
The Kipple Language Specification

Kipple is a minimalistic, Turing-complete, stack-based programming

language where data is stored in 26 stacks named a-z. The values on the stacks

are 32-bit signed integers. The language consists of four operators and one

control structure. Each operator takes one or two operands, and an operand

can either be a non-negative integer (0-2147483647) or a stack

identifier (a-z). Stack identifiers are case insensitive. Note that although an

integer operand has to be zero or positive, the stacks can hold negative

numbers as well (which can be accomplished with the - operator). All the

stacks start out empty, except stack i which will contain the programs input

(see Input and Output).

The operators

 Push: > or <
Syntax: Operand>StackIndentifier or StackIndentifier<Operand

The Push operator takes the operand to the left and pushes it onto the

specified stack. E.g. 12>a will push the value 12 onto stack a. a>b will

pop the topmost value from stack a and push it onto stack b. Popping

an empty stack always returns 0. a<b is equivalent with b>a.

 Add: +
Syntax: StackIndentifier+Operand

The Add operator pushes the sum of the topmost item on the stack and

the operand onto the stack. If the operand is a stack, then the value is

popped from it. E.g. if the topmost value of stack a is 1, then a+2 will

push 3 onto it. If a is empty, then a+2 will push 2 onto it. If the topmost

values of stack aand b are 1 and 2, then a+b will pop the value 2 from

stack b and push 3 onto stack a.

 Subtract: -
Syntax: StackIndentifier-Operand

The Subtract operator works exactly like the Add operator, except that

it subtracts instead of adding.

 Clear: ?
Syntax: StackIndentifier?

The Clear operator empties the stack if it's topmost item is 0.

The interpreter will ignore anything that isn't next to an operator, so the

following program would work: a+2 this will be ignored c<i. However, the

proper way to add comments is by using the # character. Anything between a

and an End-of-line character is removed before execution. ASCII character

#10 is defined as End-of-line in Kipple.

http://www.wikipedia.org/wiki/Turing-complete
http://esoteric.voxelperfect.net/files/kipple/doc/kipple03.html#IO

Operands may be shared by two operators. E.g. a>b c>b c? may be written

as a>b<c?.

The program 1>a<2 a+a will result in a containing the values [1 4] and not [1

3]. Likewise for the - operator.

The control structure

There is only one control structure in Kipple: the loop.

Syntax: (StackIndentifier code). As long as the specified stack is not empty,

the code within the matching parentheses will be repeated. Loops may contain

other loops. Example: (a a>b) will move all the values of stack a onto

stack b (though the order will be reversed). A functionally identical, but more

elegant way to do this is (a>b).

Input and output

Before a Kipple program is executed, all input is pushed onto stack i. That

means it's impossible to get input during program execution. Input is read as a

string of bytes.

When a Kipple program ends the contents of stack o are written to output.

Output is written as bytes, even though the stack contains 32-bit integers. The

following program will write it's input to output (i.e. cat): (i>o)

To make output of numbers more convenient, the special stack @ has been

added to the language. When a program tries to push a value onto stack @, the

ASCII values of each digit is pushed onto it instead. E.g. while the

program 100>o will output "d" (d is ASCII #100), the program 100>@

(@>o) will output "100".

Strings

There are no such things as strings in Kipple. However, the official interpreter

has a preprocessor which translates strings (anything between double quotes)

in the code to Kipple statements. Note that this is a feature of the interpreter,

not the language!

Example: o<"abc" will be translated into o<97 o<98 o<99. "abc">o however,

will be translated into 99>o 98>o 97>o. In other words, the order in which the

characters are pushed onto the stack is depending on which push operator is

used. Escape characters are currently not supported. Using the preprocessor,

Hello World can be written as simple as this: "Hello World!">o

