Questão 1 – O campo de deslocamento de um sólido é definido pelas suas componentes cartesianas na base (e_1, e_2, e_3) por:

$$u_1(x_1, x_2, x_3) = ax_1 + dx_2 + ex_3$$

$$u_2(x_1, x_2, x_3) = -dx_1 + bx_2 + fx_3$$

$$u_3(x_1, x_2, x_3) = -ex_1 + cx_3$$

Sendo a, b, c, d, e, e f constantes.

Sabe-se que em um ponto qualquer do sólido, os alongamentos lineares nas direções dos versores da base (e_1, e_2, e_3) são respectivamente:

$$\varepsilon_l(\mathbf{e_1}) = -0.001$$
$$\varepsilon_l(\mathbf{e_2}) = 0.006$$
$$\varepsilon_l(\mathbf{e_3}) = 0.003$$

Sabe-se ainda que a distorção das fibras paralelas a e_2 e e_3 é:

$$\gamma (e_2, e_3) = 0.004$$

- i. Determinar as constantes a, b, c e f e o tensor $[\varepsilon]$ das deformações infinitesimais;
- *ii.* Determinar os versores próprios do tensor das deformações infinitesimais de forma que constituam uma base ortonormal e os seus alongamentos lineares correspondentes;
- iii. Calcular o alongamento linear da fibra na direção

$$n = 0.8e_2 + 0.6e_3$$
;

iv. Calcular a distorção entre fibras paralelas a

$$n = 0.8e_2 + 0.6e_3$$

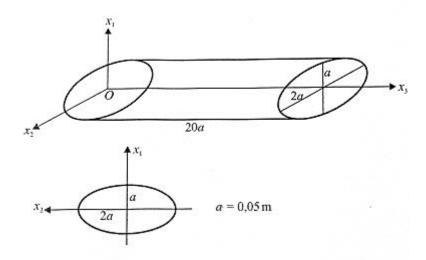
 $m = -0.6e_2 + 0.8e_3$

O ângulo entre essas fibras na configuração deformada aumenta ou diminui?

Questão 2 – Considere o corpo da figura abaixo que é uma barra prismática de seção transversal elíptica. Esse corpo foi solicitado de tal maneira que resultou no seguinte campo de deslocamento:

$$u = (-Ax_2x_3)e_1 + (Ax_1x_3)e_2 + (\frac{3}{5}Ax_1x_2)e_3$$

23 de agosto de 2016



i. Calcular o tensor das deformações $[\varepsilon]$;

ii. Obter a constante A, sabendo que o alongamento linear da fibra de direção $m = \frac{\sqrt{3}}{3}e_1 + \frac{\sqrt{3}}{3}e_2 + \frac{\sqrt{3}}{3}e_3$ e com origem no ponto $P(\frac{a}{2}, a, 2a)$ é $\varepsilon_l = \frac{20}{3} \times 10^{-5}$;

iii. Calcular a distorção γ no ponto P entre as fibras alinhadas com m e $s = \frac{\sqrt{6}}{6}e_1 + \frac{\sqrt{6}}{6}e_2 - 2\frac{\sqrt{6}}{6}e_3$;

iv. Calcular, no ponto *P*, os alongamentos lineares máximo e mínimo e determinar suas direções associadas.

Questão 3 – A matriz que define o tensor das tensões em um ponto é dada por:

$$[T] = \begin{bmatrix} 36 & 27 & 0 \\ 27 & -36 & 0 \\ 0 & 0 & 18 \end{bmatrix}$$

Calcular:

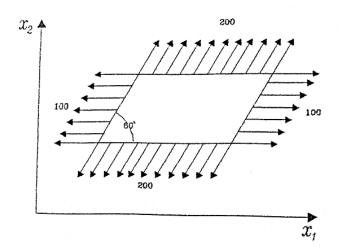
i. A tensão ρ atuante em um plano definido pela normal $\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$ e sua magnitude;

 \ddot{u} . A respectiva tensão normal σ ;

iii. O ângulo entre $\sigma \in \rho$.

Questão 4 – Considere um elemento de chapa carregado com tensões uniformemente distribuídas de $100~kgf/cm^2$ e $200~kgf/cm^2$ conforme esquematizado abaixo. As componentes T_{33} , T_{31} e T_{32} são nulas.

23 de agosto de 2016



- *i.* Determine a matriz que define o tensor das tensões [T];
- ii. Determine a tensão normal para o plano que faz 45° com os eixos x_1 e x_2 , cuja normal exterior é dada por $n=-\frac{\sqrt{2}}{2}e_1+\frac{\sqrt{2}}{2}e_2$.