## PTR 2580 - Fundamentos de ITS

"Fundamentos" de
Sistemas "Inteligentes" de
Transportes (ITS)

[Intelligent Transport Systems]

## Plano de Aulas

#### Aulas Convencionais

- Introdução / Projetos Temáticos (~ 10 min)
  - das 9h20min até 9h30min
- Apresentação de Resumo de Artigo (~ 20min)
  - das 9h30min até 9h50min
- Aulas Expositivas/Participativas (~60 min)
  - Explorar os Pacotes e Funções ITS:
    - das 9h50min até 10h45min
- □ Provinha sobre conteúdo da aula anterior (~15 min)
  - das 10h45min até 11h

## Macro-Programação

|         |                                           | Planejamento da Disciplina. Pacotes de          |
|---------|-------------------------------------------|-------------------------------------------------|
| Porto 1 | Introducão                                | Serviços (e Funções) ITS.                       |
| Parte 1 | Introdução                                | Arcabouço Conceitual e Metodológico -           |
|         |                                           | Arquiteturas ITS. Informações ao Usuário [ITIS] |
|         |                                           | Cenário Interurbano - Supervisão Aplicada       |
|         | Gerenciamento                             | as Rodovias. Fiscalização do cumprimento de     |
| Parte 2 | de Tráfego                                | regras de trânsito. Serviços de Apoio aos       |
| Parte 2 | _                                         | Usuários (SAU).                                 |
|         | [IHS / ITMS]                              | Cenário Urbano - Gerenciamento de               |
|         |                                           | Incidentes. Controle do Fluxo e da Demanda.     |
|         |                                           | Cenário Urbano:                                 |
|         | Gerenciamento<br>de Frotas<br>[IPTS, CVO] | Operação do Transporte Público (TP) de "Rota    |
|         |                                           | Fixa". Gestão de Frotas e dos Serviços          |
|         |                                           | Prestados. Prevenção e Segurança.               |
| Parte 3 |                                           | Coordenação Multimodos. BRTs (Bus Rapid         |
| raite 5 |                                           | Transit)                                        |
|         |                                           | Transporte sob Demanda. Processos               |
|         |                                           | relacionados ao Veículo Comercial               |
|         |                                           | (Baldeações Modais). Gerenciamento de           |
|         |                                           | Frotas para o Transporte de Cargas.             |

## Calendário – Agosto (v. 2.8.16)

| Data  | Aula | Parte                                               | Tema                                                                                                                                               |
|-------|------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 02/08 | 1    | 1A -<br>Introdução                                  | Planejamento da Disciplina – Considerações,<br>Definição. Pacotes de Serviços (e Funções)<br>ITS. Arquiteturas ITS.                                |
| 09/08 | 2    | 1B -<br>Modelagem                                   | Arcabouço Conceitual e Metodológico –<br>Modelagem utilizada nas Arquiteturas ITS                                                                  |
| 16/08 | 3    | 1C –<br>Informações<br>ao Usuário<br>[ATIS / ITIS]  | Informações Operacionais ao Usuário: Antes do Início da viagem (planejamento) e Durante o transcurso da viagem (dinâmica).                         |
| 23/08 | 4    | Parte 8 -<br>Laboratórios                           | Objetos Móveis:  Manipulação de Banco de Dados  Construção de Mapas Virtuais e SIG Dinâmico                                                        |
| 30/08 | 5    | 2A –<br>Gerenciamen<br>to de Tráfego<br>[IHS / AHS] | Cenário Interurbano: Supervisão Aplicada as Rodovias. Fiscalização dos transportes (Serviços não delegados). Serviços de Apoio aos Usuários (SAU). |

## Fundamentos de ITS

Arcabouço Conceitual e Metodológico –

**Arquiteturas ITS** 

## AGENDA 1

#### Modelos

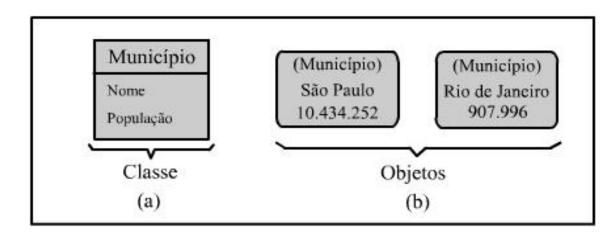
**Arquiteturas ITS** 

Modelo Orientado a Objetos (MOO)

Unified Modeling Language (UML)

Bibliografia

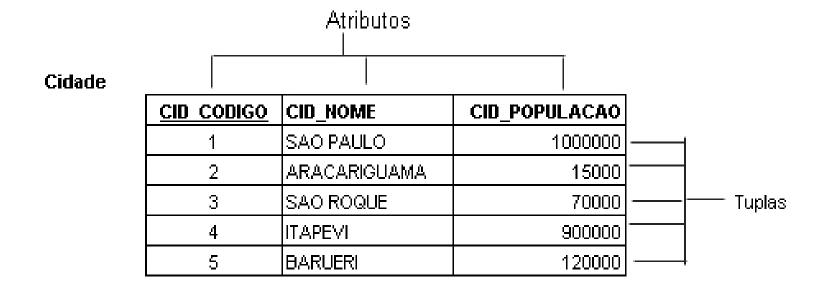
## MOO - Atributos


Modelo OO

Exemplo

NOME DA CLASSE

ATRIBUTO 1: TIPO 1 ATRIBUTO 2: TIPO 2 ATRIBUTO 3: TIPO 3


> OPERAÇÃO 1() OPERAÇÃO 2()



#### Banco de Dados: Modelo Relacional

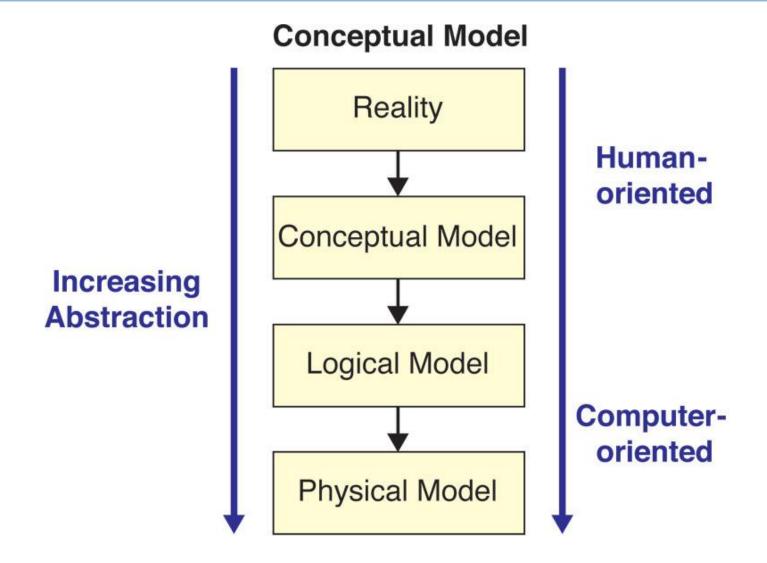
#### 

- É o nome dado a cada **coluna** de uma tabela.
- Pode estar sujeito a um domínio de valores.



## AGENDA 2

Sistema Gerenciador de Banco de Dados (SGBD)


Modelos Lógicos para Bancos de Dados

Modelo Relacional

Linguagem SQL (Structured Query Language)

Bibliografia

## Os processos (estágios) da Modelagem de Dados



## Os processos (estágios) da Modelagem de Dados

- Modelagem de Dados Conceitual
  - ✓ Modelos Conceituais Fundamentais
    - Arquitetura de Referência (Visões RMODP)

- Modelagem de Dados Lógica
  - √Técnicas de Modelagem
    - MOO e OMT (UML)

- Modelagem de Dados Física
  - √ Banco de Dados (SQL Server)

## **BASE DE DADOS (Exemplo)**

É uma coleção de dados logicamente relacionados com algum propósito.

#### Universidades

- Estudantes, docentes, disciplinas, salas;
- Inscrições em disciplinas, ocupação de salas;

#### Banco

Clientes, contas, transações;

#### Vendas

Clientes, fornecedores, produtos, vendas;


#### Companhias aéreas

- Passageiros, aviões, reservas, vôos;

## **BASE DE DADOS (Exemplo)**

**Tabelas:** São objetos criados para armazenar os dados fisicamente. Os dados são armazenados em **linhas** (tupla) e **colunas** (atributo).

#### **Tabela Clientes**



## **BASE DE DADOS (Exemplo)**

#### Exemplo: Uma coleção de CDs de música

Gravadora

| - | ID_Gravadora | Descrição_Gravadora |
|---|--------------|---------------------|
|   | 1            | Gravadora Nome A    |
|   | 2            | Gravadora Nome B    |
|   | 3            | Gravadora Nome C    |

**Tipo** 

| ID_Tipo | Descrição_Tipo |
|---------|----------------|
| 1       | MPB            |
| 2       | Rock           |
| 3       | New Age        |
| 4       | Black          |

**CD** 

| ID_CD | Gravadora | Tipo | Ano_Gravação | Título   |
|-------|-----------|------|--------------|----------|
| 1     | 1         | 4    | 2005         | Título 1 |
| 2     | 1         | 4    | 2002         | Título 2 |
| 3     | 3         | 2    | 2001         | Título 3 |
| 4     | 2         | 1    | 2003         | Título 4 |
| 5     | 1         | 2    | 1998         | Título 5 |
| 6     | 2         | 3    | 1976         | Título 6 |

## AGENDA 2

#### Sistema Gerenciador de Banco de Dados (SGBD)

Modelos Lógicos para Bancos de Dados

Modelo Relacional

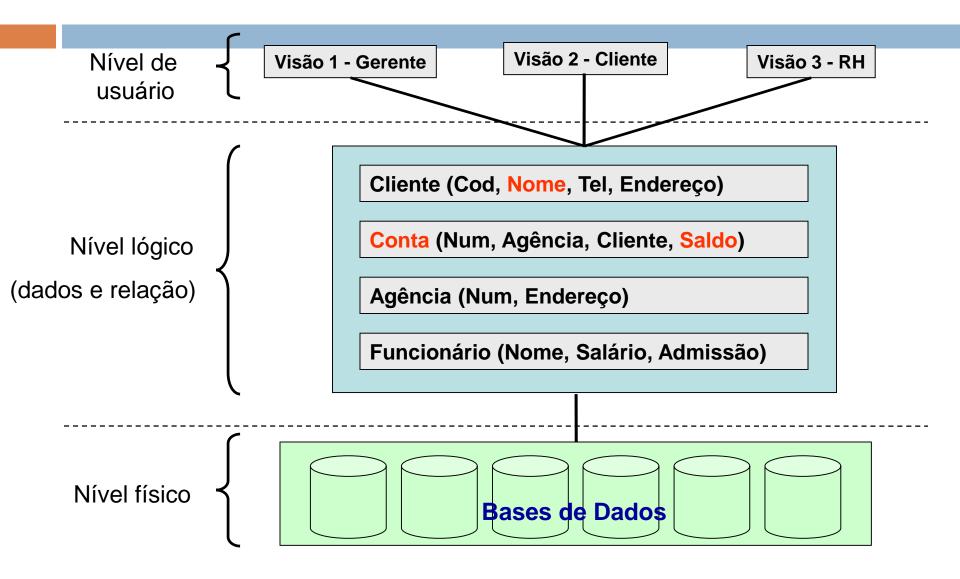
Linguagem SQL (Structured Query Language)

Bibliografia

#### SISTEMA GERENCIADOR DE BANCO DE DADOS (SGBD)

- □ Sobre uma Base de Dados um SGBD permite:
  - Definir: especificar os tipos de dados a serem armazenados;
  - Construir: armazenamento dos dados em um meio físico;
  - Manipular: funções de consulta, modificação e exclusão de dados, assim como geração de relatórios.

## Capacidades de um SGBD (1)


#### Controle de Redundâncias

 Evita duplicação de dados e conseqüentemente desperdício de espaço.

#### □ Compartilhamento de Dados

- □ Fornece ferramentas para que atualizações simultâneas ocorram de forma correta, ou seja, implementa o conceito de transação.
- Fornece ferramentas para a definição de visões para usuários, ou seja a definição de uma porção da Base que será visível, e também manipulável, para o usuário (check-in e check-out).

#### SGBD - Abstração dos Dados



Fonte: Inpe

## Capacidades de um SGBD (2)

#### Restrições de Acesso Multiusuário

Através de senhas e contas de acesso, se restringe o acesso a determinados dados, por diferentes usuários.

#### □ Restrições de Integridade

- Controla o valor a ser armazenado em relação ao tipo de dado definido ou permitido.
  - Um valor para telefone de uma pessoa não pode ser um número negativo.

#### □ Backup e Recuperação

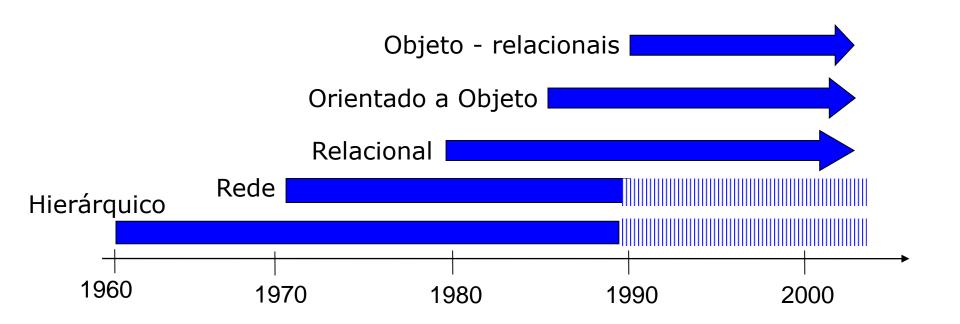
- □ Fornece mecanismos de **restauração** em caso de falhas.
  - Se o computador falhar no meio de uma ação de alteração o SGBD irá restaurar o dado ao estado inicial - anterior ao inicio da modificação.

## AGENDA 2

Sistema Gerenciador de Banco de Dados (SGBD)

Modelos Lógicos para Bancos de Dados

Modelo Relacional


Linguagem SQL (Structured Query Language)

Bibliografia

#### MODELOS LÓGICOS PARA BANCO DE DADOS

- Sistema Gerenciador de Banco de Dados
  - Abstração dos Dados
- Modelos Lógicos de Dados
  - Modelo Hierárquico
  - Modelo de Rede
  - Modelo Relacional
  - Modelo Orientado a Objetos
  - Modelo Objeto Relacional

## Histórico dos Modelos Lógicos de Dados



## AGENDA 2

Sistema Gerenciador de Banco de Dados (SGBD)

Modelos Lógicos para Bancos de Dados

Modelo Relacional

Linguagem SQL (Structured Query Language)

Bibliografia

- MODELO LÓGICO PARA BANCO DE DADOS RELACIONAL
- CONCEITOS RELACIONADOS
  - Relação
  - Tupla
  - Atributo
  - Chave
  - Restrição de Integridade

#### **CONCEITOS RELACIONADOS**

#### □ Relação

- 🗖 É a estrutura básica do modelo relacional.
- Uma relação é uma tabela composta por campos, os quais armazenam valores.

#### Tupla

É o nome dado a cada linha de uma tabela na base de dados relacional.

#### **Atributo**

- □ É o nome dado a cada coluna de uma tabela.
- Pode estar sujeito a um domínio de valores.
  - Exemplo: para um atributo sexo, os valores serão M ou F.
- É comum a definição de atributos para os quais determinadas tuplas não tenham um valor associado.
  - Para representar a ausência de valor ou que o atributo não se aplica a tupla utiliza-se o valor NULL.

Cidade

CID CODIGO CID\_NOME CID\_

1 SAO PAULO

|            | '            |               |               |
|------------|--------------|---------------|---------------|
| CID CODIGO | CID_NOME     | CID_POPULACAO |               |
| 1          | SAO PAULO    | 1000000       | $\overline{}$ |
| 2          | ARACARIGUAMA | 15000         |               |
| 3          | SAO ROQUE    | 70000         | Tuplas        |
| 4          | ITAPEVI      | 900000        |               |
| 5          | BARUERI      | 120000        |               |

#### Chave Primária

- É uma ou mais **colunas** de uma tabela (relação) utilizada para identificar uma tupla de forma única e permitir o relacionamento entre tuplas de tabelas diferentes.
- A cada atributo-chave chamamos de chave-candidata.
  - É comum escolher uma chave candidata para ser a **chave-primária** (*Primary Key* ou PK) de uma tabela.
  - Na representação como tabela a chave-primária aparece sublinhada.

| Tabela DEPARTAMENTO |               |            |  |
|---------------------|---------------|------------|--|
| Nome                | <u>Número</u> | RG Gerente |  |
| Contabilidade       | 1             | 10101010   |  |
| Engenharia Civil    | 2             | 30303030   |  |
| Engenharia Mecânica | 3             | 20202020   |  |

#### **Super-chave**

- É o conjunto de atributos usados para distinguir uma tupla de outra.
- Uma chave é uma super-chave (conjunto) da qual não se pode tirar nenhum atributo (principal).
  - Na tabela Lote o conjunto de atributos {Setor, Quadra, Lote} é uma super-chave.

| <u>SETOR</u> | QUADRA | LOTE | PROPRIETÁRIO   |
|--------------|--------|------|----------------|
| 1            | A      | 25   | ANTONIO CARLOS |
| 1            | А      | 26   | MARIA BENEDITA |
| 1            | В      | 29   | HENRIQUE       |
| 2            | С      | 32   | CARLOS ALBERTO |
| 2            | С      | 30   | CARLOS ALBERTO |
| 2            | В      | 26   | ANTONIO CARLOS |

#### Chave-Estrangeira

- Uma chave-estrangeira (Foreign Key ou FK), é um atributo que relaciona uma tupla de uma tabela com outra;
- No exemplo a seguir a coluna TEL\_FUN\_CODIGO relaciona um número de telefone em Telefone com um funcionário em Funcionário.

#### **Funcionario**

| r – – | FUN CODIGO | FUN_NOME       |
|-------|------------|----------------|
| ļ.    | 2          | JOSE ROBERTO   |
|       | 1          | ANTONIO CARLOS |
| i i   |            |                |
| !     |            |                |
| <br>  |            |                |
| i     |            |                |
| L     |            |                |

#### **Telefone**

| TEL_FUN_CODIGO | TEL_NUMERO |
|----------------|------------|
| 2              | 12733957   |
| 2              | 12967568   |
| 2              | 68078401   |
| 1              | 12259905   |
| 1              | 37822689   |

## AGENDA 2

Sistema Gerenciador de Banco de Dados (SGBD)

Modelos Lógicos para Bancos de Dados

Modelo Relacional

Linguagem SQL (Structured Query Language)

Bibliografia

#### **LINGUAGEM SQL** (Structured Query Language)

- Data Definition Language (DDL)
  - Estruturas Básicas

- □ Data Manipulation Language (DML).
  - Consultas em SQL

#### LINGUAGEM SQL

#### **DDL - Data Definition Language**

- Linguagem para criação das estruturas da Base de Dados, definição de usuários, privilégios, etc.;
- A seguir é mostrado um conjunto de sentenças SQL, utilizando o ambiente do Oracle SQL\*PLUS para:
  - Criar a tabela Funcionário;
  - Criar uma chave-primária para a tabela Funcionário (FUN\_PK);
  - Criar uma chave-estrangeira, FUN\_CIA\_FK, que relaciona os funcionários às companhias de ônibus através das colunas FUN\_CIA\_CODIGO e CIA\_CODIGO;
    - Vale a observação de que as colunas poderiam ter qualquer nome.
  - Criar um domínio para o atributo sexo. FUN\_SEXO\_FK permite somente valores no conjunto {M,F};
  - Define que é obrigatório que o funcionário possua: NOME, DATA DE NASCIMENTO, DATA DE ADMISSÃO, SEXO E COMPANHIA.

#### LINGUAGEM SQL

#### DDL - Data Definition Language

```
🍰 Oracle SOL*Plus
Arquivo Editar Procurar Opções Ajuda
SOL> CREATE TABLE FUNCIONARIO(
   FUN CODIGO
                            NUMBER
    .FUN NOME
                           VARCHAR2(20) NOT NULL
 4 ,FUN DT NASCIMENTO
                           DATE
                                        NOT NIII I
     ,FUN DT ADMISSAO
                           DATE
                                        NOT NULL
 6 ,FUN SEXO
                           VARCHAR2(1)
     FUN CIA CODIGO
                            NIIMBER
     ,CONSTRAINT FUN PK PRIMARY KEY (FUN CODIGO)
     ,CONSTRAINT FUN CIA FK FOREIGN KEY (FUN CIA CODIGO)
 10
                            REFERENCES CIA ONIBUS(CIA CODIGO)
     ,CONSTRAINT FUN SEXO CK CHECK (FUN SEXO IN ('M','F'))
11
12
   );
Tabela criada.
SQL> |
```

#### **LINGUAGEM SQL**

#### **DML - Data Manipulation Language**

- Os <u>comandos</u> DML são constituídos por trechos chamados cláusulas
- As cláusulas DML são:
  - Select
  - From
  - Where
  - Order by
  - Insert
  - Delete

## SQL – Structured Query Language

| Comandos               | Usado para                          | Tipo |
|------------------------|-------------------------------------|------|
| select                 | Consultar dados                     | DML  |
| insert, update, delete | Incluir, alterar e remover dados    | DML  |
| commit, rollback       | Controlar transações                | DDL  |
| create, alter, drop    | Definir, alterar e remover esquemas | DDL  |

Fonte: DPI/INPE, 2012

#### DATA MANIPULATION LANGUAGE

## Exemplo de consulta SQL, utilizando o Oracle SQL\*PLUS

```
🎎 Oracle SQL*Plus
<u>Arquivo Editar Procurar Opções Ajuda</u>
SQL> SELECT FUN CODIGO, FUN NOME, TEL NUMERO
 2 FROM TELEFONE
        ,FUNCIONARIO
 4 WHERE TEL FUN CODIGO = FUN CODIGO
      AND (FUN CIA CODIGO = 2 OR FUN CIA CODIGO = 5);
FUN CODIGO FUN NOME
                             TEL NUMERO
        8 ROBERTO MAURO 10664984
        8 ROBERTO MAURO
                           17615214
        8 ROBERTO MAURO
                               17983903
                             28179738
        9 MARCOS EDUARDO
       10 MARIA GABRIELA 18106346
SQL>
```

## AGENDA 2

Sistema Gerenciador de Banco de Dados (SGBD)

Modelos Lógicos para Bancos de Dados

Modelo Relacional

Linguagem SQL (Structured Query Language)

Bibliografia

## Referências Bibliográficas

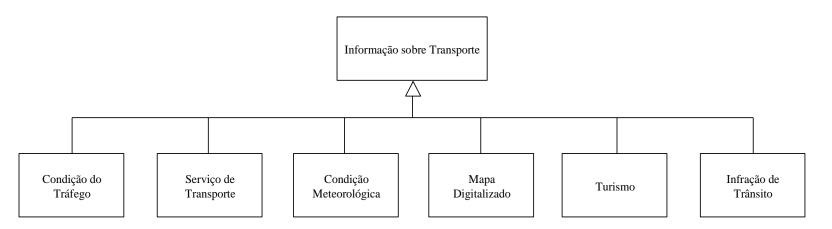
- DATE, C. J. Introdução a Sistemas de Bancos de Dados. 8ª Edição. Rio de Janeiro: Campus, 2004. ISBN: 8535212736.
- SILBERCHATZ, A.; KORTH, H.F.; SUDARSHAN, S.
   Sistemas de Banco de Dados. 3 ed., São Paulo: Makron Books, 1999.
- GÜTING, Ralf Hartmut; SCHNEIDER, Markus. Moving Objects Databases. Editora Elsevier, 2005.

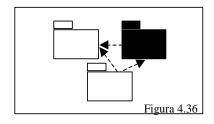
## Leitura Complementar – Aula 7

- PIARC Committee on Intelligent Transport. ITS
   Handbook 2000 Recommendations from the World Road Association (PIARC). Boston, Mass.: 1999.

   434p.
- ANTP Associação Nacional de Transportes
   Públicos. <u>Sistemas Inteligentes de Transportes</u>.

   Série Cadernos Técnicos Volume 8. São Paulo.
   Maio de 2012.
  - Artigo 8: ITS em Rodovias Brasileiras


## Leitura Recomendada — Aula 7


- DNIT Dept° Nacional de Infraestrutura de Transportes.
  - Artigo DNER / Publicação IPR-699: Procedimentos Básicos para Operação de Rodovias. 1997
  - □ Para Discussão e Provinha na Aula 7

## Exercício 1

- Suponha que a classe "Informação ao Usuário de Transporte" possa ser especializada, entre outros tipos, em "Informação sobre Condições Meteorológicas".
- Utilizando a tabela a seguir, extraída da Norma PNE199071-1, que contem as informações que devem ser disponibilizadas pelos equipamentos sensores quanto às variáveis atmosféricas, pede-se:
  - a) Com relação à classe "Informação sobre Condições Meteorológicas" proponha um Diagrama de Classes da UML, mostrando as classes e, se possível, também os atributos dessas classes propostas, utilizando como fonte a tabela extraída da Norma PNE199071-1.
  - b) Como poderia estar associada a essa classe ("Informação sobre Condições Meteorológicas") o conceito de região?

# Figura 4.41-A: Visão Informação – Diagrama de Classes da Informação Estática Comunidade de Usuários do Transporte – Informação ao Usuário de Transporte (Base de Informações de um ISP)





## Exercício 1

| Objeto       | Medida/Dado      | Unidades |
|--------------|------------------|----------|
| Ar           | Temperatura      | °C       |
|              | Umidade Relativa | %        |
|              | Visibilidade     | m        |
| Precipitação | Intensidade      | mm/h     |
|              | Quantidade       | l/m2     |
|              | Natureza         | Código   |
| Vento        | Velocidade       | m/s      |
|              | Direção          | Graus    |
|              | Tipo             | Código   |

# EQUIPAMIENTO VIAL PARA CARRETERAS. SENSORES DE VARIABLES ATMOSFÉRICAS EN CARRETERAS. PARTE 1.CARACTERÍSTICAS FUNCIONALES PNE199071-1

| Objeto          | Medida/Dato                            | Unidades  |
|-----------------|----------------------------------------|-----------|
| Aire            | Temperatura del Aire                   | °C        |
|                 | Humedad relativa del aire              | %         |
|                 | Presión Atmosférica                    | hPa.      |
|                 | Visibilidad                            | m         |
| Precipitaciones | Intensidad Precipitaciones             | mm/h      |
|                 | Cantidad de precipitación              | mm ó l/m² |
|                 | Naturaleza de las precipitaciones      | Código    |
| Viento          | Velocidad del viento                   | m/s       |
|                 | Dirección del Viento                   | Grados    |
|                 | Tipo de Viento                         | Código    |
| Suelo           | Estado de la superficie del suelo      | Código    |
|                 | Temperatura de la superficie del suelo | °C        |
|                 | Temperatura de congelación del suelo   | °C        |
|                 | Temperatura de aparición de rocío      | °C        |
|                 | Temperatura del subsuelo               | °C        |
|                 | Altura de la película de nieve         | mm        |
|                 | Altura de la película de agua          | mm        |
|                 | Salinidad                              | %         |
| Radiación       | Radiación Terrestre                    | w/m²      |
|                 | Radiación Atmosférica                  | w/m²      |
|                 | Radiación Global                       | w/m²      |
| Ambiente        | Tiempo Presente                        | Código    |

## PTR2580 — Fundamentos de ITS

- Claudio L. Marte
  - □ Tel (Poli): 3091-9983
  - E-mail: <u>claudio.marte@usp.br</u>

- STOA:
  - PTR2580\_2sem16
  - Fundamentos de Sistemas Inteligentes de Transporte