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Abstract 
 
Petri nets are graphical and mathematical modeling tools which are gaining popularity in recent years. It is a tool 
for the representation of complex logical systems, such as synchronization, sequentially, concurrency and 
conflict. The present introduction highlights some of the formalism of Petri nets with special emphasis on 
reachability and coverability analysis. We have also extended our topic by explaining place & transition 
invariance with examples. 
 
1. Introduction 

 
The concept of Petri net (PN) was introduced by C.A. Petri in 1962[4]. It provides an elegant and 

useful mathematical tool for modeling dynamical systems and their behaviors. Being graphical tool, it helps in 
describing the flow of activities in a complex system. Petri nets are particularly suitable to represent in a natural 
way logical interaction among parts or activities in a system. The dynamical systems that can be modeled by PN 
are synchronization, sequential concurrence, mutual exclusion and conflict. The properties characterize the 
discrete event dynamical systems whose examples include industrial automation, communication systems and 
computer based systems, making Petri net a promising tool and technology for various applications to industrial 
automation[14]. 
 The most successful application areas of Petri nets have been the modeling and analysis of 
manufacturing systems [5]. In this context Petri Nets were used to represent simple production lines with 
buffers, machine shops configurations, automatic production systems, flexible manufacturing systems, 
automated assembly lines, resource sharing systems, just-in-time systems 
[8]. 
 Petri nets as a mathematical tool, use in performance evaluation of both deterministic and stochastic 
systems. The performance evaluation can be conducted using either analytical technique based on solving 
underlying (semi) Markov process or discrete event simulation [7].The use of models which incorporate time 
functions having probabilistic distributions allows one to obtain production rates for the manufacturing system 
models, throughputs, delays, capacity for communication and microprocessor system models, as well as critical 
resource utilization and reliability measures for underlying systems [7]. These classes of Petri nets are now a 
days extensively used to model and study performance of multiprocessor systems, multiprocessor system buses 
[8], DSP communication channels [9], parallel computer architecture [3] and parallel and distributed algorithms 
[10].  
 The main objective of the present paper is to introduce the fundamentals of Petri net concepts to the 
researchers and practitioners who are actively engaged in the working areas of modeling analysis of industry 
oriented systems.In this present chapter we focus on ordinary Petri nets. 

The paper consists of five sections.Section 1 represents the introduction to PN. In section 2, symbols 
notations and description of Petri nets are given. The reachability and coverability is given in section 3, section 
4, represents the structural analysis of Petri nets. In section 5, we represent, Petri net  invariant problems. The 
conclusion is given in section 6. 
 
2 . Symbols, Notations and Descriptions of Petri nets 
 
A marked PN is a tuple (P, T, F, W, I0, M0), where 

 P= {p1, p2, p3………..pn} is the set of n- places exhibited graphically by circles. 
 T= {t 1, t2,…..tm} is the set of m- transitions drawn as bar pictorially. PU T ≠ Ø and P∩ T = Ø 
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 F ⊆ (P X T) U (T X P)  is the set of arcs (flow relation)  
 W:F N = {1,2,…….} is the weight function  
 I : P X T-N is an input function that defines directed arcs for place to transitions where N is the 

set of non-negative integers. 
 O: T X PN is the output function which defines the directed arcs from  transition to places 
 Mo: PN is the initial marking. 

 
If I(p,t) = k, O (p,t) = k then there exist k directed (parallel) arcs connecting place p to transition t 
and (transition t to place p). If I(p, t) = O(t, p) = 0 then, there exist no directed arcs connecting p to 
t ( t to p) . Frequently, in the graphical representation, parallel arcs connecting a place to transition 
and transition to place are represented by a single directed arc labeled with its multiplicity or 
weight k. 
 
Graphically a PN is a bipartite directed graph with two kinds of nodes (places and transitions) and 
the edges (arcs) connecting places to transition or vice versa. A place is an input place to a 
transition if there exist a directed arc from place to transition. A place is an output place if there 
exists a directed arc from transition to place. This elementary set may be used to represent various 
aspects of modeled systems. For instance, input output places may represent preconditions, (post 
conditions) and the transitions represent events. In the simplest form, a PN may be represented by a 
transition together with input and output places which may represent the availability of 
resources.The transitions represents their utilization, and the output places represent the release of 
the resource. See the figure below. 
 
 
 
 
 
 
 
 

     
   

Figure -1  Multiple arcs 

 
 
 
 
 
 

 
 
 
 
 
 

 
Figure -2  Compact form of Multiple arcs 
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                           Figure - 3 

Example: 
 

The set in Fig- 3 consist of five places and four transitions, depicted by circles and bars respectively. p1 is input 
place of transition t1 and p2, p3 are output places of transition t1. 
In order to study the dynamic behavior of a PN, in terms of its status and their changes, each place may be 
assigned either none or a positive number of tokens, marked by black dots, as shown in figure- 3 in place p1. 
The presence or absence of a token in a place can indicate whether conditions associated with the place are true 
or false. For a place representing the availability of resources, the number of tokens in the place indicates the 
number of available resources. At any given time instance, the distribution of tokens on places called Petri Net 
marking, defining the current state of the modeled system. A marking of a PN with places is represented by 
(nx1) vector. M, which is denoted by M (p) are non-negative integers representing the number of tokens in the 
corresponding places. A PN containing tokens is called a marked Petri Net. For example, PN exhibited in Fig- 
3,  Mo= (1, 0, 0, 0, 0) T 

 By changing distribution of tokens on places which may reflect the occurrence of events or execution 
of operations, thus exhibiting the dynamic behavior of PN. The following rules are used to govern the flow of 
tokens on places. 
 A transition is enabled if all its input places carry at least one token. 
 An enabled transition fires by removing one token per arc from the input place and adding one token 
per arc to each output place. 

 
Given an initial marking M0, the reachability set of all markings resulted by repeated firing of transitions. 
Moreover, we can say a transition tk is enabled in marking Mo if: 

   For any  1.M      ),
k

I(t ii p  

The marking M 'obtained from M0 by firing tk is said to be immediately reachable from M0 and the firing 
operation is denoted by M0          M ' The token counts in M '  is pictorially represented by Fig- 4 and given by as 
follows. 
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Figure - 4 

 
                      Figure - 5       Figure - 6 

 
                         Before firing t1                                                   After firing t1 

The modeling power of PN can be increased by adding zero testing ability i.e. the ability to test whether a place 
has no token. This is achieved by introducing an inhibitor arc. The inhibitor arc connects an input place to a 
transition and pictorially represented by an arc terminated with a small circle. 
      A PN with inhibitor arc shown in Figure- 7 

  
 
                                                         Figure - 7     PN with inhibitor arc 
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The presence of an inhibitor arc connects to input place to transition, changes the transition firing conditions. In 
the presence of inhibitor arc a transition is regarded as enabled if each input place, connected to the transition by 
a normal arc (an arc terminated with an arrow) contains the number of tokens equal to the weight of the arc and 
no tokens are present on each input place connected to transition by the inhibitor arc. The transition firing rules 
are same as for the normally connected places. The firing however, does not change the marking in inhibitor 
arcs connected to places. A transition without any input place is called a source transition, and one without any 
output place is called a sink transition. A source transition is unconditionally enabled, and the firing of sink 
transition consumes tokens, but does not produce any. 
A pair (p, t) is called a self loop if p is both an input and output place of it. A Petri Net is pure if it has no self 
loop. A PN is ordinary if all its arc weights are 1’s. 

 
Figure - 8 Self loop removals 

 
3. Basic Properties of Petri nets 
 
           3.1.- Reachability Graph Analysis   

 
Petri nets being mathematical tools posses a number of properties in the context of modeled systems. Two 
types of properties such as behavioral and structural are important. The behavioral properties are marking 
dependant of the Petri nets .The structural properties, on the other hand are independent of initial marking 
of   Petri nets. In behavioral properties, we intend to discuss reachability, boundedness, conservativeness, 
liveness, reversibility and home state. 
Reachability is a fundamental basis for verifying the dynamic properties of PN. A    sequence of firings 
will result in sequence of markings. A marking Mn is reachable from a marking M0 if there exist a 
sequence of firings that transforms Mo to Mn.The firing sequence is denoted by σ =M0t 0 M1t 1 M2 t 2……. 
M0 t n or simply by σ and we write M0 [σ >Mn]. The set of all possible marking reachable from Mo is a set 
denoted by R(Mo).The reachability problem is decidable. But it takes at least exponential space (time) in 
general case. The equality problem, i.e. L (N', Mo) = L (N', Mo) is undecidable for two Petri Nets N and 
N'.Undecidability means there is no algorithm for determining if L (N, Mo) = L (N', Mo). 
 
Reachability is an important issue in designing distributed systems. The question is whether the system 
modeled with Petri net, exhibits all derivable properties, as specified in the requirements specification, 
and no undecidable one. Firing enabled transitions sequentially, the system changes from one into another 
state. The sequence of firings of transitions which would result in transforming a making Mo to Mi .where 
Mi represents the specific state and the sequence of firings represents the required functional behavior.The 
firing sequence is denoted by σ =Mot1 M 1t2……. M ntn or simply by σ and we write M0 [6>Mn]. The set 
of all possible marking reachable from M0 is a set denoted   by R (M0). The set of all firing sequence is 
denoted by L (M0).The reachability problem is decidable, but it takes at least exponential space (time).In 
general . The equality problem L (N', Mo) = L (N, Mo) is undecidable for two Petri nets N and N'. 
Example –2 Consider the following Petri net and the corresponding firing sequence producing the  
reachability tree in  fig-9.  

Arundhati Lenka et al / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 3 No.4 Aug-Sep 2012 609



 
Figure - 9 

                 M0    = (1, 0, 0, 0, 0, 1) 

                     t1 

                M1    = (0, 1, 0, 1, 0, 1) 

t2  t3 

   M2= (0, 1, 0, 1, 0,1)          M4= (0 ,1, 0 ,0 ,1, 1) 

                           t3                         t2  

           M3= (0 ,0 ,1, 0, 1,1)              M3      

             t4                 

                M0      

           Figure - 10 Rechability Tree 

 
Figure -11 

3.1 Coverability tree 

Given a PN (N, M0) with initial marking M0, we can obtain many “new” markings by firing the number of 
enabled transitions. From each marking we can again reach more markings. The process gives a tree 
representation. Nodes represent marking generated from M0 (root) and its successors arc represent the transition 
firing which transforms one marking to another. The tree will go infinitely large if the set is unbounded. To keep 
tree finite a special symbol ω is introduced which can be thought of “infinity”. Having the property that ω > n 
for any integer n, ω+n = n+ ω = ω, ω - n = ω.    
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Figure-12 

 

 
   Figure-13 
 

 THE ALGORITHM FOR COVERABILITY TREE 
 
Step 1: Consider the initial marking M0 as the root and tag it ‘new’. 
Step 2: If the new marking from M0 exist do the following: 
a) If M is identical on the path from M0 to M, then tag M as ‘old’ and perform another new marking 
  by    firing other enabled transition. 
b) If no transition is enabled at M tag M as ‘dead end’. 
c) For enabled transition at M do the following for each enabled transition t at M. 

o Obtain a marking M’ that results from firing t at M. 
o On the path from M0 to M if there exists a marking M' such that M' (p) ≥ M'' (p) for each place 

p     and M'   ≠ M'', i. e M''is coverable by M' that replace M'(p) by ω for each p such thatM' 
(p) ≥ M'' (p) ''may be M0 also. 

o Introduce M'  as a node and draw as arc with label t from M to M'  and tag M' as “new”. 
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The  above algorithm is illustrated for the following PN of Fig - 14 
 

 

 
 
Figure-14 

 

 
 

            Figure-15 

 
         P = {p1, p2, p3) 

T = {t1, t2, t3, t4} 

M0 = (1, 0, 0) 
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Example      

 
Figure-16  A  PN graph with input and output functions 

 

 
 

                                  Figure-17    Reachability graph 

 
 

 
P = {p1  p2  p3  p4  p5} 
 
T = {t1  t2 t3 t4  t5} 
 
I (t1) = { p1}     O (t1) = { p2 p3} 
 
I (t2) = { p2}     O (t2) = { p4} 
 
I (t3) = { p3}     O (t3) = { p5} 
 
I (t4) = { p4}     O (t4) = { p2} 
  
I (t5) = { p4  p5}   O (t5) = { p1} 

 
M1 = (1, 0, 0, 0, 0) 
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                                Figure- 18    Mutual exclusion problem 

 
The initial marking M0 = (1, 0, 0, 1, 1, 0, 0) 

 
3.2 Boundedness and Safe ness 
 
A Petri net is said to be k-bounded if the number of tokens in any place p Є P is always less or equal to k (k 
being a non negative integer) for every marking M reachable from  initial marking  M0, M Є R (M0). A Petri net  
Shown in fig-19 is safe. 
 
 
 
 

    
 

                            Figure- 19     Petri net is safe 
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An example of Perti net which is unbounded is  shown in fig-20         

 
Figure- 20    Unbounded Petri net 

 
3.3 Conservativeness  

 

 A Petri net is conservative it the number of tokens is preserved in each marking when transition fires. 
Its weights are associated with the place, then a Petri net is conservative if there exists a vector w, w= (w1, 
w2….wm), where m is number of places, and w(p) > 0 for each p Є P such that the weighted sum of the tokens 
remains constant. That is M0 Tw = MT W for any marking reachable for M0. Consider the Petri net below.  

 
Figure- 21   Petri net is conservative with respect to ω [1, 1, 12, 1,1] 

 
M0 = (1, 1, 0, 0, 0) T 
By firing transitions t1 and t2 successively  
We obtain M1=(1,1,0,0,0)T and M2=(0,0,0,1,1) T respectively. It is obvious that 
M0 Tw = M1 Tw = M2Tw = 2 
If a Petri net is conservative with respect to a vector with all elements equal to one i,e (sum vector) then the net 
is strictly conservative. Consider the example in Fig-22. 
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Example 

 
Figure -22    Petri net, strictly conservative. 

 
 Here w = [1,1,1] 
 
M0 = (1,0,0)T        t1        M1 = (1,0,0) T          t2               M2 = (1,0,0) T        t3        M3 = (1,0,0) T = M0

     

         

M0
T w = M1

T w = M2
T w = 1 

 
3.4  Liveness  
The concept of live ness is closely related to the dead lock situation which has been studied extensively in the 
context of operating systems. A Petri net is said to be live (or equivalently m0 is said to be live marking). No 
matter what marking has been reached from M0, if it is possible to ultimately fire any transition of the net by 
progressing through some further firing sequence. Alive Petri net guarantees dead lock free operation. 
Example 

 
Figure - 23     Live Petri net 

Liveness is an ideal property of many systems, it is too costly to verify this strong property for some complex 
systems such as operating system of a large computer for this reason, different levels of live ness for transition 
to and marking Mo were introduced. 
A transition t in a Petri net is said to be: 
Lo-live (or dead) if there is no firing sequence in L (M0) in which t can be fired.  
L1-Live (Potentially friable) if t can be fired at least once in some firing sequence in  L (M0). 
L2-live   if t can be fired at least k times in some firing sequence in L(M0) given any positives integer  k. 
L3-Live if t can be fired infinitely often is some fixing sequence in L (M0) and  
L4-Live (or live) if t is L1-live (potentially friable) in every marking in R (M0) 
 
 
 

Arundhati Lenka et al / Indian Journal of Computer Science and Engineering (IJCSE)

ISSN : 0976-5166 Vol. 3 No.4 Aug-Sep 2012 616



Example: 

 
Figure – 24 

 

A Petri net with different levels of live ness of transitions. 
Transitions t0, t1, t2, and t3 and L0, L1, L2 and L3 live respectively.  
 
3.5 Reversibility and Home State.  
 
Reversibility and Home State are important issue for error recovery in manufacturing systems.  These systems 
are required to return from the failure state to the preceding correct state. A Petri net with initial marking Mo is 
said to be reversible if for each marking M in R (M0), Mo is reachable form M. A Petri net with marking Mi is 
said to be a home state if for each marking M in R (M0), Mi is reachable from M. The Petri net show in Fig-25 is 
reversible and the Petri net shown in Fig- 26 is non reversible. 

   
                Figure-25 Reversible     Figure – 26 Non reversible    
 
4. State Space Analysis 
A The incident matrix notation is an ultimate way of expressing input and out put function .Let A denote 
incidence matrix of dimension n x m. 
(Where n is the number of transitions and m is the number of places). The elements of the incidence matrix are 
defined as aij

+ = aij
+- aij

- where aij
+ -  i,e the number of arcs connecting transition ti to output place pj, aij

-
 . 

aij
+ = 0 (ti,  pj ), and aij

- is equal to the number of arcs connecting  transition ti to input place 
 pj (aij

-= I(pj, ti) .When transition ti fires,  aij
+ represents the number of tokens deposited  on out put place pj,  aij

-

represents the number of tokens remove from the  input place pj, aij
 represents the change  in the number  of 

tokens in place pj. So, transition ti is said to be enabled in marking M iff 
 aij

- ≤ M (pj), i= 1,2,3,4. . . . . . . . . . .m.    Eq    (1) 
For Petri nets with self loop aij=0 for place pj and transition ti . We assume that the net is pure (no self loops). 
The state equation for a state Petri net represents a change in the distribution of tokens on places (markings) as a 
result of transition firing. The equation is defined as follows: 
Mk=Mk-1+ ATuk, k = 1, 2, 3, 4     Eq     (2) 
Mk is mx1 column vector  representing marking Mk immediately reachable from a marking Mk-1 after firing 
transition ti .The kth firing vector uk , an nx1 column vector has only one non zero entry 1 in the ith position  
represents a transition ti firing in kth firing of the sequence of firing starting with  initial marking M0 .This  entry 
corresponds to ith row of the incidence matrix A, which represents a change of a matrix as a result of firing 
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transition ti .The matrix equation is  useful  in studying the reach ability problem .We illustrate the concept by 
the following example. 

 
                                                    Figure - 27 

Initial marking M0= (1, 0, 0, 1, 1, 0, 0) T 
The firing sequence σ = t1t2t4, each transition fires once. Thus x = (1, 1, 0, 1, 0, 0) T 
The state equation: 
M0 + ATx = M1                                                  Eq   (3)                                                                                                     
 

AT =  

 

 

 

 

 

M1  =  (0, 0, 1, 0, 0, 1, 0) 
x = (1, 1, 0, 1, 0, 0) T 
The equation M0 + ATx = M1 holds good 
Thus M1 is reachable from M0 
Consider the example in fig- 28 
Example- 

                                    
                                                    Figure -28 

M0 = (1, 0, 0, 0) T   no transition can be fired. 

The incidence matrix 

A = -1 1 -1 0 

  1 -1 1 1 

 

AT = -1 1 

   1          -1 

  -1 1 

   0 1 

-1 0 1 0 0 0 
1 -1 0 0 0 0 
0 1 -1 0 0 0 
0 0 0 -1 0 1 
0 0 0 1 -1 0 
0 0 0 0 1 -1 
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M0 + ATx = M1    Eq   (4) 

Taking X = (1, 1) T M1 = (1, 0, 0 1)T, we have 

 

1  -1 1 1  1 

0 + 1 -1  = 0 

0  -1 1 1  0 

0  0 1   1 

 

But none of the sequences corresponding to (1, 1)T i.e. t1t2 or t2t1  can happen 
Example, consider the following net and the marking M = (1, 1)T 

 

                                  

Figure - 29 

 

The state equation  1  -1 1 u1  1 
     +    = 
    0  1  -1 u2  1 
 
Has no solution, so M is not reachable.  
 5. Invariant problems 

 The concepts related to the incidence matrix are particularly useful in studying  properties of pertinent models 
are  T- invariant and P-invariant. 
 
 5.1 Transition-invariant  ( T-invariant ) 

An integer solution x of ATx is called T-invariant. The non zero entries in a T-invariant represent the 
firing counts of the corresponding transitions which belong to a firing sequence transforming a marking M0 back 
to M0 
An integer solution y of Ay=0 is called a P-invariant. The non zero entries in a 
P- Invariant represents weights associated with the corresponding places so that the weighted sum of tokens on 
these places is constant for all markings reachable from an initial marking. 
The subset of places (transitions) corresponding to the non zero entries of a  
 T-invariant (P-invariant) is called the support of an invariant. 
 
Example: 

 
                                                                      Figure-30 Transition invariant  
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-1 1  x1  0 

  =    

1 -1  x2  0 

 

 
 
The solution vector x = (x1, x2)T = (1,1) T is  T – invariant. A  T-invariant indicates a possible loop in the net, 
i.e., a sequence of transitions whose net effect is null, i.e., which leads back to the marking it starts in. 
Example : Consider the PN in Fig-31 
 

   
                      Figure-31 

 

 

Now  ATx = 0 => 
    

-2 1 1  x1  0 

1 -1 0  x2 = 0 

1 0 -1  x3  0 

0 -2 2  

 

X = (1,1,1)T 

The following matrix has solution hence the vector [0 0 0]T  is a T invariant 

 

5.2 Place – Invariant (p- Invariant)    

 

For an incident matrix A n × m, where n is the number of transitions and m is the number of places, an m vector 
y is called p-invariant if Ay = 0.It is also true that an m-vector y is an p-invariant iff  MTY = M0

TY    for any initial 
marking Mo and any M є R (M0 ). An invariant vector Y is said to be minimal if there is no other invariant y1 
such that  y1 (p)  ≤  y (p) for all p. 
Given a minimal support of an invariant, there is a unique minimal invariant corresponding to the minimal 
support .We call such an invariant a minimal support invariant. 
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Example. 

 Consider the Petri net in Fig-32 . 

   

 
                                                      Figure - 32 

 

 

 Ay = 0  

                  p1 p2 p3 

Where A =      t1  -1 1 0  y1  0 

            t2    0 -1 1  y2   = 0 

                        t3   1 0 -1  y3  0 

 

The minimum p- invariant = (1, 1, 1) 

6. Conclusion 

In the present paper, we have presented a brief review and fundamentals of PN .The emphasis is given for 
reachability analysis in a simplified manner. Various properties of PN are illustrated with the help of simple 
examples. The review is basically meant for researchers to have a glimpse of the fundamentals of PN theory. 
We haven’t touched more comprehensive part of the new emerging field of the PN. 
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