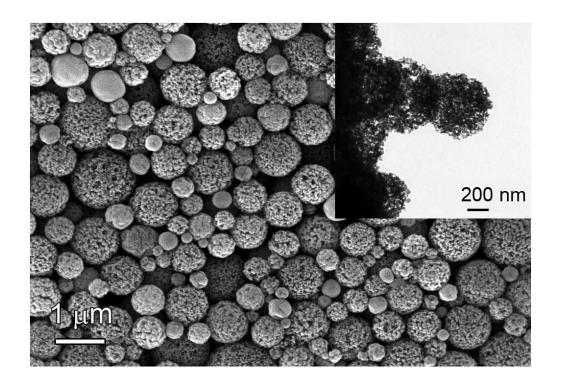
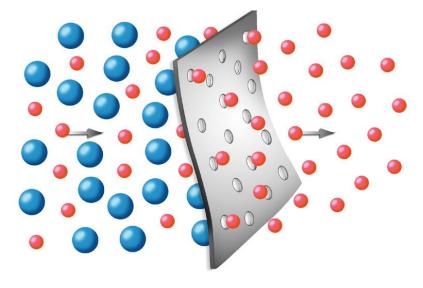
Catálise heterogênea


Catalisador sólido

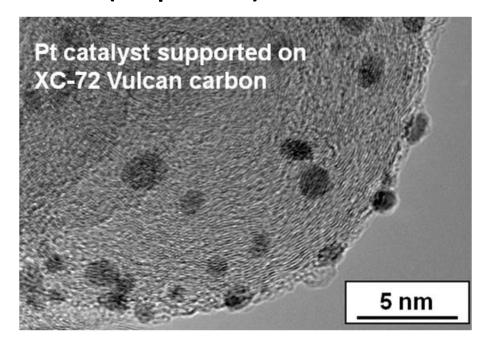
Reação na interface sólido-fluido

Tipos de catalisadores


Poroso: elevada área superficial

Tipos de catalisadores

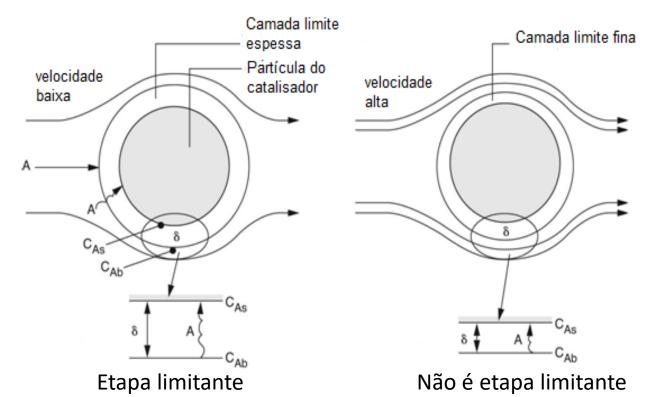
 Peneiras moleculares: capacidade de distinção entre tamanho e tipos de moléculas


Tipos de catalisadores

 Monolíticos: podem ser muito ativos, não necessitando ter elevada área superficial

Tipo de catalisadores

 Suportados: pequenas partículas de um material ativo dispersas em um material menos ativo (suporte)


Não suportados

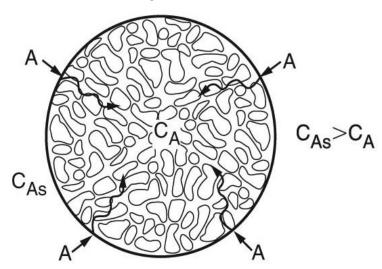
Etapas da reação catalítica

- 1. Difusão dos reagentes da fase fluida para a superfície externa do catalisador
- 2. Difusão intrapartícula
- 3. Adsorção do reagente
- 4. Reação
- 5. Dessorção dos produtos
- Difusão dos produtos do interior da partícula para a superfície externa
- 7. Difusão dos produtos da superfície externa da partícula para o interior da fase fluida
- Obs: Se as 1, 2, 6 e 7 são muito mais rápidas do que as etapas de reação a difusão afeta a velocidade global de reação.

Difusão do seio do fluido para a superfície externa do catalisador

• Nesta etapa o reagente tem que viajar através da camada limite de espessura δ até a superfície externa do catalisador

Difusão do seio do fluido para a superfície externa do catalisador


• A Concentração da espécie A no fluido é de C_{Ab} e na superfície externa é C_{As} .

$$-r'_{A} = k_{c}(C_{Ab} - C_{As})$$
$$k_{c} = \frac{D_{AB}}{\delta}$$

 Sendo: D_{AB} a difusividade e k_c o coeficiente de transferência de massa

Difusão interna

 A espécie A se difunde da camada externa para a camada interna da partícula. À medida que a se difunde para o interior da partícula, ele reage com o catalisador depositado no lado das paredes do poro.

Difusão interna

 A velocidade desta etapa em fincão do tamanho da partícula é:

$$-r'_A = k_r C_{As}$$

• Sendo: k_r a constante global de velocidade, que é uma função do tamanho de partícula, C_{As} é concentração da espécie A na camada externa e C_A na interna .

Etapa limitante da reação

- Quando reações heterogêneas ocorrem em estado estacionário, a velocidade de adsorção, reação na superfície e dessorção são iguais.
- Entretanto, uma etapa particular na série é geralmente a velocidade limitante ou velocidade controladora. Ou seja, se pudéssemos tornar esta etapa mais rápida, a reação inteira ocorreria mais rápido.

Obs: válido se a etapa de difusão for rápida.

Etapa limitante da reação

 Exemplo: Decomposição de cumeno para formar benzeno e propileno. A reação global é:

$$C_6H_5CH(CH_3)_2 \to C_6H_6 + C_3H_6$$

- Três etapas representam o mecanismo para decomposição do cumeno.
- Cumeno (C), benzeno (B), propileno (P) e a superfície do catalisador (S).

Etapa limitante da reação

adsorção do cumeno sobre a superfície do catalisador

$$C + S \leftrightarrow C \cdot S$$

 reação na superfície para formar benzeno adsorvido e propileno na fase gasosa

$$C \cdot S \leftrightarrow B \cdot S + P$$

• Dessorção de benzeno da superfície

$$B \cdot S \leftrightarrow B + S$$

Reatores multifásicos

- Reatores multifásicos são aqueles nos quais duas ou mais fases são necessárias para conduzir uma reação.
- Na maioria das aplicações a reação ocorre entre um gás dissolvido e um reagente na fase líquida na presença de um catalisador sólido.
- Em alguns casos, o líquido é um meio inerte e a reação ocorre entre os gases dissolvidos na fase superfície sólida.

Reatores multifásicos

- Os reatores trifásicos podem ser divididos em duas categorias principais de acordo com o estado do catalisador:
- (1) Reatores onde o catalisador sólido está suspenso e em movimento
- (2) Reatores com leito de catalisador sólido estacionário

Etapas limitantes da reação

- 1. Transporte de A da fase gasosa para a interface gáslíquido;
- Transporte de A da interface gás-líquido para a fase líquida;
- Difusão dos reagentes da fase fluida para a superfície externa do catalisador
- 4. Difusão intrapartícula
- 5. Adsorção do reagente
- 6. Reação
- 7. Dessorção dos produtos
- 8. Difusão dos produtos do interior da partícula para a superfície externa
- 9. Difusão dos produtos da superfície externa da partícula para o interior da fase fluido

Reator de Leito de lama

Produção de diesel a partir de gás natural

Reator de leito de lama

Produção de metanol

Reator de leito de lama

Produção de isobutilino

Vantagens

- Bom controle de temperatura
- Operação em batelada ou contínua
- Fácil substituição do catalisador
- Fácil transferência de calor

Desvantagens

- Dificuldade de projeto
- Dificuldade de reter o catalisador no vaso

- Ocorrência de reações paralelas
- Maior gasto energético

Usos industriais

- Reações de hidrogenação e oxidação
- Síntese do metanol
- Produção de diesel
- Produção de parafina
- Produção de isobutileno

Reator de leito gotejante

Tratamento de efluentes

Reator de leito gotejante

Produção de sorbitol

Vantagens

- Baixo custo operacional
- Baixa perda de catalisador
- Queda de pressão baixa
- Possibilidade de operação a elevadas temperatura e pressão

Desvantagens

- Menor efetividade do catalisador
- Limitações no uso de líquidos viscosos
- Sensível a efeitos térmicos
- Possibilidade de formação de gradientes de temperatura

Usos industriais

- Refino de petróleo
- Biorremediação
- Reações de hidrogenação
- Reações de hidrodessulfurização-HDS
- Reações de hidrodesnitrogenação-HDN

Reator de coluna de bolhas

Saturação de ácidos graxos

Reator de coluna de bolhas

Produção de sorbitol

Reator de coluna de bolhas

Produção de metanol

Vantagens

- Simplicidade mecânica da agitação
- Baixo custo de manutenção e operação
- Facilidade de escala
- Facilidade no controle de temperatura
- Baixa queda de pressão

Desvantagens

- Custo de energia
- Investimentos maiores

Baixo tempo de residência do gás

Usos industriais

- Polimerização de oleofinas
- Oxicloração do etileno a dicloroeteno
- Tratamento biológico de efluentes
- Reações de hidrogenação, cloração, oxidação
- Fermentação

Reatores não ideais

- Projetos que levam em conta os desvios da idealidade são mais complexos e ainda não estão bem desenvolvidos.
- Os desvios podem ser causados pela formação de canais pelo reciclo de fluído, pelo aparecimento de regiões estagnantes no recipiente ou por outros fenômenos não considerados nas hipóteses dos modelos ideais.

Reatores não ideais

- No projeto do reator com escoamento não ideal é necessário saber o que esta acontecendo dentro do vaso.
- O conhecimento da distribuição de velocidade para o fluído é de fundamental importância, porém, muito difícil de ser obtido.
- Em muitos casos, o conhecimento do tempo em que as moléculas individuais permanecem no recipiente, isto é, qual a distribuição do tempo de residência do fluído que está escoando, é suficiente para o projeto.

- Tempo de residência é o tempo que os átomos ficam dentro do reator.
- Para os reatores ideais todos os átomos permanecem o mesmo tempo dentro do reator. Para os não ideais não.
- A medida da DTR é feita utilizando-se traçadores, substâncias inertes e completamente solúveis na mistura.

- A função de distribuição de tempo de residência, E(t), é a fração do material que saiu e que permaneceu do reator.
- A grandeza E(t)dt é a fração de fluido saindo do reator que permaneceu no interior do reator entre os tempos t e t+dt, que para o tempo infinito é igual a 1, pois todo material saiu do reator.

O tempo de residência médio é:

$$t_m = \int_0^\infty tE(t)dt = \tau$$

Sendo a variância igual a:

$$\sigma^2 = \int_0^\infty (t - t_m)^2 E(t) dt$$

Exemplo: pela DTR obtida a partir de uma perturbação de pulso a 320K, calcule o tempo de residência médio e a variância.

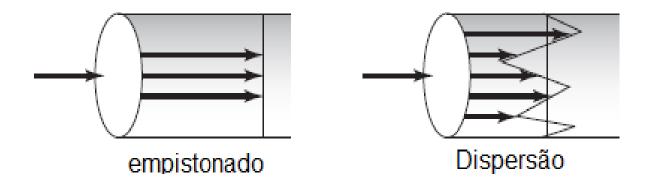
t(min) 0 1 2 3 4 5 6 7 8 9 10 12 14 **E(t)** 0 0,02 0,1 0,16 0,2 0,16 0,12 0,08 0,06 0,044 0,03 0,012 0

Modelo dos tanques em série

É o modelo utilizado na determinação de quantos tanques em série são necessários para modelar o reator real como n tanques ideais em série.

O número de tanques é série é:

$$n = \frac{\tau^2}{\sigma^2}$$


Para uma reação de primeira ordem

$$X = 1 - \frac{1}{(1 + \tau_i k)^n}$$

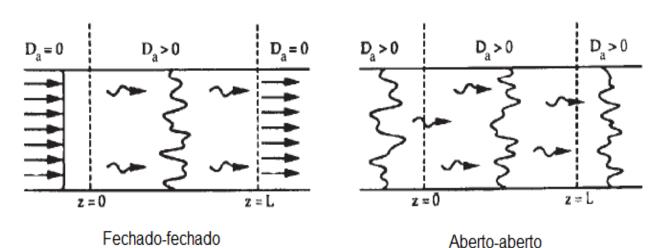
$$\tau_i = \frac{V}{v_o n}$$

Se o número de tanques for n=5,56; devemos calcular a conversão para 5 e 6 tanques. Pois não existem 5,56 tanques.

 Usado para descrever reatores tubulares não ideais. Neste modelo existe uma dispersão axial do material.

Pelo modelo de dispersão a conversão de uma reação de primeira ordem é:

$$X = 1 - \frac{4qe^{Pe_r/2}}{(1+q)^2e^{Pe_rq/2} - (1-q)^2e^{-Pe_rq/2}}$$


Em que:

$$Pe_r = \frac{UL}{\tau k}$$
$$q = \sqrt{1 + \frac{4\tau k}{Pe_r}}$$

Sendo: U a velocidade superficial e L o comprimento do reator.

Para um sistema fechado-fechado (vaso fechado), temos:

$$\frac{\tau^2}{\sigma^2} = \frac{2}{Pe_r} - \frac{2}{Pe_r^2} (1 - e^{-Pe_r})$$

Para um sistema aberto-aberto (vaso aberto), consideramos que há dispersão em todo o reator. A equação de um sistema aberto-aberto é:

$$\frac{\sigma^2}{t_m^2} = \frac{2Pe_r + 8}{Pe_r^2 + 4Pe_r + 4}$$

- Exemplo: A reação de primeira ordem
- Ocorre em um reator tubular de 10 cm de diâmetro e 6,36 m de comprimento. A velocidade específica é 0,25 min⁻¹. Calcule a conversão:
- Em um PFR pelo modelo da dispersão do vaso fechado
- PFR ideal
- Modelo de tanques em série
- Um único CSTR ideal
- Os resultados dos testes feitos com traçador foram:

```
t(min) 0 1 2 3 4 5 6 7 8 9 10 12 14 
E(t) 0 0,02 0,1 0,16 0,2 0,16 0,12 0,08 0,06 0,044 0,03 0,012 0
```