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Abstract. We present two novel approaches to parsing context-free lan-
guages. The first approach is based on an extension of Brzozowski’s
derivative from regular expressions to context-free grammars. The sec-
ond approach is based on a generalization of the derivative to parser
combinators. The payoff of these techniques is a small (less than 250
lines of code), easy-to-implement parsing library capable of parsing ar-
bitrary context-free grammars into lazy parse forests. Implementations
for both Scala and Haskell are provided. Preliminary experiments with
S-Expressions parsed millions of tokens per second, which suggests this
technique is efficient enough for use in practice.

1 Top-down motivation: End cargo cult parsing

“Cargo cult parsing” is a plague upon computing.1 Cargo cult parsing refers
to the use of “magic” regular expressions—often cut and pasted directly from
Google search results—to parse languages which ought to be parsed with context-
free grammars. Such parsing has two outcomes. In the first case, the programmer
produces a parser that works “most of the time” because the underlying language
is fundamentally irregular. In the second case, some domain-specific language
ends up with a mulish syntax, because the programmer has squeezed the lan-
guage through the regular bottleneck. There are two reasons why regular expres-
sions are so abused while context-free languages remain foresaken: (1) regular
expression libraries are available in almost every language, while parsing libraries
and toolkits are not, and (2) regular expressions are “WYSIWYG”—the lan-
guage described is the language that gets matched—whereas parser-generators
are WYSIWYGIYULR(k)—“what you see is what you get if you understand
LR(k).” To end cargo-cult parsing, we need a new approach to parsing that:

1. handles arbitrary context-free grammars;
2. parses efficiently on average; and
3. can be implemented as a library with little effort.

The end goals of the three conditions are simplicity, feasibility and ubiquity. The
“arbitrary context-free grammar” condition is necessary because programmers
will be less inclined to use a tool that forces them to learn or think about LL/LR
arcana. It is hard for compiler experts to imagine, but the constraints on LL/LR

1 The term “cargo cult parsing” is due to Larry Wall, 19 June 2008, Google Tech Talk.
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grammars are (far) beyond the grasp of the average programmer. [Of course,
arbitrary context-free grammars bring ambiguity, which means the parser must
be prepared to return a parse forest rather than a parse tree.]

The “efficient parsing” condition is necessary because programmers will avoid
tools branded as inefficient (however justly or unjustly this label has been ap-
plied). Specifically, a parser needs to have roughly linear behavior on average.
Because ambiguous grammars may yield an exponential number of parse trees,
parse trees must be produced lazily, and each parse tree should be paid for only
if it is actually produced.

The “easily implemented” condition is perhaps most critical. It must be the
case that a programmer could construct a general parsing toolkit if their language
of choice doesn’t yet have one. If this condition is met, it is reasonable to expect
that proper parsing toolkits will eventually be available for every language.When
proper parsing toolkits and libraries remain unavailable for a language, cargo cult
parsing prevails.

This work introduces parsers based on the derivative of context-free languages
and upon the derivative of parser combinators. Parsers based on derivatives meet
all of the aforementioned requirements: they accept arbitrary grammars, they
produce parse forests efficiently (and lazily), and they are easy to implement (less
than 250 lines of Scala code for the complete library).2 Derivative-based parsers
also avoid the precompilation overhead of traditional parser generators; this cost
is amortized (and memoised) across the parse itself. In addition, derivative-based
parsers can be modified mid-parse, which makes it conceivable that a language
could to modify its own syntax at compile- or run-time.

2 Bottom-up motivation: Generalizing the derivative

Brzozowski defined the derivative of regular expressions in 1964 [1]. This tech-
nique was lost to the “sands of time” until Owens, Reppy and Turon recently
revived it to show that derivative-based lexer-generators were easier to write,
more efficient and more flexible than the classical regex-to-NFA-to-DFA gen-
erators [15]. (Derivative-based lexers allow, for instance, both complement and
intersection.)

Given the payoff for regular languages, it is natural to ask whether the deriva-
tive, and its benefits, extend to context-free languages, and transitively, to pars-
ing. As it turns out, they do. We will show that context-free languages are
closed under the derivative—they critical property needed for parsing. We will
then show that context-free parser combinators are also closed under a gener-
alization of the derivative. The net impact is that we will be able to write a
derivative-based parser combinator library in under 250 lines of Scala, capable
of producing a lazy parse forest for any context-free grammar.

2 The second author on this paper, an undergraduate student, completed the imple-
mentation for Haskell in less than a week.



3 Contributions

1. An extension of the derivative to context-free languages.
2. A generalization of the derivative to parser combinators.
3. Two new methods for constructing a parse forest:

– The first method uses two small-step machines; the first machine emits
all possible parse strings as it executes; the second machine consumes
the output of the first to generate a parse forest.

– The second method redefines a parser combinator in terms of its deriva-
tive, yielding a simple recursive algorithm for generating lazy parse
forests.

4. Implementations of derivative-based parsing combinators for Scala and Haskell:

http://www.ucombinator.org/projects/parsing/

4 Preliminaries: Formal languages

A formal language L ⊆ A∗ is a set of sequences (orwords) over an alphabet A.
The set of all formal languages over the alphabet A is the set LA = P (P (A∗)).

Rather than write words using sequence notation, we use juxtaposition, so
that a1 . . . an ≡ 〈a1, . . . , an〉. When a word w is used in a context that expects
a language, the word is implicitly promoted to a singleton set, so that w ≡ {w}.
The empty language is the empty set, ∅, while the null string ǫ, is the string
with no characters: ǫ = 〈〉.

Regular operations Given two languages L1, L2, the concatenation of these
two languages, denoted L1 ·L2, is all possible appenditions of strings in the first
set with those in the second set:

L1 · L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2} .

Because languages are sets, they may of course be unioned (L1∪L2), intersected
(L1 ∩ L2), complemented (L) and so on.

The nth power of a language L, denoted Ln, is that language concatenated
with itself n times:

Ln = {w1 . . . wn : wi ∈ L for all i} ,

where the zeroth power of a language is the set containing only the null string:

L0 = {ǫ} .

The closure, or Kleene star, of a language, L, denoted L⋆, is the union of all
powers of a language, starting from 0:

L⋆ =

∞
⋃

i≥0

Li.



Context-free languages A language is context-free if it may be expressed as a
set of recursive equations over union and concatenation. For example, the set
List is the language of non-empty sequences of the character x:

List = (List · {x}) ∪ {x}

where the implicit interpretation of a set of recursive language equations over
monotonic functions f1, . . . , fn:

X1 = f1(X1, . . . , Xn)

...
...

Xn = fn(X1, . . . , Xn)

is the least fixed point of the function F :

F (X1, . . . , Xn) = (f1(X1, . . . , Xn),

...

fn(X1, . . . , Xn))

Context-free languages may also be defined with context-free grammars. A
context-free grammar is a 4-tuple (A,N,R, n0). The alphabet A contains
terminal symbols. The set N contains nonterminal symbols. (The set S = A∪N
contains terminal and nonterminal symbols.) The set R ⊆ N ×S∗ contains rules
of the form n→ s1 . . . sn. And, the nonterminal n0 is the initial nonterminal.

The language accepted by a grammar G is the set L(G):

s1 . . . n . . . sm ∈ L(A,N,R, n0) n→ w ∈ R

s1 . . . w . . . sm ∈ L(A,N,R, n0),

and by default, the start symbol is in the language:

n0 ∈ L(A,N,R, n0).

Properties of languages A language L is nullable if it accepts the null string—-if
ǫ ∈ L. The nullability function δ : LA → {{ǫ} , ∅} determines whether a language
is nullable by returning {ǫ} if it is, and ∅ if not:

δ(L) =

{

{ǫ} ǫ ∈ L

∅ ǫ 6∈ L.

For regular languages, nullability is easily computable, and for context-free gram-
mars, the nullability of all nonterminal symbols can be computed simultaneously
with a straightforward fixed-point computation.

The first set of a language is the set of characters which may appear first
in strings in that language:

first(L) = {c : cw ∈ L for some w} .

The first sets of all nonterminals can be co-computed during the same fixed-point
computation used to determine nullability.



5 The derivative of a formal language

In this section, we review the derivative of formal languages, as defined by Brzo-
zowski [1]. We will examine properties of the derivative, including the properties
that prove its closure under regular languages. We will also show how the deriva-
tive may be used to prove membership in a formal language. The next section
will construct the derivative for context-free languages.

The derivative of a formal language L with respect to a character c,
denoted Dc(L), is the set of tails for all strings beginning with the character c:

Dc(L) = {w : cw ∈ L} .

For example,Df {foo, bar, frak} = {oo, rak}. For regular expressions, the deriva-
tive’s chief utility lies in its ability to determine membership in a regular language
without NFA or DFA conversion. In fact, Brzozowski’s result implies that for any
class of decidable languages closed under the derivative, derivatives may be used
to determine membership. For a string of length n, it takes n applications of the
following (bidirectional) inference rule to determine membership in a language:

cw ∈ L

w ∈ Dc(L).

In short, to check if w ∈ L, take tails of the string and derivatives of the language
until the string is the null string, and then check whether the final language
accepts the null string.

Brzozowski showed that the derivative is closed under regular operations,
and that the derivative is computable with straightforward structural recursion.
For both the null language and the empty language, the derivative is empty:

Dc {ǫ} = ∅

Dc(∅) = ∅.

For single-character languages, the derivative is either the empty language or
the null language:

Dc {c} = {ǫ}

Dc {c
′} = ∅ if c 6= c′.

For the concatenation of two languages, the derivative must account for the
possibility that the first language is nullable:

Dc(L1 · L2) = Dc(L1) · L2 ∪ δ(L1) ·Dc(L2).

The term δ(L1) acts as a canceling or enabling term, since:

{ǫ} · L = L

∅ · L = ∅.



The derivative of a union is the union of the derivative:

Dc(L1 ∪ L2) = Dc(L1) ∪Dc(L2).

The derivative of the complement is the complement of the derivative:

Dc(L) = Dc(L).

In fact, for any standard set operation ⊗ ∈ {∪,∩,−, . . .}:

Dc(L1 ⊗ L2) = Dc(L1)⊗Dc(L2).

6 The derivative of a context-free language

In this section, we’ll show that it is possible to construct the derivative of a
context-free language by transforming a context-free grammar for that language.
We will also discuss optimizations to simplify the computation of the derivative.
The subsequent section will show how the derivative may be harnessed to pro-
duce the parse forest of a string, instead of just determining membership.

Because of the recursion in context-free grammars, the straightforward ap-
proach to computing the derivative does not work. For instance, consider the
derivative of the List language in the preliminaries with respect to x:

Dx(List) = Dx((List · {x}) ∪ {x})

= Dx(List · {x}) ∪ {ǫ}

= Dx(List) · {x} ∪ {ǫ}

= (Dx(List) · {x} ∪ {ǫ}) · {x} ∪ {ǫ}

· · ·

That is, when we attempt interpret the derivative computationally, we can easily
find infinite recursion with no base case. (Of course, this is not a problem for
programming languages that allow laziness, a fact which we will exploit in our
implementation.)

Fortunately, we can construct the derivative based on the context-free gram-
mar representation to avoid ill-foundedness. Given a context-free grammar G =
(A,N,R, n0), the derivative of the language L(G) with respect to the character
c is the language Dc(L(G)):

Dc(L(G)) = L(A,N ′, R′, n′
0), where

– the derivative of a single alphabet character a ∈ A is the null string terminal
or the empty nonterminal:

Dc(a) =

{

ǫ c = a

∅ c 6= a
; and



– for each nonterminal n ∈ N , we define a new, distinct nonterminal, Dc(n) 6∈
N , so that:3

N ′ = N ∪ {Dc(n) : n ∈ N} ; and

– for each rule (n → s1 . . . sm), if the sequence s1 . . . si is nullable, then:

[Dc(n) → Dc(si+1)si+2 . . . sm] ∈ R′,

and if m = 0, then:
Dc(n) → ∅,

and:
(n→ s1 . . . sm) ∈ R′; and

– n′
0 = Dc(n0).

Theorem 1. Context-free languages are closed under the derivative.

Proof. By the prior construction.

6.1 Optimizing the derivative

The aforementioned process for computing the derivative is simple and correct,
but clearly inefficient. It results in a quadratic blowup in rule size with every
derivative. First, it computes the derivative of every rule, whether or not it’s
necessary. In pratice, a derivative rule should be inserted for a symbol n only
once its derivative appears in another rule. Second, if the empty nonterminal
appears in a rule, n→ w∅w′, then the rule should be replaced with n→ ∅. If the
only rule for a nonterminal is the empty rule, then instances of that nonterminal
in other rules should be replaced with the empty set too. The empty nonterminal
arises frequently with derivatives, and if this reduction is applied aggressively,
the grammar will remain a manageable size.

7 Approach 1: Parsing with derivatives of parser

combinators

In this section, we review nondeterministic parser combinators. We then show
how to generalize the concept of the derivative to these parser combinators, and
how to use the derivative to compute a parse forest in a straightforward fashion.

Popular as of late, parser combinators are an elegant mechanism for embed-
ding parsers inside an existing programming language. A type-X parser combi-
nator over an alphabet A is a function, τX , which consumes a sequence of char-
acters and produces all possible parses of (non-strict) prefixes of that sequence.
Formally, a type-X parser combinator consumes a sequence of characters; it pro-
duces a set of pairs; each pair contains a value from the set X and the remainder
of the input after having parsed the value:

τX ∈ TX = A∗ → P (X ×A∗).

3 Borrowing a trick from ordinal theory, we could define Dc(n) = {n}.



Example 1. If we had a parser combinator over non-empty sequences of the
character z, τz∗ : A∗ → {z}∗, then:

τ{z}∗(zzz) = {(z, zz), (zz, z), (zzz, ǫ)} .

Parser combinators must meet two conditions: (1) monotonicity and (2) contrac-
tiveness. A parser combinator is monotonic iff

w ⊑ w′ implies τX(w) ⊑ τX(w′).

Over words, the partial order (⊑) is “is a prefix of,” and over pairs:

(x,w) ⊑ (x′, w′) iff x = x′ and w ⊑ w′,

In addition, parser combinators must be contractive; every string in the output
must be a (non-strict) suffix of the input string:

(x,w′) ∈ τX(w) implies w′ is a suffix of w.

When we want to parse an entire string, with no remainder, we can compute
the full combinator of τX , denoted ⌊τX⌋ : A∗ → P (X):

⌊τX⌋(w) = {x : (x, ǫ) ∈ τX(w)} .

That is, the full combinator discards any parse that didn’t consume the entire
input. Parser combinators do describe a formal language:

L(τX) = {w : τX(w) contains (x, ǫ) for some x ∈ X} .

7.1 Operations or combinators

A parser combinator is a black box. What makes them useful is the ability the
combine them to form new combinators. There are operations on combinators
that are analagous to the operations on formal languages. For instance, combi-
nators may be concatenated, so that τX · τY ∈ TX×Y :

τX · τY = λw. {((x, y), w′′) : (x,w′) ∈ τX(w), (y, w′′) ∈ τY (w
′)} .

In other words, the concatenation runs the first parser combinator on the input
to produce parse nodes of type X , and then it runs the second combinator on
the remainders of the input to produce parse nodes of type Y . In addition to
concatenation, combinators may also be unioned, so that τX ∪ τ ′

X
∈ TX :

τX ∪ τ ′X = λw.τX (w) ∪ τ ′X(w).

It is convenient to turn a string into a parser combinator for itself:

w ≡ λw′.

{

{(w,w′′)} w′ = ww′′

∅ otherwise
∈ TA∗ .



There is an empty combinator as well:

∅ ≡ λw.∅.

Some operations on combinators, such as reduction, have no analogy in the
formal language space. The reduction of combinator τX with respect to the
function f : X → Y , denoted τX → f , maps this function over the output of a
combinator, so that τX → f ∈ TY :

τX → f = λw. {(f(x), w′) : (x,w′) ∈ τX(w)} ∈ TY

Example 2. Parser combinators make it easy to define the syntax and semantics
of simple languages together. For example, for the simple expression language,
where A = {+, *, (, ), 0, 1}, the meaning of an input expression w ∈ A∗ is con-
tained within τN(w):

τN = τ ′
N

∪ τ ′N · + · τN → λ(n1, +, n2).n1 + n2

τ ′N = τ ′′N

∪ τ ′′
N

· * · τ ′
N

→ λ(n1, *, n2).n1 × n2

τ ′′N = 0 → 0

∪ 1 → 1

∪ ( · τN · ) → λ((, n, )).n

For example, (4, ǫ) ∈ τN((1+1)*(1+1)).

7.2 Derivatives of parser combinators

Remarkably, it is possible to generalize derivatives to parser combinators. Even
more remarkably, we can use identities involving the derivative to implement

parser combinators.
The derivative of a parser combinator, Dc : TX → TX returns a new

parser combinator; when applied, the new combinator produces what the original
combinator would return if the specified character were forcibly consumed first:

Dc(τX) = λw.τX (cw)− (⌊τX⌋(ǫ)× {cw}) .

The difference operation in the derivative discards parse trees that can be gen-
erated without consuming the specified character—all those parse trees which
consumed no input. Without the difference operation, it is possible that a deriva-
tive might not contract the input—that (x, cw) ∈ Dc(τX)(w) could happen.

When generating parse trees with derivatives of combinators, we can derive
a straightforward identity from the definition of the derivative (and the mono-
tonicity of combinators) that leads to a naturally recursive implementation of a



parser combinator:

Dc(τX) = λw.τX (cw) − (⌊τX⌋(ǫ)× {cw})

iff Dc(τX)(w) = τX(cw) − (⌊τX⌋(ǫ)× {cw})

iff Dc(τX)(w) ∪ (⌊τX⌋(ǫ)× {cw}) = τX(cw).

Or, from the combinator’s perspective:

τX(cw) = (Dc(τX))(w) ∪ (⌊τX⌋(ǫ)× {cw}) . (1)

A useful optimization exploits the fact that a full combinator, which is not
interested in partial results, obeys a simpler recursive identity:

⌊τX⌋(cw) = ⌊Dc(τX)⌋(w). (2)

This equation is almost the entire parsing algorithm by itself. All it lacks is base
case—a method for parsing the empty string.

7.3 Derivatives under operations

To make this implementation strategy possible, we need to show that it is pos-
sible to compute the derivative of a parser combinator composed of standard
operations. If a combinator is the concatenation of two combinators, then:

Dc(τA · τB) =

{

Dc(τA) · τB ǫ 6∈ L(τA)

Dc(τA) · τB ∪ (ǫ→ λǫ.⌊τA⌋(ǫ)) ·Dc(τB) otherwise.
(3)

The derivative distributes across union:

Dc(τA ∪ τB) = Dc(τA) ∪Dc(τB). (4)

On single-character combinators, the derivative removes a character, or obliter-
ates the combinator:

Dc(c) = ǫ→ λw. {(c, w)}

Dc(c
′) = ∅ if c 6= c′.

The derivative of either the null string combinator or the empty combinator is
the empty combinator:

Dc(ǫ) = ∅

Dc(∅) = ∅.

The derivative of a reduction is the reduction of the derivative:

Dc(τX → f) = Dc(τX) → f .



7.4 Parsing with the derivative of parser combinators

To compute the derivative of concatenation, it is necessary to be able parse
the empty string. Equation 2 is the inductive step, but at the very end of the
algorithm, the combinator must parse the null string to yield the parse forest.
Fortunately, the result of a parser applied to the null string is easy to compute
with a least-fixed-point computation over the following relations:

⌊∅⌋(ǫ) = ∅ (5)

⌊ǫ⌋(ǫ) = {ǫ} (6)

⌊c⌋(ǫ) = ∅ (7)

⌊τX · τY ⌋(ǫ) ⊇ ⌊τX⌋(ǫ)× ⌊τY ⌋(ǫ) (8)

⌊τX ∪ τ ′X⌋(ǫ) ⊇ ⌊τX⌋(ǫ) (9)

⌊τX ∪ τ ′X⌋(ǫ) ⊇ ⌊τ ′X⌋(ǫ) (10)

⌊τX → f⌋(ǫ) ⊇ f.(⌊τX⌋(ǫ)). (11)

This provides the base case of the recursive parsing method.
In summary, to convert a string into a set of parse trees, the string is con-

sumed with the derivative, character-by-character, until the empty string is
reached, at which point, a straightforward fixed point computation computes
the trees that can arise from parsing the empty string. In practice, the cost of
this fixed point computation may be amortized over the lifetime of the parse by
computing it for sub-languages as they are derived.

7.5 Implementing parser combinators with laziness

In an implementation, all combinator arguments to either concatenation, union
or reduction should be computed by need; that is, their computation should
be delayed until necessary, and then the result should be cached. Computing
by need (or at least lazily) prevents an implementation of the derivative from
diverging on recursive languages such as:

X = x → λx.x

L = L · X → λ(x, x).x ++ 〈x〉

∪ X → λx.〈x〉.

In addition, the result of a parser combinator should be implemented as a lazy
stream rather than an actual set, since parser combinators may produce an
infinite number of results.

8 Approach 2: Parsing context-free languages with

derivatives

For regular languages, the goal is determining membership. For context-free
languages, the goal is to construct parse trees. To construct all possible parse



trees for a string, we define a nondeterministic small-step parsing machine that
will emit all possible parse strings as it executes. A second small-step machine
will consume these parse strings and convert them into parse trees.

This approach is particularly well suited to implementing parsing libraries in
untyped languages. This approach is not well suited to typed languages, since
a literal implementation of the parsing machine must use a generic parse-tree
type, or else violate type-safety with casts for reductions. For typed languages,
the parser combinator approach of the next section yields a simpler (type-safe)
implementation.

The goal of a parser is to produce a parse tree. For a context-free grammar
G = (A,N,R, n0), we can describe a generic parse tree as a member of the
recursive structure T :

t ∈ T = A+ (R × T ∗).

In a parse tree, the leaf nodes are terminals, internal nodes are tagged with rules
and children are the right-hand-side of a rule.

Example 3. For the grammar describing the language of balanced parentheses:

B → (B)B

B → ǫ

the parse tree is:

B

( B

ǫ

) B

ǫ

or formally, (B → (B)B, 〈(, (B → ǫ, 〈〉), ), (B → ǫ, 〈〉)〉).

A parse string is a linear encoding of a parse tree containing both nonterminal
markers (written as a bra 〈n|) and reduction markers (written as a ket |r〉). A
bra character denotes the start of an internal node, while the enclosing ket
determines the end of an internal node, and with which rule to reduce.

Example 4. The parse string encoding of the tree from the prior example is
〈B| ( 〈B|B → ǫ〉 ) 〈B|B → ǫ〉 |B → (B)B〉.

To create parse strings over the grammarG = (A,N,R, n0), we first construct
a new grammar G′ = (A′, N,R′, n0), over parse strings of this grammar:

A′ = A ∪ {〈n| : n ∈ N} ∪ {|r〉 : r ∈ R} ,

and for every r ∈ R, if r = (n→ s1 . . . sm), then

(n→ 〈n|s1 . . . sm|r〉) ∈ R′.



Next, we construct a nondeterministic, small-step state machine where tran-
sitions are labeled with parse-string characters. Along any path this machine
takes, it will emit—character-by-character—parse strings. The state of this ma-
chine (Σ) is a context-free language paired with an input string:

ς ∈ Σ = L×A∗.

The semantics of the transition relation (⇒) ⊆ Σ×A′ ×Σ requires one rule for
producing a character:

(L, cw) ⇒c (Dc(L), w),

a second rule for producing bras:

〈n| ∈ first(L)

(L,w) ⇒〈n| (L,w),

and a third (and final) rule for producing kets:

|r〉 ∈ first(L)

(L,w) ⇒|r〉 (L,w).

We can build a second machine—a parsing machine—that consumes the out-
put of the first machine to produce a parse tree. This parsing machine maintains
a parsing stack whose elements are parse trees. Thus, a parsing machine state,
ψ ∈ Ψ , is a parse-string machine state paired with this stack:

ψ ∈ Ψ = Σ × T ∗.

The transition relation has three rules as well. If the parse-string machine emits
a character c ∈ A, the parsing machine pushes it on the stack:

ς ⇒c ς ′

(ς, t) _ (ς ′, c : t),

and if the parse-string machine emits a non-terminal, it pushes that as well:

ς ⇒〈n| ς ′

(ς, t) _ (ς ′, 〈n| : t),

but if the parse-string machine emits a rule, the parsing machine reduces:4

ς ⇒|n→s1...sm〉 ς ′

(ς, 〈tm, . . . , t1〉 ++ t
′) _ (ς ′, (n → s1 . . . sm, 〈t1, . . . , tm〉) : t′).

The parsing machine demonstrates that, even without reduction rules associated
with the grammar, we can use derivatives to construct a concrete syntax tree.

4 The symbol ++ denotes sequence append.



9 Implementation of parser combinators

In this section, we discuss our experiences with an implementation of derivative-
based parser combinators in Scala. Implementations of the combinator library
for both Scala and Haskell are publicly available:

http://www.ucombinator.org/projects/parsing/

Both implementations make pervasive use of laziness and caching to prevent
infinite recursion during both the specification of grammars and the computation
of derivatives.

In the Scala implementation parsers descend from the class Parser[T,A]:

abstract class Parser[T,A] {
def derive (t : T) : Parser[T,A] ;

def parseFull (input : Stream[T]) : Stream[A] ;

def parse (input : Stream[T]) : Stream[(A,Stream[T])] ;

...

def parseNull : Stream[A] ;

def isNullable : Boolean ;

def isEmpty : Boolean ;

...

def || (b : => Parser[T,A]) : Parser[T,A] ;

def ~[B] (b : => Parser[T,B]) : Parser[T,~[A,B]] ;

def * : Parser[T,List[A]] ;

def ==>[B] (f : A => B) : Parser[T,B] ;

}

A Parser[T,A] object represents a parser combinator which consumes streams
over type T to produce a lazy Stream of parse trees of type A. The derivemethod
computes the derivative of the combinator with respect to a token t (and caches
the result); subclasses of Parser[T,A] have to implement this method. The
parseFull method produces all possible parse trees which fully consume the
input; its implementation follows Equation 2:

def parseFull (in : Stream[T]) : Stream[A] =

if (in.isEmpty) this.parseNull

else this.derive(in.head).parseFull(in.tail)

The method parseNull uses a fixed-point computation (Equations 5-11) to pro-
duce the parse forest with respect to this combinator and the null string. The
method parse follows Equation 1:

def parse (in : Stream[T]) : Stream[(A,Stream[T])] =

if (in.isEmpty)

this.parseNull map (_,Stream.empty)

else

this.derive(in.head).parse(in.tail) append

for (a <- this.parseNull yield (a,in))



The properties isEmpty and isNullable are co-computed along with parseNull

using fixed points. The methods ~, ||, *, ==> are syntactic sugar for concatena-
tion, union, closure and reduction respectively.

There are four main combinators, each represented as a subclass of Parser:

class Con[T,A,B] (a : => Parser[T,A], b : => Parser[T,B])

extends Parser[T,~[A,B]]

class Alt[T,A] (a : => Parser[T,A], b : => Parser[T,A])

extends Parser[T,A]

class Rep[T,A] (p : => Parser[T,A])

extends Parser[T,List[A]]

class Red[T,A,B] (p : => Parser[T,A], f : A => B)

extends Parser[T,B]

It is important to note that all parser parameters are passed by name. And, each
is accessed through a lazy field that caches the result upon first reference. This
laziness makes it possible to compute the derivative of recursive grammars: since
the computation of subsequent derivatives is immediately suspended.

The derivative of catenation follows Equation 3, short-circuiting if the first
component is nullable:

protected def internalDerive (t : T) : Parser[T,~[A,B]] =

if (first.isNullable)

new Alt(new Con(first.derive(t), second),

new Con(new ǫ[T,A](first.parseNull),

second.derive(t)))

else

new Con(first.derive(t), second)

The derivative of union follows Equation 4, but short-circuits if it finds either
arm is empty:

protected def internalDerive (t : T) : Parser[T,A] =

if (choice1.isEmpty) choice2.derive(t)

else if (choice2.isEmpty) choice1.derive(t)

else /* otherwise */ new Alt(choice1.derive(t),

choice2.derive(t))

There is a class for parsing an individual token (T), a class for the null string
(ǫ), and a class for the empty language (∅):

class T[T] (t : T) extends Parser[T,T]

class ǫ[T,A] (g : => Stream[A]) extends Parser[T,A]

class ∅[T,A] extends Parser[T,A]

The derivative for each of these is also straightforward, and directly follows their
respective equations.



9.1 Experience with the implementation; the need for closure

Our original discussion of parser combinators did not include the closure opera-
tion, yet we have included it (as Rep) in our implementation. We introduced the
closure operations for three reasons:

1. Regular expressions allow closure, which makes the operation familiar.
2. Many grammars feature sequences, so closures simplify specifications.
3. Parsing sequences can be heavily optimized, leading to performance gains.

Our original implementation did not contain the closure operation, and when we
tested it by parsing large, randomly generated S-Expressions, parsing took time
exponential in the size of the input; it took seconds to parse a hundred tokens,
but over an hour to parse a thousands tokens. Using right-recursive lists reduced
the performance penalty to minutes to parse thousands of tokens, but this was
still unacceptably high.

By introducing the special closure construct, we achieved roughly linear scal-
ing by hand-optimizing the implementation of the parse, parseFull and derive

methods. The derive method follows the expected equation:

Dc(τ
⋆

X) = (Dc(τX) · τ⋆X) → λ(x′,x).x′ : x.

The hand-optimization of the parse methods has them seek the longest possible
parse first, which turns out to be precisely the behavior that programmers expect
out of these constructs—in the same way they expect regular expressions to
produce the longest match. The following table shows parsing time on randomly
generated S-Expressions of increasing orders of magnitude in terms

Number of tokens Parsing time

4,944 10 ms
42,346 43 m
390,553 326 ms
5,049,213 3.9 s
22,155,402 17.1 s

These results suggest that derivative-based parser combinators scale well enough
to be useful in practice.

10 Related work

Grammars and formal languages date to the earliest days of computer science [2].
Parsing is almost as ancient. Even the derivative of a regular expression is
decades old [1]. Given all that has been done, it is surpising to find something
was still left undiscovered. Perhaps not surprisingly, derivative-based parsing de-
fies the classical taxonomies. Historically, methods for parsing have been divided
into two groups: top-down and bottom-up. Derivative-based parsing does not fit
cleanly into either category.



Top-down methods attempt to construct the parse tree by starting from
the root, and predicting (with look-ahead) their way down to the leaves, back-
tracking whenever necessary, and typically caching results from failed attempts.
Top-down methods include recursive descent parsing [19], LL(k) parsing, and
packrat/PEG parsing [13, 18]. Top-down methods differ from derivative-based
methods in that, with the exception of Warth et al. [18], these methods have
not been able to handle left-recursive grammars. Top-down methods, however,
do lend themselves to combinator libraries, a strength which derivative-based
techniques share. Philosophically, neither derivative-based method “feels” like a
top-down parsing method.

Bottom-up methods compute the leaves of the parse tree first, and grow
toward the root. Yet, derivative-based parsing differs from bottom-up methods
too, including abstract interpretation [4, 5], operator-precedence parsing [11, 16],
simple precedence parsing [8], bounded context parsing [12], SLR parsing [7],
LALR parsing [6], LR(k) parsing [14], GLR parsing [17], CYK parsing [10, 20,
3], and Earley parsing [9]. Derivative-based parsing shares full coverage of all
context-free grammars with GLR, CYK and Earley. However, bottom-up meth-
ods tend to be poor choices for parser-combinator libraries, because they tend
to precompile the grammar into a push-down machine. To they extent that
derivative-based methods pre-compile, the cost of that compilation is amortized
across the entire parsing process.

The parsing-machine approach to parse-tree construction has a bottom-up
feel to it, and yet, when one examines the workings of the parse-string-generating
machine, it still lacks a characteristic “bottom-up flavor.” Derivative-based parser
combinators are even less bottom-up than the parsing machine approach. If one
examines the behavior of the derivative-based combinators as they execute, one
can see that these combinators are not constructing parse trees either bottom-up
or top-down; rather, these combinators are slowly transforming and unfolding
the grammar itself into a parse tree; at any given state of the parse, the derived
combinator is really part-forest, part-grammar.

Ultimately, derivative-based methods share the best properties of both words:
they are easy to implement, and easy to implement as libraries (like top-down
parsers), yet they are efficient and expressive (like bottom-up parsers).
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