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Abstract: In this study, a systematic approach to
designing a ladder logic diagram (LLD) for a PLC is
proposed which uses a Petri Net (PN) based modelling
approach. This approach is applied to the programming
of sequential logic in order to improve design efficiency
and to reduce the test and maintenance effort required
for complicated systems. A general method for mapping
PN models to LLDs is developed which can be
implemented in a wide range of applications using a
variety of PLCs. Besides the sequential logic, the
combinational logic of action outputs to the external
environment is also considered to complete a total design
of a LLD for an industrial application. Next, a design
example is presented to clarify the full procedure.
Finally, this approach is compared with other PN based
LLD design in order to evaluate its performance.

1. INTRODUCTION

Programmable Logic Controllers (PLCs) have been the
mainstays in the execution of automation tasks in a
modern factory for more than 20 years. The main
programming language of the PLC, a graphical symbolic
language based on so-called "ladder logic diagrams"
(LLDs), is therefore widely used in automation. Many
industrial users of PLCs prefer to program LLD using
heuristic methods. For simple systems, it is easy to write
down PLC programs using the heuristic method.
However, as a system gets more complex it becomes very
difficult to handle problems effectively [Chirn, J-L,
1999]. These problems have been recognised ever since
LLD has been widely used. Some higher-level design
tools have been proposed to help resolve these problems
[IEC, 1992; David, R., 1995]. Petri Nets (PNs) [Peterson,
J. L., 1981] are a common tool used in this aspect
because of their success in discrete event control systems
(DECS) design. Some researchers have compared PN and
LLD design and have suggested that PNs possess
superior properties than LLDs in terms of design
complexity and response time [Venkatesh, K., et al,
1998, Zhou, M. et al, 1995]. Thus, the PN model is
recommended new design tool instead of LLDs.

Because of the planning and organisational advantages of
PNs, a number of researchers have attempted to develop
methods to transfer PNs which have been developed in
the design phase to LLDs implementations [Sato, T. et al,
1995; Jafari M. A. et al, 1994; Burns, G. L. et al, 1994;
Taholakian, A. et al, 1997]. Furthermore, Uzam, et al
[Uzam, M., et al, 1996] have proposed a token passing
ladder logic methodology (TPLL) to directly convert
more general PNs into LLDs, including the coloured and
timed PNs. These approaches, however, typically focus
only on the design phase rather than the other phases of
the control system development. Their methodologies
aim simply to translate the behaviour of PNs into the
syntax of LLDs. However, problems in the test phase and
later maintenance phase are still outstanding. For
example (see Figure 1), when the bugs or faults occur
during real-time operations, it is difficult for engineers to
trace the LLDs. Therefore, a means to make the program
more readable in order to locate the fault in LLDs is a
vital issue at this stage. Not only design time but also
debugging and maintenance time can be reduced if an
appropriate approach is available. This issue, which has
not yet been focused before, will be taken into account in
this study, through a transparent relationship between
LLD and the PN it represents.

Petri nets
design

Ladder logic
implementation

external
environment

translate
into

react
on

bug/fault

state/condition

Figure 1. Relationships among PN, LLD and real world

Furthermore, this study intends to develop a unified
approach for LLD development which applies to a wide
range of PLCs despite very little standard syntax existing
in PLC programming. Moreover, the more general
topology of PNs is considered in this study to cover
wider applications. Apart from generating the LLDs
which can implement the sequential control behaviour of
a PN model, the combinational logic of output actions to
the external environment in a complex system is also
taken into account to achieve a complete PLC
application. This has not been established in previous
work, yet is a critical element in developing an
appropriate maintenance and monitoring strategy. The
details are explained in the following sections.

2. DESIGN METHOD

The proposed conversion method from PN to LLD is
developed in this section. The basic concept of PN is
introduced first. Then, a mapping method from a
primitive PN to a LLD is presented. This method is then
modified to make sure that it can be applied to various
PLCs, and extended to the more general topological
structure of PN. Next, a simplified mapping is developed
which simplifies the application in most cases. Finally,
the issue of internal conditions and the action outputs is
considered to develop a complete program for the PLC.
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2.1 A Primitive Mapping Rung

Before developing this approach, the basic definition of
PN is introduced first. PNs consist of four basic symbols
(see Figure 2) [Peterson, J. L., 1981] :

(1) a place, which denotes the state of system, and is
represented by a circle.

(2) a transition, which denotes the events or conditions
that can occur in the system, and is represented by a
bar.

(3) an arc, which denotes the connection between places
and transitions, and is represented by an arrow
between a place and a transition.

(4) a token, which denotes the currently active place, and
is drawn as a black dot within a place.

As soon as a place obtains a token, the state of this place
becomes active. This place is called a marked place. At
this time, the following transition of this place would be
firing. After firing, this place returns to its idle status
again and the token is transferred to the following place.

Pit i-1 t iPi-1 Pi+1

Figure 2. A simple PN model

There is generally no unique way to describe the
sequential behaviour of a system. A state/condition
model is frequently suggested to describe the discrete and
concurrent control system. PNs and LLDs are both
suitable tools to design a state/condition model. In PNs,
each place can be regarded as one of the states in the
system. A marked place means its respective state is
progressing. The transition can represent the condition of
changing one state to another state. Likewise, in LLD, the
output coil can represent the status of the place in a PN,
and the combinational logic of input contacts can
represent the transition of a PN. Following relatively
simple rules, PN models can be easily mapped to LLDs.

A LLD rung shown in Figure 3 is a self-holding circuit,
which  has been widely applied in LLD programming. It
can be derived to implement the basic behaviour of a
place in a PN: The output coil P in the LLD rung
represents the status of place P in a PN. When the coil is
energised, it means that its corresponding place is
marked; otherwise it is idle. The contacts L and U
represent the marking and unmarking conditions of the
place P respectively. When contact L is turned on, the
marking status of P is "latched on". Even thought L is
turned off afterwards, P still remains on because of the
self-holding property of the circuit. The status of P does
not return to the off state until the normal-close contact U
is turned off.

L

P U

P

Figure 3. A self-holding circuit

The basic rung in Figure 3 is now used to illustrate the
conversion of the basic structure shown in Figure 2 into
LLD. Firstly, considering the latched condition of Pi in
Figure 2, we note that Pi can be marked if and only if its
previous place Pi-1 is marked and its input transition ti-1 is
fired. The latched condition can be written in Boolean
notation as

1i1i tPL −− ⋅= (1)

In the same manner, the unlatched condition of place Pi

will occur when ti is fired. The unlatched condition can
be expressed as

ii tPU ⋅= (2)

The unlatched rung is defined as the lower part of the
self-holding circuit, which comprises both unlatched and
self-holding properties. Its combinational logic can be
expressed as

UP ⋅ (3)

After substituting equation (2) into expression (3), the
combinational logic of unlatched rung becomes

iiiiiiiiii tPtP)t+P(P)t(PPUP ⋅⋅ ==⋅=⋅⋅=⋅ (4)

Therefore, the mapping rung can be obtained to represent
the behaviour of Pi in Figure 2 and shown in Figure 4.

Pi

Pi t i

Pi-1 t i-1

Figure 4. A primitive mapping rung

However, as we will show in the following section, this
mapping method can result in a critical implementation
error.

2.2 A Modified Mapping Rung

The mapping method developed above was applied to
different PLC systems to test its performance. Two
scanning modes are usually employed in PLC systems to
evaluate LLDs during operation. The first is rung by rung
scanning, or horizontal scanning, and the other is column
by column scanning, or vertical scanning [Kissell, T. E.,
1986]. In our test, the mapping method developed in
Section 2.1 can run well in vertical scanning type PLC,
but, unfortunately, cannot perform the expected control
sequence in horizontal scanning type PLC. The reason is
explored below and then a modified mapping method is
developed to solve this problem.

The converted rungs for places Pi and Pi+1 of Figure 2 are
shown in Figure 5. The purpose is to examine its
performance in horizontal scanning type PLCs. Pi is
initially assumed to be a marked place. That is, the coil of
Pi is energised. Coil Pi is turned off after contact ti turns
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on. In theory, Pi+1 will be marked afterwards because
contact ti has been turned on in line C. In fact, the coil
Pi+1 cannot be latched in line C because Pi has been
turned off after execution of line B. Due to the
asynchronous characteristics of the LDD execution, the
token-passing function of PNs cannot be repesented by
this mapping method. The control sequence can be
depicted by Figure 6 to describe why the control
sequence cannot continue.

Pi

Pi t i

Pi-1 t i-1

t iPi

t i+1

Pi+1

Pi+1

A

B

C

D

Figure 5. A mapping result of Figure 2

Pi
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Pi+1

Pi

t i

Pi+1

Pi

t i

Pi+1

(a) (b) (c)

ti is firing Pi is unlatched Pi+1 can not
be latched

Figure 6. The sequence of token-passing in Figure 5

A revised control sequence to implement the token-
passing property in an asynchronous condition can be
found by swapping the unlatched and latched sequences
as shown in Figure 7. After ti is triggered, Pi+1's latched
condition occurs earlier than Pi's unlatched condition. As
a result, the token can be passed to the following place
successfully by this means.

Pi

t i

Pi+1

Pi

t i

Pi+1

Pi

t i

Pi+1

(a) (b) (c)
ti is firing Pi+1 is latched Pi is unlatched

Figure 7. Revised sequence for Figure 5

One method to execute the sequence of Figure 7 is to
modify the original unlatched condition in Equation (4).
Observing Figure 7, if the unlatched condition of Pi is
revised to become

1iii PtPU +⋅⋅= (5)

then the condition will not hold until the status of Pi+1

becomes true. Therefore, the condition corresponds to the
sequence of Figure 7.

To implement the modified mapping rung, the unlatched
rung can be changed to

)Pt(P)Pt(PPUP 1+iii1+iiii +=⋅⋅=⋅ ⋅⋅ (6)

The final modified mapping rung is shown in Figure 8. It
is applicable to both horizontal and vertical scanning
types of PLCs.

Pi

Pi

Pi-1 t i-1

t i

Pi+1

Figure 8. A revised mapping rung

The result can be further extended to a more general
structure of PNs. This generalisation can be divided into
four additional types of element and are shown in Figure
9. Types I and II represent for the generalised mapping of
latched rungs, while types III and IV represent the
generalised mapping of unlatched rungs. The derivation
of type IV is further explained below. Type IV contains a
place P which has multiple output transitions. The
unlatched condition of the place P will hold after any one
of the output transitions fires. It can be expressed as

∑
=

⋅⋅=

⋅⋅++⋅⋅+⋅⋅=
n

1i

ii

nn2211

PtP

PtPPtPPtPU L

(7)

The unlatched rung can be obtained by substituting
equation (7) into (3). It can be written as

∏
=

+⋅=⋅
n

1i

ii )tP(PUP (8)

2.3 A Simplified Unlatched Rung

A simplified set of mapping rungs for PN types III and
IV is now introduced to decrease the use of contacts as
well as to simplify the structure of rungs, especially in
more complicated control systems. Recalling from the
previous modified mapping method that equation (5) can
be used to implement the expected control sequence of
Figure 7, an alternative modified unlatched condition can
be written as

1ii PPU +⋅= (9)

This is a looser condition compared with Equation (5).
Observing Figure 7, if ti is not firing, Pi+1 will never be
marked. Whereas Pi+1 will be marked when ti is firing.
That is, one of the conditions of ti and Pi+1 is redundant.
Hence, removing the condition ti from Equation 5 does
not change the function we expect.

This revised mapping can be applied to simplify the
unlatched rungs of Figure 9 and the result is shown in
Figure 10.
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Figure 9. Generalised mapping for a place P
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Figure 10. Simplified unlatched rungs

Remark: We note here that this conversion is similar to
the concept used in [Jafari M. A. et al, 1994]. However,
the use of this simplified mapping should be avoided in
some cases. Figure 11 is an example of failure in the use
of this simplification. This is because Pi's looser
unlatched condition (see Equation (9)). Pi will lose its
token when Pi+1 is marking, although it is not triggered by
its own transition ti. This mapping leads to a malfunction
in control flow. Therefore, the stricter unlatched
condition of equation (5) should be used in place of Pi

and Pi+1 to avoid wrong behaviour. In general, the
simplified mapping method can be applied only in a
place whose output transition is the only input transition
of its following place.

Pi+1

ti

P'iPi

t'i

Pi+1

ti

P'iPi

t'i
t'i fires

Figure 11. A failure example of simplified method

3. INTERFACING THE PLC TO THE
EXTERNAL ENVIRONMENT

In this section we briefly discuss the connection between
the PN based LLDs and the external environment that the
logic sequences in the PLC is controlling.

3.1 Auxiliary Tables

An "external condition table" linking external input data
to the PLC is also proposed to aid PNs to synthesise a
complete structure of LLD in sequential control flow.
The transitions of PNs represent these external
conditions, such as the status of a limit switch, or a
complex combinational logic. Therefore, the external
condition table is built to list all the conditions in the
system. It can assist the designers in developing their
applications during the programming and testing period.
An example of an external condition table is presented in
the next section.

3.2 Action Rungs Implementation

The method to design action rungs which specify
commands to the external environment is developed next.
So far, all the topological structure of PNs (including
their external conditions), has been investigated to build
up the equivalent sequential behaviour in LLD form.
However, another important issue is to design the output
action which connects to the external environment at
each state. (For example, to turn on/off a lamp, to
activate/deactivate an actuator)

An important issue in developing successful LLDs
should be emphasised here. The output coil of an action
must occur only once in the program. Otherwise, a
malfunction of the action could be activated by the
interaction of other rungs which have the output coil of
the same address. An action table is therefore proposed to
aid the design of the action rungs. A suggested form of an
action table is shown in Table 1.

The columns for "Switch on" and "Switch off" describe
the conditions when the action is activate and deactivate
respectively. Two types of trigger signals, level trigger
and edge trigger, are often used to start or stop an action.
A symbol with superscript asterisk denotes an edge-
triggering signal; otherwise, a symbol without superscript
asterisk designates a normal level-triggering signal.
Normally, if an action is started by an edge-triggering
signal, it will be stopped by another edge-triggering
signal. Some simple examples of actions are given in
Table 1 and their corresponding rungs illustrated in
Figure 12.

Coil
No

Action name Switch On Switch Off Remarks

1 Operating
light

P1+P2 light on when P1 or P2 is
marking

2 Motor
rotating

*
1P *

2P motor starts at P1 and
stops at P2

….

Table 1. An example of an action table
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A1P1

P2

A2P1

A2 P2

*

*

Figure 12. An example of action rungs

4. A DESIGN EXAMPLE

An example is now outlined to clarify the full PN to LLD
design procedure. A test station in a transport line for
detecting defective products is used as the design
example. The condition of a product is checked when the
product enters this test station. If a product defect is
found, it is expelled; otherwise it is passed through and
goes to the next station. The mechanism for this example
is illustrated in Figure 13.

in-position sensor

defective
product

accepted product

expelling
rod

expel
detector

pass
detector

defect detector

exit detector

Figure 13. Layout of a design example

The control sequence for the test station is described by
the PNs diagram in Figure 14. In this figure, five places
(P1 to P5) represent the progressive states for operating
the test station, while six transitions (T1 to T6) decide the
sequence of these states. Four actions (A1 to A3) are
activated in state P2 to P5 respectively, to perform the
external actions.

An Omron PLC C-200H [Omron, 1994] is employed to
implement the function of the PNs. The descriptive tables
of transition (external condition) and action for the PNs
are tabulated in Table 2 and Table 3. The converted LLD
of the PN model and corresponding actions are shown in
Figure 15 and Figure 16 respectively.

waiting for a coming
production (A3)

power on

production in position

trigger the defect
detector (A1)

detect okdetect fail

set expelling rod at
passing position (A2)

set expelling rod at
expelling position (A2)

at passing positionat expelling
position

deactivate the defect
detector (A1)

production has left

P1

P2

P3 P4

P5

T1

T2 T3

T4 T5

T6

Figure 14. A PN model of the case study

Trans.No ti it  (optional) Remarks

T1 0000.00 Product in position
T2 0000.02 Detect fail
T3 0000.01 Detect ok
T4 0000.04 At expelling position
T5 0000.03 At passing position
T6 0000.05+00

00.06
0000.060000.05 ⋅ Deactivate the defect

detector

Table 2. An external condition table

Action No Coil No Action name Switch On Switch Off
A1 0001.00 Activate defect

detector
P2 P5

A2 0001.01 Set the position of the
expelling rod

P3 P4

A3 0001.02 Turn on the busy
indicator

The others P1

Table 3. An action table for the case study

253.15power on
P1

100.00

100.04
P5

000.05
T6-1

100.00
P1

P2

100.01

100.01
P2

100.00
P1

000.00
T1

100.01
P2

000.06
T6-2

100.02
P3

100.03
P4

P3

100.02

100.02
P3

100.01
P2

000.02
T2

100.04
P5

P4

100.03

100.03
P4

100.01
P2

000.01
T3

100.04
P5

P5

100.04

100.03
P4

100.02
P3

000.04
T4

100.00
P1

100.04
P5

000.03
T5

Figure 15. Converted LLD for sequential control

A1

001.00

001.00
A1

100.01
P2

100.04
P5

A2

001.01

001.01
A2

100.02
P3

100.03
P4

A3

001.02100.00
P1

Figure 16. Converted LLD for output actions

Note that the simplified conversion can still apply to
places P3 and P4 because these two places will not be
marked at the same time. Therefore, the failed situations
described in Figure 11 will not occur in this case.
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5. EVALUATION

In this section, the characteristics of this approach is
evaluated. Five criteria are proposed as a means of
comparison with five other approaches:

(1) Simplicity. This index is used to assess how easy a
method converts PN to LLD. The criteria include (i)
Whether a direct mapping can be achieved without
intermediate steps, (ii) Whether there is no need of
extra knowledge.

(2) Portability. This index is used to assess how
applicable a method is to a range of commercially
available PLCs. The criteria include (i) The range of
LLD instruction types employed, (ii) The ability to
operate with different scanning types.

(3) Completeness. This index is used to assess how
completely the conversion addresses the range of
requirements needed for a fully operating LLD. The
criteria include (i) sequential logic implementation in
control flow, (ii) combinational logic implementation
in action outputs.

(4) Generalisation. This index is used to assess the range
of applicability to different PN model types, such as
single state machine, ordinary, timed and colour PN.

(5) Testability. This index is used to assess the ease with
which the design can be tested. The criteria include
(i) The topologies matching between the PN and its
LLD, (ii) whether the status of PN's places and
actions in the PLC is traceable (iii) Ease of
documentation.

Comparison results and comments for each approach are
presented below and also in tabular form (see Table 4).

I: The approach in the study - apply to Boolean PNs
(maximal capacity of each place is equal to one)

II: Burns [Burns, G. L. et al, 1994] - need intermediate
boolean expressions, no considerations for output
action implementation, apply to Boolean PNs, no
action output traceable

III: Jafari [Jafari M. A. et al, 1994] - no considerations
for output action implementation, apply to event
graph PNs, no action output traceable

IV: Sato [Sato, T. et al, 1995] - need to design a
redefined PN and sequence table, apply to Boolean
PNs , not complete mapping from PN to LLD

V: Taholakian [Taholakian, A. et al, 1997] - redefine
PNs and symbols, information of sequential status is
lost, state can not be traced, not consider the general
PNs, output action rungs are not available

VI: [Uzam, M., et al, 1996] - special LLD instructions
are employed, no considerations for combinational
logic of output action

The results in Table 4 indicate that the proposed
developing method compares favourable with existing
methods in all areas apart from its ability to handle
extended PNs, such as timed PNs and coloured PNs.
This is a subject of ongoing research.

Indexes I II III IV V VI
simplicity  l  m  l  l
portability  l  l  l  l  l
completeness  l  l  m
generalisation  m  m  m  l
testability  l  m  m  l
l: good  m: fair  blank: bad

Table 4. Comparison results for each approach
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