Fisica do Corpo Humano (4300325)

Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP

Equilíbrio Termodinâmico Aula 7

Princípios Físicos Aplicados à Fisiologia (PGF5306-1)

Geração de Energias

ATP-ADP ~ varias tipos de reações bioquímicas ATP-ADP ~ 20 kBT Ligação covalente típica ~ 150 kBT

NADH ~ 2 ATP NADPH ~ 2 ATP

Custo de Sínteses

Amino acid	Abundance	Glucose	ATP	ATP
	(molecules	equivalents	equivalents	equivalents
	per cell)		(aerobic)	(anaerobic)
Alanine (A)	$2.9 imes 10^8$	0.5	-1	1
Arginine (R)	1.7 × 10 ⁸	0.5	5	13
Asparagine (N)	1.4 × 10 ⁸	0.5	3	5
Aspartate (D)	1.4×10^{8}	0.5	0	· 2
Cysteine (C)	5.2×10^{7}	0.5	11	15
Glutamate (E)	$1.5 imes 10^8$	0.5	-7	-1
Glutamine (Q)	$1.5 imes 10^8$	0.5	-6	0
Glycine (G)	$3.5 imes 10^8$	0.5	-2	2
Histidine (H)	$5.4 imes 10^7$	1	1	7
lsoleucine (l)	1.7×10^{8}	1	7	11
Leucine (L)	2.6×10^{8}	1.5	-9	1
Lysine (K)	$2.0 imes 10^8$	1	5	9
Methionine (M)	8.8×10^7	1	21	23
Phenylalanine (F)	1.1 × 10 ⁸	2	-6	2
Proline (P)	1.3×10^{8}	0.5	-2	4
Serine (S)	1.2×10^{8}	0.5	-2	2
Threonine (T)	1.5×10^{8}	0.5	6	8
Tryptophan (W)	3.3×10^{7}	2.5	-7	7
Tyrosine (Y)	7.9×10^{7}	2	-8	2
Valine (V)	$2.4 imes 10^8$	1	-2	2

Após um aminoácido ser sintetizado (custo médio ~ I.2 ATP equivalente), ele deve ser colocado junto para formar uma proteína (4 ATP equivalente). Número médio de aminoácidos por proteína = 300.

Proteínas em uma bactéria

Custo da Proteína $\approx 5.2 \text{ ATP } \times 300 \times 3 \times 10^6$

 $\approx 4.5 \times 10^9$ ATP equivalentes

Termodinâmica no Equilíbrio

Visto que organismos vivos são exemplos típicos de sistemas fora do equilíbrio, é possível utilizar as ferramentas da física para o equilíbrio?

Modelos no equilíbrio podem ser utilizados para problemas fora do equilíbrio se certos processos acontecem mais rápidos que outros.

MECHANICAL EQUILIBRIUM

microtubule growing against a barrier

(B)

proteins partitioning in a density gradient

ion channel opening and closing

Figure 3.2d Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Protein synthesis

Figure 3.2e Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Transcription

Figure 3.2f Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2g Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 3.2h Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Termodinâmica no Equilíbrio

Proteína no equilíbrio: o estado "empacotado" da proteína é um estado que minimiza a energia livre

Proteína no Equilíbrio

15 MAY 2002

Encontrar o mínimo implica buscar:

$$\frac{\partial F}{\partial u_i} = 0 \left(i = 1, 2, 3, \dots, N \right)$$

JOURNAL OF CHEMICAL PHYSICS

VOLUME 116, NUMBER 19

Foldability and the funnel of HP-36 protein sequence: Use of hydropathy scale in protein folding

Goundla Srinivas and Biman Bagchi^{a)} Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

FIG. 5. (Color) Energy landscape (the funnel) for the model HP-36 protein obtained from BD simulations is shown. The distance from the native state Q in terms of topological contacts is indicated for different energy states. Configurations corresponding to various energy states (given in parentheses) (unfolded, transition, and native state) are also shown. The X axis denotes the number of configurations at energy *E*.