecology (QIIME) (Caporaso et al.

2010b) version 1.8.0. Forward and reverse paired-end reads

were stitched with the ea-utils fastq-join program (http://

code.google.com/p/ea-utils/) through QIIME. 150 bp was

set as the minimum overlap, and the effect of stitching

error stringency was assessed by varying the maximum

permitted error (0, 1, 3, 5 %). After paired-end stitching,

the raw fastq sequence file was demultiplexed in QIIME,

wherein each read meeting quality criteria (Phred score
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[25), was assigned to a sample ID. Sequences were then

clustered into operational taxonomic units (OTUs) de novo

using uclust (Edgar 2010), and a similarity threshold of

97 %. Representative sequences (most abundant sequence

in OTUs) were chosen, aligned to GreenGenes Core ref-

erence alignment (DeSantis et al. 2006) using PyNAST

(Caporaso et al. 2010a). Taxonomic classification was

assigned with Ribosomal Database Project (RDP) Classi-

fier 2.2 (Wang et al. 2007) through QIIME, and a phylo-

genetic tree built using FastTree 2.1.3 (Price et al. 2010).

The resulting biom-formatted OTU table was filtered to

remove singletons, and rarefied to an even sampling depth

of 51,000 reads/sample. Assessments of alpha-diversity

(number of observed species, Shannon Diversity Index,

GINI co-efficient) were conducted in QIIME. The biom-

formatted OTU table, mapping file, and phylogenetic tree

were imported into R Studio (v 3.0.1) via Phyloseq

(McMurdie and Holmes 2013), and beta-diversity assessed

by UniFrac (Lozupone and Knight 2005). Principle Co-

Ordinates Analysis (PCoA) was applied to reduce the

dimensionality of the resulting distance matrix. To deter-

mine the influence of strain and diet on global microbial

communities, UniFrac distance matrices were passed to the

R package Vegan (Jari Oksanen et al. 2013) for analysis of

similarity (ANOSIM), and Permutational Multivariate

Analysis of Variance (PERMANOVA). Hierarchical clus-

tering (Euclidean distance) was conducted using phyla

level relative abundance data in R Studio. To identify

discriminative microbial features between strains, relative

abundance data were analyzed using LDA effect size

(LEfSe)(Segata et al. 2011), an algorithm developed for

high-dimension data to identify features which characterize

biological conditions. LEfSe was implemented through the

Huttenhower Research Group Galaxy instance (http://hut

tenhower.sph.harvard.edu/galaxy/). Heritability was calcu-

lated as described by Hegmann and Possidente using the

following formula h2 ¼ 0:5Va=ð0:5Va þ VeÞ where Va is

the additive genetic variance and Ve is the average envi-

ronmental variance (Hegmann and Possidente 1981).

Evaluating relationships between 16s-based phylogeny,

predicted function and metabolic phenotypes

Correlations between relative abundance of individual taxa

and cardiometabolic phenotypes were assessed by spearman

rho. All p values were adjusted using false discovery rate

(FDR) of 10 % using the q value package (Storey 2002) in the

R programing environment. To predict metagenomic func-

tional content from our 16s rRNA survey, the software

package Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States (Langille et al. 2013)

(http://picrust.github.io/picrust/) was used. This computa-

tional approach exploits the relationship between phylogeny

and function by combining 16s data with a database of ref-

erence genomes (GreenGenes) to predict presence of gene

families. Briefly, OTUs were picked with a closed reference

protocol against GreenGenes v 13.5 through QIIME. The

resulting biom-formatted OTU table was uploaded to Galaxy

(http://huttenhower.sph.harvard.edu/galaxy/) for 16s copy

number normalization and metagenomic prediction. Func-

tional predictions were exported as KEGG orthologs.

Results

Sequencing depth and paired-end stitching optimization

To determine the impact of stitching error stringency, and

sequencing depth on global measures of community structure,

and to fine-tune parameters for down-stream analysis, paired-

end (2 9 250) Illumina MiSeq reads were stitched with

varying levels of maximum permitted error (0, 1, 3, and 5 %)

from mice fed the purified synthentic diet (AIN-93A). OTU

tables resulting from the four levels of stitching error strin-

gency were rarefied at multiple sequencing depths

(1,000–96,000 reads/sample in steps of 5,000 reads/sample; 3

OTU tables generated per rarefaction point). This analysis

highlighted a plateau in the number of taxa identified from a

sequencing depth of approximately 50,000 reads/sample

onward (Supplementary Fig. 1). Hence for all down-stream

analyses, a rarefaction depth of 51,000 reads/sample was

deemed acceptable. The numbers of taxa identified at each

taxonomic ranking were comparable between stitching strin-

gency levels, although a drop-off for maximum permitted

error of 0 and 1 % was seen, likely due to the reduction in

sample size which occurred with increased stringency at

higher sequencing depths. Decreasing permitted stitching

error increased Shannon Diversity Index, a measure of alpha-

diversity, which is due at least in part to a decrease in evenness

(as assessed using the GINI coefficient) as permitted error in

stitching decreased (Supplementary Fig. 1). Based on these

comparisons, down-stream analyses were conducted using a

maximum permitted error of 3 %, and a sequencing depth of

51,000 reads/sample. These parameters provided the greatest

compromise between maximizing diversity in the dataset and

minimizing sample size drop-off, while permitting the lowest

possible error rate during paired-end read stitching.

Cardiometabolic phenotypes are differentially

influenced by genetic background and atherogenic

feeding

Mice are effective models of cardiovascular disease

(Reardon and Getz 2001), and thus we quantitated these

mice for the following traits associated with cardiovascular

disease (Go et al. 2013) which we refer to as
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cardiometabolic traits: body weight, adiposity, and plasma

levels of lipids, insulin, glucose and trimethylamine

N-oxide (TMAO). Differences in cardiometabolic risk

factors between strains of mice fed purified synthetic diet

(AIN-93 M) are shown in Fig. 1. Significant differences

were seen across strains for body weight (ANOVA

F = 42.31, p \ 0.0001), % lean mass (ANOVA

F = 97.09, p \ 0.0001), % fat mass (ANOVA F = 34.11,

p \ 0.0001), total cholesterol (ANOVA F = 9.7, p \
0.0001), plasma TAG (ANOVA F = 4.6, p \ 0.0001),

TMAO (ANOVA F = 9.12, p \ 0.0001), fasting plasma

glucose (ANOVA F = 7.09, p \ 0.0001), fasting insulin

(ANOVA F = 13.96, p \ 0.0001), and HOMA-IR

(ANOVA F = 7.5, p \ 0.0001) (Fig. 1). These plasma

lipid levels and adiposity for the inbred strains in our study

are comparable to previously reported studies at the Mouse

Phenome Database (www.phenome.jax.org) (Grubb et al.

2014). Body weight was comparable to Paigen 1; total

cholesterol and TAG were comparable to Paigen 2, and

adiposity measures were comparable to Naggert 1.

Strain- and diet-dependent changes in cardiometabolic

related traits (cholesterol, TAG, adiposity, insulin, and

TMAO) were evident after 16 weeks of the diet treatment

(Fig. 2), highlighting the influence of genetic background

on diet-driven susceptibility to disease. A significant strain

effect (F = 11.81, p \ 0.0001) was seen for percentage fat

mass change and glucose (F = 8.42, p \ 0.0001) (Sup-

plementary Fig. 2). Significant strain and diet effects

(HFCA compared to LFCC) were seen for change in total

plasma cholesterol concentrations (F = 2.56, p = 0.67;

F = 7.34, p = 0.009, strain and diet, respectively). A

significant strain (F = 8.62, p \ 0.0001) and strain–diet

interaction (F = 2.87, p = 0.017) was seen for plasma

TMAO change from baseline (Supplementary Fig. 2).

A B C

D E F

G H I

Fig. 1 Cardiometabolic phenotypes between inbred mouse strains

fed a synthetic diet. Inbred mouse strains were purchased from

Jackson Laboratories at *6 weeks, and placed on purified synthetic

diet (AIN-93). After 2 weeks, animals were weight, body composition

assessed by MRI and fasting plasma samples collected. Differences in

bodyweight (a), and body composition by MRI are depicted as

percentage fat mass (b), percentage of lean mass (c). Fasting plasma

levels of cholesterol (d), triglycerides (e) and TMAO (f) were

quantitated. Measures of insulin sensitivity were assessed and

included plasma glucose (g), insulin (h) and calculated HOMA-IR

(i). p-value for ANOVA \0.05 for all phenotypes. Significant

between-strain differences identified with Tukey’s HSD post hoc

test. Strains not sharing letter are significantly different (p \ 0.05)
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2-way ANOVA of post-diet phenotypes revealed a signif-

icant independent effect of strain only on final body weight

(F = 109.598, p \ 0.0001), % fat mass (F = 94.54,

p \ 0.0001), % lean mass (F = 91.17, p \ 0.0001), glu-

cose (F = 3.60, p \ 0.0038), insulin (F = 7.65,

p \ 0.0001), and HOMA (F = 7.53, p = 0.0001). A sig-

nificant main effect of diet only was seen for total plasma

fasting cholesterol (F = 8.85, p = 0.0047). Regulation of

plasma TMAO levels is complex and is highly influenced

by both the effect of genetic background of the mice

(F = 12.97, p \ 0.0001) and in response to dietary treat-

ment (F = 6.32, p = 0.0159) (Fig. 2f). We observed

a significant strain–diet interactions for plasma TMAO

(F = 2.96, p 0.0129) (Supplemental Fig. 2E).

Microbial community structure is driven by host

genetic background

The baseline V4 amplicon library contained 5,490,587

reads after quality filtering (average 103,596/sample;

range = 128–285,838 reads/sample). 3 samples were

removed from the dataset as assigned reads fell below the

rarefaction point of 51,000 reads/sample. The final

A B C

D E F

G H I

Fig. 2 Atherogenic diets induce strain-dependent differences in

cardiometabolic phenotypes. Following 16 weeks on either a high-

fat cholic acid (HFCA; open bars) diet or low-fat cholesterol-

containing diet without cholic acid (LFCC; shaded bars). Differences

in Bodyweight (a), and body composition by MRI are depicted as

percentage fat mass (b), percentage of lean mass (c). Fasting plasma

levels of cholesterol (d), triglycerides (e) and TMAO (f) were

quantitated. Measures of insulin sensitivity were assessed and

included plasma glucose (g), insulin (h) and calculated HOMA-IR

(i). Significant within-strain differences between diet groups assessed

by independent t-tests. *p \ 0.05, **p \ 0.01, ***p \ 0.001,

****p \ 0.0001
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sequence library comprised 42,130 assigned OTUs which

collapsed to 82 bacterial taxa.

To explore the influence of genetic background on alpha-

diversity under baseline nutrient intake, Shannon diversity

index as well as the number of observed OTUs was calcu-

lated. This analysis revealed a significantly reduced diversity

in PWK/PhJ samples compared with all other mouse strains

(Supplementary Fig. 3). GINI coefficient, a measure of

evenness in abundance distribution across OTUs within a

sample, was modestly but significantly increased in PWK/

PhJ samples, suggesting a more even distribution of abun-

dances among bacterial taxa in the PWK/PhJ intestinal

environment. Lower levels of alpha-diversity have been

related to adverse metabolic phenotypes and reduced

responsiveness to weight loss interventions (Cotillard et al.

2013; Le Chatelier et al. 2013).

To determine the impact of strain on intestinal phylotypic

diversity, UniFrac—a measure of phylogenetic similarity—

was performed. Principle Coordinates Analysis (PCoA) of

unweighted UniFrac distances revealed a strong effect of

host genetics on gut microbial community membership. A

distinct cluster consisting of C57BL/6J samples and a second

cluster consisting of the wild-derived strains PWK/PhJ and

WSB/EiJ were observed, with the remaining mouse strains

clustering more closely in a third group (Fig. 3a and b).

Analysis of Similarity (ANOSIM) on this UniFrac distance

matrix revealed a significant difference between mouse

strains (r = 0.868, p = 0.001). PERMANOVA confirmed a

A

B

C

D

Fig. 3 Global regulation of intestinal microbiome communities by

genetic background in mice fed a purified synthetic diet. (a) Principle

coordinates analysis (PCoA) of unweighted uniFrac. (b) Principle

component 1 of unweighted UniFrac. (c) Phyla level relative

abundance data. (d) Linear discriminant analysis with effect size

(LEfSe) identified differentially abundant taxa between mouse strains.

Taxa enriched in A/J (yellow), C57Bl6/J (gray), 129S1/SvlmJ (pink),

NOD/ShiLtJ (dark blue), NZO/HiLtJ (light blue), CAST/EiJ (green),

PWK/PhJ (red), and WSB/EiJ (purple) meeting LDA significant

threshold [2 are shown

A. O’Connor et al.: Host genetics influences microbial response to diet 589

123



significant effect of mouse strain on microbial community

structure (PERMANOVA R2 = 0.33, p \ 0.0001).

At a phylum level, the abundance of Firmicutes was

dominant across inbred strains (range 61.8–95.4 %)

(Fig. 3c), as has been described previously (Spor et al.

2011). Bacteroidetes was prominent in all samples (range

4.2–24.1 %). Gram-positive Actinobacteria were enriched

in C57BL/6J samples only (6.8 % vs \0.2 % in all other

samples), and the relatively recently described phylum,

Verrucomicrobia, was enriched in PWK/PhJ and NOD/

ShiLtJ only (12.9 and 14.1 % relative abundance respec-

tively, vs \0.2 % in all other mouse strains). Other phyla

detected at low abundance (\1 %) were Thermi, Teneri-

cutes, and Proteobacteria. Together these phyla comprised

0.003–0.56 % of total community composition (Fig. 3c).

Linear Discriminant Analysis (LDA) was used to iden-

tify differentially abundant taxa between groups of inbred

strains (Fig. 3d). Feces of C57Bl/6J animals was enriched

for Actinobacteria (class) and Tenericutes (phylum)

(Fig. 3d), and NOD/ShiLtJ samples were enriched for

Verrucomicrobia, specifically A. muciniphila, the only

member of the Verrucomicrobia phylum identified in this

dataset, similar to that reported elsewhere (Derrien et al.

Table 1 Heritability estimates of genus level taxa in CC/DO founder

strains on AIN-93 diet (baseline group)

Genus Level Taxa h2

Actinobacteria/Actinobacteria/Bifidobacteriales/

Bifidobacteriaceae/Bifidobacterium

0.78

Bacteroidetes/Bacteroidia/Bacteroidales/Bacteroidaceae/

Bacteroides

0.47

Bacteroidetes/Bacteroidia/Bacteroidales/

Porphyromonadaceae/Parabacteroides

0.30

Firmicutes/Bacilli/Bacillales/Alicyclobacillaceae/

Alicyclobacillus

0.22

Firmicutes/Bacilli/Bacillales/Bacillaceae/Bacillus 0.30

Firmicutes/Bacilli/Bacillales/Staphylococcaceae/Salinicoccus 0.30

Firmicutes/Bacilli/Bacillales/Staphylococcaceae/

Staphylococcus

0.43

Firmicutes/Bacilli/Lactobacillales/Aerococcaceae/Abiotrophia 0.26

Firmicutes/Bacilli/Lactobacillales/Enterococcaceae/

Enterococcus

0.64

Firmicutes/Bacilli/Lactobacillales/Lactobacillaceae/

Lactobacillus

0.74

Firmicutes/Bacilli/Lactobacillales/Streptococcaceae/

Lactococcus

0.69

Firmicutes/Bacilli/Lactobacillales/Streptococcaceae/

Streptococcus

0.37

Firmicutes/Bacilli/Turicibacterales/Turicibacteraceae/

Turicibacter

0.29

Firmicutes/Clostridia/Clostridiales/Dehalobacteriaceae/

Dehalobacterium

0.73

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/

Ruminococcus

0.61

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/

Anaerostipes

0.30

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/Blautia 0.61

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/

Butyrivibrio

0.59

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/

Coprococcus

0.19

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/Dorea 0.28

Firmicutes/Clostridia/Clostridiales/Lachnospiraceae/Roseburia 0.84

Firmicutes/Clostridia/Clostridiales/Peptococcaceae/rc4/4 0.78

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae/

Anaerotruncus

0.82

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae/

Faecalibacterium

0.40

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae/

Oscillospira

0.76

Firmicutes/Clostridia/Clostridiales/Ruminococcaceae/

Ruminococcus

0.69

Firmicutes/Clostridia/Coriobacteriales/Coriobacteriaceae/

Adlercreutzia

0.50

Firmicutes/Erysipelotrichi/Erysipelotrichales/

Coprobacillaceae/Coprobacillus

0.43

Firmicutes/Erysipelotrichi/Erysipelotrichales/

Erysipelotrichaceae/Eubacterium

0.58

Firmicutes/Erysipelotrichi/Erysipelotrichales/

Erysipelotrichaceae/Allobaculum

0.53

Table 1 continued

Genus Level Taxa h2

Proteobacteria/Alphaproteobacteria/Rhizobiales/Brucellaceae/

Ochrobactrum

0.44

Proteobacteria/Alphaproteobacteria/Rhizobiales/

Methylobacteriaceae/Methylobacterium

0.35

Proteobacteria/Alphaproteobacteria/Sphingomonadales/

Sphingomonadaceae/Sphingomonas

0.26

Proteobacteria/Betaproteobacteria/Burkholderiales/

Comamonadaceae/Tepidimonas

0.27

Proteobacteria/Deltaproteobacteria/Desulfovibrionales/

Desulfovibrionaceae/Bilophila

0.32

Proteobacteria/Deltaproteobacteria/Desulfovibrionales/

Desulfovibrionaceae/Desulfovibrio

0.57

Proteobacteria/Epsilonproteobacteria/Campylobacterales/

Campylobacteraceae/Arcobacter

0.35

Proteobacteria/Gammaproteobacteria/Enterobacteriales/

Enterobacteriaceae/Enterobacter

0.30

Proteobacteria/Gammaproteobacteria/Pasteurellales/

Pasteurellaceae/Haemophilus

0.26

Proteobacteria/Gammaproteobacteria/Pseudomonadales/

Moraxellaceae/Acinetobacter

0.41

Proteobacteria/Gammaproteobacteria/Pseudomonadales/

Pseudomonadaceae/Pseudomonas

0.30

Tenericutes/Mollicutes/Anaeroplasmatales/

Anaeroplasmataceae/Anaeroplasma

0.48

Verrucomicrobia/Verrucomicrobiae/Verrucomicrobiales/

Verrucomicrobiaceae/Akkermansia

0.62
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2011). The majority of discriminatory factors were mem-

bers of the Firmicutes phylum, consistent with this being

the dominant phylum across samples. Interestingly, wild-

derived inbred strains (CAST/EiJ, PWK/PhJ, WSB/EiJ) are

enriched for several genus-level members of Clostridiales,

a dominant class of commensal bacteria (Dehalobacterium,

Rumminococcus, Oscillospira genera), in addition to the

genera Lactococcus and Coprobacillus (Firmicutes phy-

lum) (Fig. 3d).

As genetics has previously been reported to exert

greatest control at the tips of the phylogenetic tree (Benson

et al. 2010), heritability estimates using genus level taxa

relative abundances were calculated (Table 1). Our ana-

lysis further confirms both the influence of genetic back-

ground on microbial community structure and the specific

nature of the regulation of individual taxa, as we identify a

wide range of heritability for genus-level taxa (26–86 %).

Whereas phylotyping has enabled an understanding of

the taxonomic distribution and diversity of enteric micro-

bial communities, understanding the functional metabolic

underpinnings of the intestinal microbiota can provide

significant depth to our understanding of microbiota in

health and disease. Using PICRUSt, a computational

approach to infer metagenome content from 16 s data, the

metagenomic metabolism was predicted and seen to vary

across strains, with significant between-strain differences

seen in aspects of metabolism (amino acid, lipid, glycan,

terpenoids and polyketoids, and secondary metabolites)

(Supplementary Fig. 4), as well as pathways involved in

basic functioning (cellular processes, environment, and

genetic information processing). Significant differences in

pathways enriched for genes involved in diseases (cancers,

cardiovascular disease, immune system, infectious disease,

metabolic disorders), and organ systems (digestive, endo-

crine) were observed (Supplementary Fig. 4), many of

which were significantly related to cardiometabolic phe-

notypes (Supplementary Fig. 5).

Atherogenic diet-driven shifts in microbial

communities are strain-dependent

V4 16s rRNA libraries amplified from post 16 week diet

intervention cecum DNA samples contained 6,388,210

reads after quality filtering (average 110,141/mouse;

range = 298–212,914 reads/sample). 2 samples were

removed from the dataset as assigned reads fell below the

rarefaction point of 51,000 reads/sample. This sequence

library comprised 29,326 assigned OTUs which also col-

lapsed to 82 distinct bacterial taxa.

To investigate potential atherogenic diet-associated

shifts in microbial community structure, several measures

of alpha-diversity were conducted. Including all three diet

groups in the analysis (AIN-93 M, HFCA, LFCC), 2-way

ANOVA analysis revealed significant diet, strain, and diet–

strain interactions on GINI co-efficient (F = 8.48,

p \ 0.0001; F = 72.773, p \ 0.001; F = 3.698,

p \ 0.0001; diet, strain, and diet–strain, respectively),

Shannon Diversity Index (F = 6.51, p \ 0.0001;

F = 122.4, p \ 0.0001; F = 5.37; p \ 0.0001 diet, strain,

and diet–strain, respectively), and number oF observed

OTUs (F = 13.46, p \ 0.0001; F = 116.77, p \ 0.0001;

F = 5.50, p \ 0.0001 diet, strain, and diet–strain, respec-

tively). Compared with fecal AIN-93M samples, cecal

samples from both HFCA and LFCC diet groups exhibited

reduced alpha-diversity in a strain-dependent manner

(Supplementary Fig. 6), with A/J, C57BL/6J, 129S1/

SvlmJ, NOD/ShiLtJ, NZO/HILtJ, and WSB/EiJ experi-

encing a decrease in all measures of alpha-diversity from

AIN-93M to HFCA (Supplementary Fig. 6). This reduction

in alpha-diversity was less evident between the baseline

and LFCC diet groups, with only A/J, and 129S1/SvlmJ

experiencing a significant reduction. Consistent with the

antimicrobial effects of cholic acid (Islam et al. 2011),

alpha-diversity was reduced in HFCA samples compared

with LFCC, although this reduction was significant for A/J,

C57BL/6J, NOD/ShiLtJ, and NZO/HILtJ animals only

(Supplementary Fig. 6).

When the HFCA and LFCC datasets were combined, a

significant effect of strain remained evident (PERMANO-

VA R2 = 0.31, p \ 0.0001), and a significant effect of diet

(PERMANOVA R2 = 0.065, p \ 0.0001) as well as a

significant strain–diet interaction effect (PERMANOVA

R2 = 0.20, p \ 0.0001) on beta-diversity were observed

(Fig. 4C). However, analyzing the HFCA and LF diet

groups in isolation revealed a more pronounced effect of

strain on microbial community structure (HFCA group

PERMANOVA for strain R2 = 0.55, p \ 0.0001; LF

group PERMANOVA for strain R2 = 0.54, p \ 0.0001)

(Fig. 4a and b), indicating that environmental challenges

such as increased bile acids and dietary fat can lead to a

sharper discrimination between strains, and highlighting

the influence of genetic background in mediating the

microbial response to diet. Furthermore, certain strains

(A/J, C57BL/6J, WSB/EiJ) separated clearly by diet, while

other potentially less dietary responsive strains (NOD/

ShiLtJ, CAST/EiJ) cluster less distinctly (Fig. 4D).

Due to differences in sampling sites, direct comparisons

between the baseline (feces) and post-diet (cecum) samples

were not made. However, a high-level view of phyla dif-

ferences between fecal microbial communities at baseline

(AIN-93M), and cecal samples from both HFCA and LFCC

diet groups show an increase in relative abundances of

Verrucomicrobia and Bateroidetes with corresponding

decreases in Firmicutes (data not shown) after 16-week

dietary intervention. The increased abundance of the

mucin-degrading Verrucomicrobia post diet may be driven
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by sampling site differences (feces at baseline and cecum

post diet), as greater mucin production and also greater A.

muciniphila (Verrucomicrobia phylum) has been reported

in the cecum compared with other intestinal sites (Derrien

et al. 2011).

To determine differentially abundant taxa between

HFCA and LFCC diet groups, post diet relative abundance

data were analyzed using LDA. This analysis identified 20

differentially abundant taxa (Fig. 4E) regulated by the two

HFCA and LFCC cholesterol containing diets. In addition

to a main effect of diet on these taxa, significant diet–strain

interactions were observed for the genera A. mucinipila

(phylum Verrucomicrobia), Clostridium, Dehalobacterium,

Rumminococcus gnavus, Turicibacter (phylum Firmi-

cutes), Desulfovibrio (phylum Proteobacteria), the order

Coriobacteriales (phylum Firmicutes), and the families

Clostridiaceae, Rumminococcaceae (phylum Firmicutes),

and S2-47 (phylum Bacteroidetes). Many of these genetic

and dietary regulated taxa form part of the core group of

cardio-metabolic related taxa, described in detail below,

related to body weight, body composition (proportions of

lean and fat mass), plasma lipids, and the atherogenic

metabolite TMAO (Fig. 5).

Baseline and diet-induced relationships

between microbial taxa and key cardiometabolic

phenotypes

After correction for multiple testing, we identified signifi-

cant relationships between phenotypes and a core group of

cardiometabolic-related microbial taxa (Fig. 5).

On purified synthetic diet (AIN-93 M, baseline nutri-

tional conditions), fasting plasma TMAO concentrations, a

metabolite of microbial and dietary-derived TMA, was

negatively correlated with butyrate producers such as

unclassified microbiota in the Lachnospiraceae family

(phylum Firmicutes, order Clostridiales), as well as the

Roseburia genus within the Lacnospiraceae family. TMAO

A B C

D E

Fig. 4 Global diet and strain-driven regulation of microbial beta-

diversity. PCoA of Unweighted UniFrac of: (a) HFCA samples only;

(b) LFCC samples only; (c) HFCA and LFCC samples combined;

and, (d) HFCA, LFCC and AIN93M samples faceted by strain;

(e) Linear discriminant analysis with Effect Size (LEfSe) identified

differentially abundant taxa between HFCA and LFCC diet groups.

Taxa enriched in HFCA diet (gray) and those enriched in LFCC diet

(red) meeting LDA significant threshold[2 are shown. Taxa enriched

in LF versus HFCA diet have a negative LDA score
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was positively correlated with the genus Bifidobacterium

(phylum Actinobacteria), as well as unclassified members

of the RF39 order (Tenericutes phylum, class Mollicutes)

(Fig. 5). Positive relationships between TMAO and Rum-

minococcaceae and Erysipelotricaceae (families within

Firmicutes phylum), and the genus Lactobacillus (Firmi-

cutes phylum), were also identified (Fig. 5). Several of

these relationships (Bifidobacterium, Lactobacillus, Erysi-

pelotrichaceae) were maintained following atherogenic

dietary intervention (Fig. 5), suggesting that these are sta-

ble genotype-driven taxa * phenotype relationships which

are less influenced by the environmental effects of ath-

erogenic dietary nutrients (cholesterol, fat, cholic acid).

Following atherogenic diet consumption, several new

relationships between TMAO and microbial taxa were

identified. TMAO was positively correlated with Turicib-

acter and Streptococcus, two genera within class Bacilli

(phylum Firmicutes), unclassified members of Peptostro-

poccaceae family (phylum Firmicutes), as well as the genus

Desulfovibrio (phylum Proteobacteria). A diet-induced

negative relationship was identified between TMAO and

Coprobacillaeae (phylum Firmicutes).

At baseline, significant relationships were identified

between body weight and body composition (fat and lean

%) (Fig. 5). Several genera within the Clostridiales order

(Anaerotruncus, Blautia, Roseburia) exhibited opposing

relationships between weight/fat and lean mass (Fig. 5).

However, although the direction of many of these

Fig. 5 Significant relationships between microbial taxa and cardio-

metabolic phenotypes exist in mice fed purified synthetic diets

(baseline) and atherogenic diets for 16 weeks (post diet). Correlations

between taxa and phenotype assessed by Spearman rho. Asterisks

denotes significant relationship (p values adjusted FDR 10 %)
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relationships was retained post diet, the magnitude

decreased, and none of these baseline relationships reached

significance post diet. Additionally, no novel atherogenic

diet-induced relationships were identified for these body

composition phenotypes.

At baseline, fasting plasma TAG concentrations were

negatively correlated with relative abundance of unclassified

members of the order RF39 (phylum Tenericutes, class

Mollicutes), and families Planococcoceae, Enterococca-

ceae), and Ruminocoocoeae (all Firmicutes phylum). TAG

was positively correlated with relative abundance of R.

gnavus (family Lachnospiraceae, phylum Firmicutes)

(Fig. 5). This positive relationship with R. gnavus persisted

following atherogenic dietary intervention (Fig. 5). Dietary

intervention increased the strength of the positive relation-

ship between TAG and the genera Anaerotruncus and Co-

probacillus (phylum Firmicutes), and these relationships

reached significance at the post-diet time-point only (Fig. 5).

Other relationships between plasma TAG and microbial taxa

abundance were lost after atherogenic feeding (Fig. 5).

Although no significant relationships existed between

plasma total cholesterol and taxa at baseline, after atherogenic

feeding, diet-induced positive relationships between fasting

plasma cholesterol and family Rikenellaceae (phylum Bac-

teroidetes), and Coprobacillaceae (phylum Firmicutes) were

revealed (Fig. 5). Additionally, dietary-responsive negative

relationships between genera Bifidobacterium (phylum Ac-

tinobacteria), Allobaculum, Turicibacter, Lactobacillus,

Streptococcus (phylum Firmicutes), and Desulfovibrio (phy-

lum Proteobacteria) were identified (Fig. 5).

No significant correlations were identified between

glucose, insulin or HOMA-IR and microbial abundance at

baseline, however, at the post diet time-point, fasting

plasma glucose was negatively correlated with genera

Lactobacillus, Enterococcus (class Bacilli, phylum Firmi-

cutes), and families Peptococcaceae and Erysipelotricha-

ceae (phylum Firmicutes). Glucose was positively

correlated with genera Ruminococcus and Oscillospira

(family Rumminococcaceae), and Dehalobacterium (fam-

ily Dehalobacteriaceae), Butyribrio and R. gnavus (family

Lachnospiraceae) (all Clostridiales order, phylum Firmi-

cutes). Atherogenic feeding strengthened the negative

relationship between Rumminococcaeae and insulin,

reaching significance post diet only, and revealed a novel

positive dietary-responsive relationship between Bacteroi-

des caccae (phylum Bacteroidetes) and insulin (Fig. 5).

Discussion

Recent reports have highlighted interactions between the

microbiome and metabolism of dietary components such as

phosphatidylcholine and carnitine on modulating cardio-

vascular disease risk (Koeth et al. 2013a; Tang et al. 2013;

Wang et al. 2011), and have identified numerous associa-

tions between the microbiome and metabolic diseases. In

the current report, we use a segregating panel of inbred

mouse strains, representing *90 % of the genetic variation

in mice (Roberts et al. 2007), to examine the effects of

genetics on intestinal microbiota and cardiometabolic risk

factor response to diet. There are five main findings of our

current studies: (1) differences in enteric microbial com-

munities between inbred mouse strains are evident; (2)

some of these strain-driven differences are retained and

become more pronounced with dietary intervention; (3)

microbial and phenotypic response to diet varies by mouse

strain; (4) differences between the mouse strains suggest

underlying differences in intestinal barrier function,

inflammatory environment, short chain fatty acid (SCFA)

production, and bile acid metabolism; and (5) the observed

differences in a core group of microbial taxa are signifi-

cantly related to cardiometabolic phenotypes. These results

highlight not only the influence of genetic background on

microbiome community structure but also on the microbial

and phenotypic response to diet, and illustrate the effec-

tiveness of the CC/DO founder strains in nutrigenomic

studies.

The significant effect of mouse strain echoes that of recent

work demonstrating that microbial composition in the

intestine is a complex, polygenic trait. Numerous genetic

studies in mice, including those using genetic reference

panels (Benson et al. 2010; Campbell et al. 2012; Hildebrand

et al. 2013; McKnite et al. 2012), have demonstrated an

effect of genetic background on microbial diversity. Inter-

estingly, Benson and co-workers demonstrated that multiple

taxa can co-localize to a single QTL, suggesting that a single-

genetic locus may regulate the abundance of several taxa

(Benson et al. 2010). A previous survey using founder strains

of the CC (Campbell et al. 2012) also reports a significant

effect of mouse strain on microbial diversity, although few

discriminating OTUs were identified, and differences were

not linked to phenotype. Our current study has sharper dis-

crimination between inbred mouse strains potentially due to

*10 fold increase in sequencing depth, differing sites of

microbial assessment for the baseline comparison (cecum vs

feces), and the use of a synthetic defined diet which avoid the

variation inherent in non-purified diets (Reeves et al. 1993).

In the current study, C57Bl6/J animals had differentially

abundant members of the Actinobacteria phylum. These

results mirror those of previous studies which have demon-

strated an effect of the C57Bl6/J allele in a QTL regulating

Actinobacteria abundance (Benson et al. 2010).

To ensure the host-microbial relationship remains har-

monious, a sophisticated host antigen recognition and

defense system has developed to prevent microbial
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invasion. Considering this tension between microbial

populations and the host immune system, it is not sur-

prising that immune function is a recurring theme in the

host-genetic regulation of microbial abundance. A large

proportion of QTL regions reported to regulate microbial

abundance contain genes related to immunity and mainte-

nance of barrier function (Benson et al. 2010; McKnite

et al. 2012; Srinivas et al. 2013). The influence of immune-

related genes is further evidenced by the dramatic effects

on microbial community structure caused by mutations in

single genes related to host immunity (Thompson et al.

2010; Wen et al. 2008). Hildebrand and co-workers show

that microbiota cluster by fecal calprotectin concentrations,

with high fecal calprotectin indicative of an inflammatory

colonic environment (Hildebrand et al. 2013). Several taxa

identified as being differentially abundant between strains

in our study, such as members of the Clostridiales order,

are known to be decreased in intestinal inflammatory

environments (Schwab et al. 2014), suggesting that dif-

ferences in immune response may underlie strain-depen-

dent differences observed, as has been indicated by

previous studies (Benson et al. 2010; McKnite et al. 2012;

Srinivas et al. 2013).

In order to test genetic background, environmental for-

ces must be steady and carefully controlled. Factors such as

the maternal environment, litter effects, cage mates, the

location that the mice are housed, and the commercial

vendor, can influence microbial populations (Benson et al.

2010; Campbell et al. 2012; Friswell et al. 2010; Hilde-

brand et al. 2013). Currently, the relative strength of

environmental versus genetic signals on microbial regula-

tion is unclear. Uterine implantation studies have shown

that mice of different genetic backgrounds have similar

microbial composition when reared by the same foster

mother, indicating that in certain circumstances, environ-

mental drivers can overpower genetic influences at least for

non-adherent bacterial populations (Friswell et al. 2010).

As animals were purchased from a commercial vendor, the

current study does not permit a full investigation of envi-

ronmental forces influencing enteric bacterial populations.

Although the existence of within strain cage effects has

been clearly illustrated in the literature (McCafferty et al.

2013), these were not evident in the current study. Co-

housing within strains during transportation, use of syn-

thetic diet (as oppose to standard chow or non-purified diet

which can be variable in composition), or singly housing

for 3-days prior to fecal collection (during which time the

impact of cage may have begun to rescind), are possible

reasons for the close clustering seen within strains.

Considering that the microbiome depends on dietary and

host-derived nutrients for survival, it is unsurprising that

dietary intake has such a profound impact on the microb-

iome (Cotillard et al. 2013; Spor et al. 2011). Altered

dietary nutrient composition can lead to a bloom or wane in

certain microbiota with varying capacity to flourish under

changing environmental conditions. Shifts in underlying

microbial function and metabolism can have secondary

effects on host metabolism. Rather than overwhelm the

effect of mouse strain, dietary intervention resulted in a

stronger main effect of mouse strain on microbial com-

munity structure. Interestingly, the separation within

mouse strains by diet was variable across the inbred lines,

and certain cardiometabolic-related taxa exhibited diet–

genotype interaction effects, suggesting variable microbial

responsiveness to external dietary influences as is seen

phenotypically with these strains. Although this is a rela-

tively new area of focus, other groups using mouse genetic

reference populations (Parks et al. 2013b), or single gene

knockout models (Kashyap et al. 2013) have demonstrated

an interaction between microbiota and diet that is influ-

enced by host genotype. Recent work with human partic-

ipants reported that despite retained variation in taxonomy

following dietary intervention, microbial gene expression,

as assessed by RNAseq, clustered by diet group and

exhibited less between-subject variation than at baseline

(David et al. 2014). Considering this, it is unclear whether

the taxonomic separation seen between strains post diet

reflects variable metabolic functionality, which would in

turn impact host phenotype. However, our core group of

cardiometabolic-related taxa are good candidates for future

focus.

The microbiome is a metabolically active, complex

organ, producing many metabolites which can directly

influence host phenotype. Genetic and dietary regulated

taxa identified in this study were enriched for known

SCFA, bile acid and inflammation and barrier function-

related taxa. Recent efforts have focused on the link

between the microbiome and the atherogenic metabolite

TMAO. TMAO is formed from trimethylamine (TMA)

via hepatic flavin mono-oxygenase 3 (FMO3) (Bennett

et al. 2013a). The microbiome plays an obligate role in

the formation of TMA (from trimethylamine-containing

nutrients choline and carnitine), and antibiotic knockdown

studies show clearly that TMAO is not formed in the

absence of the microbiome (Tang et al. 2013). Bacterial

species harboring putative choline utilization gene clusters

(cut-c) have been suggested to play a central role in

enteric TMA formation (Craciun and Balskus 2012) (and

therefore down-stream TMAO production), however the

specific microbiota have not been fully ascertained. In

addition to the microbial differences in TMA production,

differences in Fmo3 gene expression can contribute to

TMAO levels as we have previously reported that Fmo3

both has a cis-eQTL and is correlated with plasma TMAO

levels (Bennett et al. 2013b). Thus, variation in the mi-

crobiome and Fmo3 gene expression contribute to plasma
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TMAO levels. Our current studies focus on the genetic

regulation of the gut microbiome and relationships with

TMAO and other cardiovascular risk factors. A previous

report that plasma TMAO and members of the Teneri-

cutes phylum (Koeth et al. 2013b) are correlated was

confirmed in our current study. Additionally, we see a

significant negative correlation between plasma TMAO

concentrations and members of the Lachnospiraceae

family including the Roseburia genus, a known butyrate

producer. Other members of this family were also nega-

tively correlated although failed to reach significance after

correction for multiple testing. We identified a number of

dietary responsive relationships related to plasma TMAO

levels, including positive relationships between the genus

Desulfovibrio, a member of the sulfate/sulfite reducing

Desulfovibrionaceae family. A species within the Des-

ulfovibrio genus has been demonstrated to degrade cho-

line to TMA (Craciun and Balskus 2012), hence an

increased formation of this TMAO precursor may explain

this positive relationship.

Several elegant studies have clearly established a role

for the microbiome in regulation of body weight and adi-

posity (Backhed et al. 2004; Ridaura et al. 2013). A shared

genetic regulation has also been reported, with genetic loci

regulating body composition complex traits coinciding

with loci regulating microbial abundances (McKnite et al.

2012; Parks et al. 2013a). The negative relationship

between body weight and fat mass, and the positive rela-

tionship between lean mass and Roseburia, Blautia and

other unclassified genera of the Lachnospiraceae family

suggests a relationship between butyrate production in the

intestine and body weight control. In addition to providing

a nutrient source for the enteric epithelium (De Vadder

et al. 2014), butyrate plays a role in modulating host energy

expenditure (Gao et al. 2009). Additionally, butyrate can

influence gut peptide secretion with potential secondary

effects on satiety (Hosseini et al. 2011) via SCFA receptors

such as GPR43 (Kimura et al. 2013).

The influences of bacterial taxa with opposing roles in

barrier function on plasma lipids and other metabolic

markers highlights the importance of barrier function for

metabolic health. Bifidobacterium longum, known to pro-

mote tight junction integrity, was associated with decreased

plasma TAG suggesting a protective role. On the other

hand, R. gnavus, a mucin-degrading species associated

with reduced barrier integrity and bile acid metabolism,

was positively related to TAG and plasma glucose. Barrier

function is crucial to guard against bacterial translocation

and metabolic endotoxemia which has been directly linked

to metabolic disease increased fasting glycemia, decreased

glucose tolerance, increased body and liver weight,

increase liver triglyceride content and increased energy

intakes (Cani et al. 2007).

The genetic variation of the CC/DO founders coupled

with dietary perturbation revealed a core group of geneti-

cally and dietary regulated microbial taxa, many of which

are connected to cardiometabolic phenotype. Many of the

taxa identified have strong plausible roles in mediating host

phenotype, and as they appear regulated by both genetics

and diet, may represent useful targets in understanding

diet-induced variability in metabolic disease risk. The

specific relationship of these taxa to human disease remains

to be confirmed as the microbial composition of humans

and mice are similar at the phyla level but may not contain

the same specific species of microbiota (Ley et al. 2005).

In conclusion, our results provide a strong indication

that host genetics drives microbial diversity under baseline

nutrient conditions, and in response to atherogenic nutrient

intake. We also highlight that genetic–diet influences on

the microbiome are related to cardiometabolic phenotypes,

suggesting that differences at the level of the intestinal

microbiome may underlie some of the differences in

mouse-strain dependent susceptibility to cardiovascular

disease and metabolic ill health in response to atherogenic

diets. Understanding how diet responsive microbiota are

influenced by genetics and importantly contribute to host

phenotype will be pivotal in fully realizing the potential for

personalized nutrition and our comprehension of inter-

individual variation in disease risk. Segregating panels of

mice such as the CC/DO founders provide wide scope of

variation which can be probed in depth in future studies.

Underlying differences in gene expression and fecal

metabolites will shed more light on host-derived changes in

functional and metabolic capacity of the microbiome, and

provide greater insight into mechanisms by which these

changes influence host phenotype.
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