```
    FCM0502 - Física II
1a}\mathrm{ Lista de exercícios - Dinâmica das rotações
```

16/8/2016

Exercícios do Capítulo 10 Tipler/Mosca 4^{a} edição

Torque e conservação do momento angular
23 Na figura abaixo, o plano inclinado não tem atrito e o fio que une os dois corpos passa pelo centro de massa de cada um. O momento de inércia da polia é I e o raio R.
a) Determine a resultante dos torques que atuam sobre o sistema (isto é, sobre os dois corpos - o fio e a polia).
b) Encontre a expressão do momento angular total do sistema em relação centro da polia quando cada corpo tiver velocidade v.
c) Calcule a aceleração de cada corpo a partir dos resultados em (a) e (b). Para isso, iguale a resultante dos torques à taxa de variação do momento angular do sistema.

34 Um planeta descreve órbita elíptica em torno do Sol, que ocupa um dos focos da elipse, como mostra a figura abaixo.
a) Que torque provoca a força gravitacional do Sol sobre o planeta?
b) No ponto A, o planeta está à distância r_{1} do Sol e tem velocidade v_{1}, perpendicular à reta que passa pelos centros do Sol e do planeta. Na posição B, à distância r_{2}, a velocidade do planeta é v_{2}, perpendicular à mesma reta. Qual a razão entre v_{1} e v_{2}, em função de r_{1} e r_{2} ?

36 Um homem está em pé sobre uma plataforma sem atrito que gira com velocidade angular $1.5 \mathrm{rev} / \mathrm{s}$. Seus braços estão estendidos e em cada mão ele segura um corpo pesado. O momento de inércia do homem, dos dois corpos e da plataforma é de $6 \mathrm{kgm}^{2}$. Quando o homem junta os braços ao corpo, sem largar os pesos, o momento de inércia diminui para $1.8 \mathrm{kgm}^{2}$.
a) Qual a velocidade angular final da plataforma?
b) De quanto varia a energia cinética do sistema?
c) Qual a fonte desse aumento de energia cinética?

37 Um pequeno pedaço de massa plástica m cai de uma certa altura sobre a periferia de uma mesa rotatória de raio R e momento de inércia I_{0} que gira livremente com a velocidade angular ω_{1} em torno do seu próprio eixo de simetria, fixo na vertical.
a) Qual a velocidade angular da mesa depois da queda da massa plástica?
b) Depois de algumas voltas, a massa descola da mesa e é lançada para fora. Que velocidade angular tem a mesa depois deste descolamento?

38 Dois discos, de massas iguais, mas raios diferentes (r e $2 r$) estão montados num eixo comum, sem atrito, e giram com a velocidade angular ω_{0}, porém em sentidos opostos, como mostra a figura. Os dois discos são lentamente reunidos. A força de atrito entre as superfícies acaba por levá-los a uma mesma velocidade angular. Qual é o módulo dessa velocidade angular final em termos de ω_{0} ?

41 O raio do Sol é de $6.96 \times 10^{8} \mathrm{~m}$ e seu período de rotação é de 25.3 dias. Estime o período de rotação que terio o Sol se, transformado numa estrela de nêutrons, sem perda de massa, ficasse reduzido ao raio de 5 km .

50 A figura abaixo mostra uma barra delgada, de comprimento L e massa M, e uma pequena esfera de massa plástica, com massa m. O sistema está sobure uma superfície horizontal sem atrito. A massa de plástico se desloca para a direita, com velocidade v, atinge a barra a uma distância d do seu centro de massa e fica colada na barra. Determine as expressões da velocidade do centro de massa do sistema e da velocidade angular do sistema na rotaçõa em torno do centro de massa.

51 Imagine que na situação do problema 50 a bola seja substituída por uma esfera dura, de pequena dimensão, que colide elasticamente com a barra. Determine d de tal maneira que a esfera fique em repouso após a colisão.

Exercícios do Capítulo 9 Tipler/Mosca 4^{a} edição:

Dinâmica de rotações
111 A Lua gira em torno do próprio eixo ao mesmo tempo em que efetua revoluções em torno da Terra, de modo que tem sempre a mesma face voltada para a Terra. Com essa informação, calcule a velocidade angular ($\mathrm{em} \mathrm{rad} / \mathrm{s}$) da rotação da Lua em torno do seu eixo (o período de revolução da Lua em torno da Terra é de 27.3 dias).

53 Calcule a energia cinética de rotação da Terra e compare com a energia cinética do movimento do centro de massa da Terra em torno do Sol. Adimita que a Terra seja esfera homogênea com a massa de $6.0 \times 10^{24} \mathrm{~kg}$ e raio de $6.4 \times 10^{6} \mathrm{~m}$. O raio da órbita da Terra é de $1.5 \times 10^{11} \mathrm{~m}$.

54 Uma carga de 2000 kg é içada à velocidade constante de $8 \mathrm{~cm} / \mathrm{s}$, por um cabo de aço que passa por uma polia de massa desprezível e que é tracionado pelo tambor de um guincho (ver figura abaixo). O raio do tambor é de 30 cm .
a) Que força exerce o cabo sobre a carga?
b) Que torque exerce o cabo sobre o tambor?
c) Qual a velocidade angular do tambor?
d) Com que potência o motor aciona o tambor?

60 Um corpo de 4 kg está sobre uma superfície horizontal sem atrito, preso a um cordel que passa por uma polia e no qual se pendura um outro corpo de 2 kg (figura abaixo). A polia é um disco homogêneo com raio de 8 cm e massa de 0.6 kg.
a) Calcule a velocidade do corpo de 2 kg ao cair 2.5 m a partir do repouso.
b) Qual a velocidade angular da polia no instante que corresponde à queda de 2.5 m .

61 Calcule, no sistema mencionado no problema 60, a aceleração linear da cada corpo e a tensão no cordel.

62 Resolva o problema 60 admitindo que o coeficiente de atrito entre o corpo de 4 kg e a superfície horizontal seja 0.25 .

66 No sistema esquematizado na figura abaixo, os dois corpos estão inicialmente em repouso. O corpo de 30 kg está 2 m acima da superfície do suporte horizontal. A polia é um disco homogêneo com raio de 10 cm e massa de 5 kg . Calcule
a) A velocidade do corpo de 30 kg ao colidir com o suporte horizontal;
b) A velocidade da polia no instante dessa colisão;
c) As tensões nos dois ramos do cabo;
d) O tempo de queda do bloco de 30 kg até o suporte. Admita que não há escorregamento do cabo na polia.

70 Um cilindro homogêneo, de massa M e raio R, tem uma corda enrolada em sua superfície. A corda tem uma ponta fixa e o cilindro cai verticalmente, como na figura abaixo.
a) Mostre que a aceleração do cilindro está dirigida para baixo e tem módulo $a=2 g / 3$.
b) Calcule a tensão na corda.

Rolamento

84 Calcular as frações percentuais da energia cinética total associadas à rotação e à translação de
a) Uma esfera homogênea;
b) Um cilindro homogêneo;
c) Um aro,
que rolam sem deslizar.
85 Um aro de 0.40 m de raio e 0.60 kg de massa rola sem escorregar, a $15 \mathrm{~m} / \mathrm{s}$, na direção de um plano inclinado de 30°. Até que altura do plano o aro subirá, adimitindo-se que continue a rolar sem escorregar?

95 Uma roda de raio R rola sem escorregar com a velocidade V. As coordenadas do centro de massa da roda são X e Y.
a) Mostre que as coordenadas x e y do ponto P na figura abaixo são $X+r_{0} \cos (\theta)$ e $Y+r_{0} \operatorname{sen}(\theta)$, respectivamente;
b) Mostre que a velocidade \vec{v} do ponto P tem as componentes $v_{x}=V+$ $\left(r_{0} / R\right) V \operatorname{sen}(\theta)$ e $v_{y}=-\left(r_{0} / R\right) V \cos (\theta) ;$
c) Mostre pelo cálculo do produto $\vec{v} \cdot \vec{r}$ que, no instante em que $X=0, r$ e v são mutuamente perpendiculares.
d) Mostre que $v=\omega r$, onde $\omega=V / R$ é a velocidade angular da roda.

Esses resultados mostram que, no caso de rolamento sem escorregamento, tudo se passa como se o corpo rolante estivesse rolando, instantaneamente, em torno do ponto de contato, com velocidade angular $\omega=V / R$.

96 Um cilindro homogêneo de massa M e raio R repousa sobre um bloco de massa m que, por sua vez, está sobre uma superfície horizontal sem atrito, como na figura abaixo. Se a força horizontal \vec{F} for aplicada ao bloco, este sofrerá aceleração e o cilindro rolará sem deslizar. Determine a aceleração do bloco.

