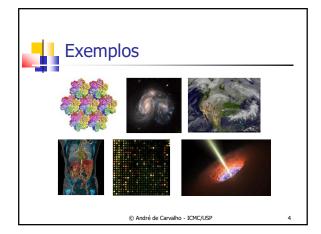
Mineração de Dados em Biologia Molecular

Visualização

Docente: André C. P. L. F. de Carvalho PAE: Victor Hugo Barella

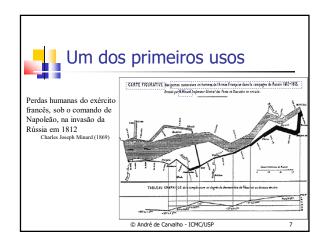
- Introdução
- Objetivos
- Motivações
- Representação visual
 - Objetos
 - Atributos
 - Relacionamentos


© André de Carvalho - ICMC/USP

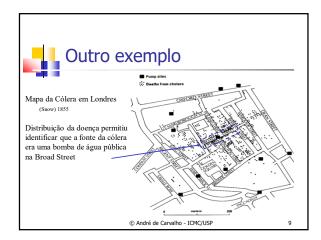
🚹 Introdução

- Figuras e imagens são frequentemente utilizadas para ilustrar:
 - Condições do tempo
 - Perfis populacionais
 - Resultados de eleições
 - Estruturas de proteínas
 - Níveis de expressão de genes
- Facilitam a compreensão da informação transmitida

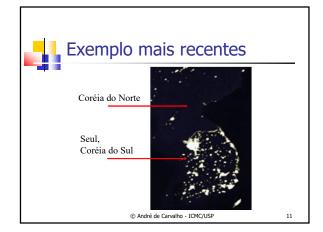
© André de Carvalho - ICMC/USP

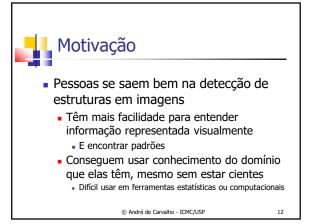


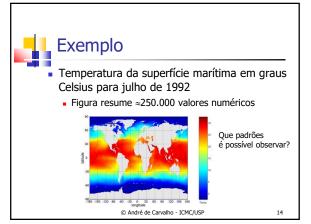

Introdução


- Visualização tem um papel importante em análise de dados
 - Uma das técnicas mais poderosas para exploração dos dados
 - Facilita visualização de dados e resultados
 - Visual data mining
 - Uso de técnicas de visualização em mineração de
 - Importante área de Mineração de Dados

© André de Carvalho - ICMC/USP







Benefícios

- Resume informação presente em dados e resultados experimentais
 - Torna mais claros
 - Padrões e tendências gerais
 - Anomalias e outliers
- Facilita análise de grandes conjuntos de dados

© André de Carvalho - ICMC/USP

. Visualização de dados

- Utiliza representações gráficas para ilustrar os principais aspectos de um conjunto de dados
- Na mineração de dados
 - Visualização facilita compreensão dos dados por:
 - Usuários
 - · Cientistas de dados
 - Para uma boa visualização, é essencial:
 - A escolha adequada da representação visual de objetos e atributos

© André de Carvalho - ICMC/USP

Visualização de dados

- Mostra a informação em um formato gráfico ou tabular
 - Técnicas convertem informação em um conjunto de dados para um formato visual
 - Características dos objetos e atributos e relacionamentos podem ser:
 - Analisadas
 - Exploradas

© André de Carvalho - ICMC/USP

Visualização de dados

- Exibição de um conjunto de dados em um formato visual
 - Recebe:
 - Valores de objetos, atributos e relacionamentos
 - Transforma em:
 - Objetos, atributos e relacionamentos visuais
 - Para isso, utiliza elementos gráficos
 - Pontos, linhas, formatos e cores

© André de Carvalho - ICMC/USP

Visualização de dados

- Principais objetivos:
 - Permitir a interpretação por seres humanos da informação apresentada visualmente
 - Formação de um modelo mental da informação
- Aspectos importantes
 - Representação dos dados
 - Arranjos

© André de Carvalho - ICMC/USP

.

Visualização

- Importantes para uma boa visualização
 - Escolha da representação visual para objetos, atributos e relacionamentos
 - Arranjo de objetos e atributos para salientar relacionamentos
 - Seleção de objetos e atributos

© André de Carvalho - ICMC/USF

Representação de dados

- Utiliza forma gráfica para representar
 - Objetos
 - Atributos
 - Relacionamentos entre objetos
 - Explícitos
 - Implícitos

© André de Carvalho - ICMC/USP

Representação de objetos

- Considerando um único atributo categórico
- Atributo é exibido em entrada de tabela ou área da tela e cada valor assume uma cor ou tom diferente
- Considerando mais de um atributo
 - Por uma linha ou coluna de uma tabela ou uma linha em um grafo
- Mais de um objeto
 - Cada objeto pode ser por interpretado como um ponto (figura) em um espaço de 2 ou 3 dimensões

© André de Carvalho - ICMC/USP

Representação de atributos

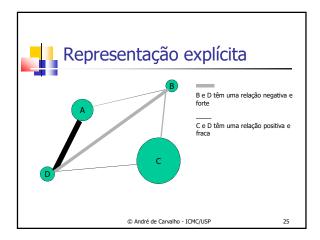
- Depende do tipo de atributo
- Ordinais e numéricos
 - Podem ser mapeados por características gráficas contínuas
 - Tamanho, cor ou localização em um eixo
- Nominais
 - Cada valor pode ser mapeado para uma:
 - Posição, cor, formato orientação ou coluna de uma tabela
 - Cuidado para não inserir relação de ordem

© André de Carvalho - ICMC/USP

2

Representação de relacionamentos

- Mostra como objetos de um conjunto de dados se relacionam
- Representação pode ocorrer de duas formas
 - Explícita
 - Implícita



Representação explícita

- Para dados representados por grafos
- - Usar representação para grafos
 Com nós (objetos) e arestas (relacionamentos) entre nós
- Se objetos e relacionamentos têm atributos ou características próprias
 - Isso é representado graficamente
 - Ex.: nós = cidades e arestas = estradas entre cidades
 - Tamanho dos nós = população e largura da aresta = fluxo na estrada

© André de Carvalho - ICMC/USF

.

Representação implícita

- Implicitamente mapeia relacionamentos nos dados para relacionamentos nos gráficos
 - Ex.: nós=cidades e arestas=estradas entre cidades
 - Localização do objeto = localização física da cidade
 - Preserva posição relativa das cidades
 - Cidades próximas ficarão próximos da imagem
- Difícil garantir que será fácil observar relacionamentos nos gráficos
 - Desafio de visualização: Achar técnica que mostre claramente relacionamentos que são de interesse

© André de Carvalho - ICMC/USP

Arranjo

- Posição de objetos e atributos pode dificultar ou facilitar a visualização de relacionamentos
- Arranjos permitem alterar posição pode ser alterada sem alterar os relacionamentos
 - Tabelas
 - Movimentação na posição de linhas e de colunas
 - Figuras
 - Movimentação de partes de uma figura

© André de Carvalho - ICMC/USP

Exemplo 1 - tabela

• Qual o relacionamento entre os 9 objetos e 6 atributos na figura abaixo?

	1	2	3	4	5	6
1	0	1	0	1	1	0
2 3 4 5	1	0	1	0	0	1
3	0	1	0	1	1	0
4	1	0	1	0	0	1
	0	1	0	1	1	0
6 7	1	0	1	0	0	1
7	0	1	0	1	1	0
8	1	0	1	0	0	1
9	0	1	0	1	1	0

© André de Carvalho - ICMC/USP

Exemplo 1 - tabela

• Qual o relacionamento entre os 9 objetos e 6 atributos na figura abaixo?

	1	2	3	4	5	6		1	6	3	4	5	2
1	0	1	0	1	1	0	1	0	0	0	1	1	1
2	1	0	1	0	0	1	3	0	0	0	1	1	1
3	0	1	0	1	1	0	5	0	0	0	1	1	1
4	1	0	1	0	0	1	7	0	0	0	1	1	1
5	0	1	0	1	1	0	9	0	0	0	1	1	1
6	1	0	1	0	0	1	2	1	1	1	0	0	0
7	0	1	0	1	1	0	4	1	1	1	0	0	0
8	1	0	1	0	0	1	6	1	1	1	0	0	0
9	0	1	0	1	1	0	8	1	1	1	0	0	0

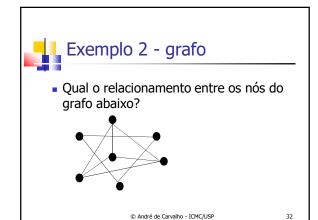
27

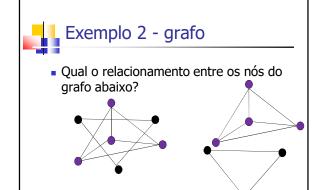
Exercício

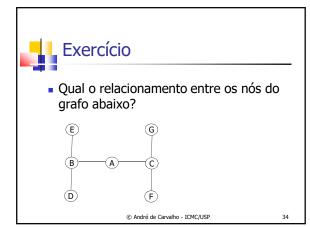
• Qual o relacionamento entre os 9 objetos e 6 atributos na figura abaixo?

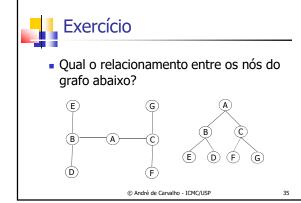
		1	2	3	4	5	6
Ì	1	0	1	1	1	1	1
ı	2	0	0	0	0	0	1
ı	3	0	1	1	1	1	1
ı	4	0	0	0	0	0	0
ı	4 5 6	0	0	1	1	1	1
ı	6	1	1	1	1	1	1
ı	7	0	0	0	0	1	1
ı	8	1	1	1	1	1	1
ı	9	0	0	0	1	1	1

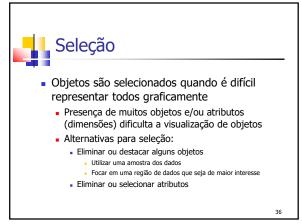
© André de Carvalho - ICMC/USP


31




Exercício


• Qual o relacionamento entre os 9 objetos e 6 atributos na figura abaixo?


	1	2	3	4	5	6		1	2	5	4	3	6
1	0	1	1	1	1	1	4	0	0	0	0	0	0
2	0	0	0	0	0	1	2	0	0	0	0	0	1
3	0	1	1	1	1	1	7	0	0	0	0	1	1
4	0	0	0	0	0	0	9	0	0	0	1	1	1
5	0	0	1	1	1	1	5	0	0	1	1	1	1
6	1	1	1	1	1	1	1	0	1	1	1	1	1
7	0	0	1	0	0	1	3	0	1	1	1	1	1
8	1	1	1	1	1	1	8	1	1	1	1	1	1
9	0	0	1	1	0	1	6	1	1	1	1	1	1

Seleção de atributos

- Fácil mapear poucos atributos para 2 ou 3, mas é difícil mapear muitos atributos
 - Para muitos atributos, selecionar um subconjunto deles (geralmente 2)
 - Se número de atributos não é grande, pode ser feito para todos os pares de atributos
 - Alternativamente, pode ser mostrada uma sequência de figuras com 2 dimensões

Seleção de atributos

- Alternativas
 - Agregação
 - Análise de componentes principais (PCA)
 - Ranking
 - Filtro
 - Subconjunto
 - Wrapper

Conjunto de dados iris

- Iris (lírio): planta com flor
 - Atributos de entrada numéricos
 - Tamanha sépala (cm)

 - Largura sépala (cm)
 - Tamanho pétala (cm) Largura pétala (cm)

 - Classes
 - Iris Setosa Iris Versicolour
 - Iris Virginica
 - 150 exemplos, com distribuição 50/50/50

© André de Carvalho - ICMC/USP

Conclusão

- Objetivos
- Motivações
- Representação visual
 - Objetos
 - Atributos
 - Relacionamentos

