DISCIPLINA DE QUÍMICA GERAL E INORGÂNICA - 2014 LISTA DE EXERCÍCIOS Lig. Quim. 01 Prof. Zeki Naal

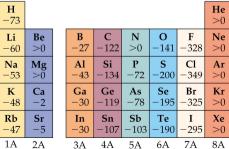
- 1. Um elétron num determinado átomo tem n = 2. Quais os possíveis valores de l e ml que esse elétron pode ter?
- 2. Dê os valores dos nºs auânticos associados com os sequintes orbitais:
 - a) 2p
- b) 3s
- c) 4d

Indique o número total de:

- a) elétrons p no N (Z = 7)
- **b**) total de elétrons s no Si (Z = 14)
- c) elétrons 3d no S(Z = 16)
- 3. As configurações eletrônicas do estado fundamental indicadas são incorretas. Explique qual o erro e escreva a configuração eletrônica correta.
 - (AI Z=13) 1s² 2s² 2p⁴ 3s² 3p³
 - (B Z = 5) 1s² 2s² 2p⁶
 - $(F Z = 9) 1s^2 2s^2 2p^6$
- 4. Escreva a configuração eletrônica do estado fundamental dos seguintes elementos: Ge, Fe, Zn, Ru, W, Tl, Fe²⁺, Ru^{2+} , Cu^{2+} .
- 5. Defina ou explique os seguintes termos: período, grupo, elemento representativo, elemento de transição.
- 6. Quais dos seguintes elementos não são de transição?
 - **a)** Ni (Z = 28) **b)** W (Z = 74)
- c) Pb (Z = 82)

- **d**) Eu (Z = 63)
- e) Ra (Z = 88)
- 7. Quais das seguintes configurações eletrônicas em pares que representam propriedades químicas semelhantes de seus átomos:
 - a) $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^5$: b) $1s^2$ $2s^2$ $2p^6$ $3s^2$
 - c) $1s^2 2s^2 2p^3$; d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
 - $3d^{10}$ $4p^6$; **e**) $1s^2$ $2s^2$; **f**) $1s^2$ $2s^2$ $2p^6$;
 - **q**) $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^3$; **h**) $1s^2$ $2s^2$ $2p^5$

- a tabela periódica, classifique os 8. Sem consultar elementos segundo seu grupo período.
 - a)Z=9


- **b**) Z = 20 **c**) Z = 26 **d**) Z = 33
- 9. Especifique em qual grupo da tabela periódica pertencem os seguintes elementos:
 - a) [Ne] $3s^1$; b) [Ne] $3s^2$ $3p^3$; c) [Ne] $3s^2$ $3p^6$;
 - **d)** $[Ar] 4s^2 3d^8$; **e)** $[Kr] 5s^2 4d^5$; **f)** $[Ar] 4s^2 3d$;
 - a) $[Ar] 3d^{10} 4s^2 4p^4$
- 10. Um ion M²⁺ derivado de um metal de primeira série dos metais de transição tem quatro elétrons no subnível 3d. Qual elemento pode ser M?
- 11. Porque o átomo de potássio tem um raio atômico maior que o átomo de bromo?
- 12. Porque o átomo de berílio tem um raio atômico menor que o átomo de bário?
- 13. Em cada um dos seguintes pares, qual seria o íon maior ? (Ti^{2+}, Fe^{2+}) ; (Mn^{2+}, Zn^{2+}) ; (O^{2-}, F^{-}) ; (S^{2-}, Se^{2-}) ; $(TI^{+}, TI^{3+}).$
- 14. A primeira e a segunda energia de ionização do K são 419 KJ/mol e 3052 KJ/mol e para Ca são 540 KJ/mol e 1145 KJ/mol, respectivamente. Compare estes valores e comente sobre as diferenças.
- 15. Porque o potássio tem energia de ionização menor que o lítio ?
- 16. Dois átomos tem configurações eletrônicas $1s^2$ $2s^2$ $2p^6$ e $1s^2$ $2s^2$ $2p^6$ $3s^1$. A primeira energia de ionização do primeiro é 2080 KJ/mol, e do segundo é 496 KJ/mol. Explique estes resultados.
- elementos você esperaria ter maior 17. Qual dos eletroafinidade? He, K, Co, S, Cl

- 18 Escreva as configurações eletrônicas para os seguintes íons e determine quais têm configurações de gás nobre: (a) Zn²⁺; (b) Te²⁻; (c) Se³⁺; (d) Ru²⁺; (e) Tl⁺; (f) Au⁺.
- 19 (a) Defina o termo *energia de rede ou energia reticular*. (b) Quais fatores governam a magnitude da energia de rede de um composto iônico?
- 20 (a) As energias de rede de NaF e de MgO são dadas na Tabela 8.2. Calcule a diferença nessas duas grandezas. (b) Calcule a diferença nas energias de rede de MgCl₂ e SrCl₂, que também estão listados na tabela.
- 21 As substâncias iônicas KF, CaO e ScN são isoeletrônicas (têm o mesmo número de elétrons). Examine as energias de rede para essas substâncias na Tabela 8.2 e explique as tendências que observar.
- 22 (a) A energia de rede de um sólido iônico aumenta ou diminui (i) quando as cargas dos íons aumentam; (ii) quando os tamanhos dos íons aumentam? (b) Usando uma tabela periódica, ordene as seguintes substâncias de acordo com suas expectativas de energia de rede, listando-as em ordem crescente: LiCI, NaBr, RbBr, MgO. Compare sua lista com as informações na Tabela 8.2.
- 23 As energias de rede de KBr e de CsCl são quase iguais (Tabela 8.2). O que você pode concluir a partir dessa observação?
- 24 8.20 Explique as seguintes tendências na energia de rede: (a) MgO > MgCl2; (b) NaCI > RbBr > CsBr; (c) BaO > KF.
- 25 Necessita-se de energia para remover dois elétrons do Ca para formar Ca^{2+} e também para adicionar dois elétrons em O para formar O^{2-} . Por que, então, CaO é estável em relação aos elementos livres?
- 26 Liste os passos individuais usados na construção de um ciclo de Born-Haber para a formação de CaBr₂ a partir dos elementos. Qual(is) desses passos você esperaria ser exotérmico(s)?
- 27 Utilize as informações do Apêndice C, da Figura 7.11 e da Tabela 7.4, para calcular a energia de rede do RbCl. Esse valor é maior ou menor que o da energia de rede de NaCl? Explique.
- 28 Usando as informações do Apêndice C, da Figura 7.11 e da Tabela 7.5 e o valor da segunda energia de ionização para Ca, 1.145 kJ/mol, calcule a energia de rede de CaCl₂. Esse valor é maior ou menor que da energia de rede de NaCl? Explique.

TABELA 8.2 Energias de rede para alguns compostos iônicos					
Composto	Energia de rede (kJ/mol) 1.030	Composto	Energia de rede (kJ/mol)		
LiF		MgCl ₂	2.326		
LiCl	834	SrCl ₂	2.127		
LiI	730				
NaF	910	MgO	3.795		
NaCl	788	CaO	3.414		
NaBr	732	SrO	3.217		
NaI	682				
KF	808	ScN	7.547		
KCl	701				
KBr	671				
CsCl	657				
CsI	600				

Elemento	Configuração eletrônica	Ponto de fusão (°C)	Densidade (g/cm³)	Raio atômico (Å)	I ₁ (kJ/mol)
Berílio	[He]2s ²	1.287	1,85	0,90	899
Magnésio	[Ne]3s ²	650	1,74	1,30	738
Cálcio	$[Ar]4s^2$	842	1,54	1,74	590
Estrôncio	[Kr]5s ²	777	2.63	1,92	549
Bário	[Xe]6s ²	727	3,51	2,15	503

Elemento	Configuração eletrônica	Ponto de fusão (°C)	Densidade	Raio atômico (Å)	I ₁ (kJ/mol)
Oxigênio	[He] 2s ² 2p ⁴	-218	1,43 g/L	0,73	1.314
Enxofre	$[Ne]3s^23p^4$	115	1,96 g/cm ³	1,02	1.000
Selênio	$[Ar]3d^{10}4s^24p^4$	221	4,82 g/cm ³	1,16	941
Telúrio	$[Kr]4d^{10}5s^25p^4$	450	6,24 g/cm ³	1,35	869
Polônio	$[Xe]4f^{14}5d^{10}6s^25p^4$	254	9,2 g/cm ³	1,9	812

6A 7A 8A Figura 7.11