Manejo de Doencas na cultura de milho e feijão

Dr. Marco-Antonio Tavares-Rodrigues

1- INTRODUÇÃO

- 2- DOENCAS EM PLANTAS
- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

Introdução

- Brazil
- Perdas na produção de alimentos, devido a praga, doenças e plantas daninhas
- População mundial

Médias de produtividade na cultura do milho e perdas causadas por doenças, pragas e plantas invasoras

Países	Produtividade	Perdas (%)					
	1998/99	Doenças		Pragas		Plantas Invasoras	
	(kg/ha)	Potencial	Atual	Potencial	Atual	Potencial	Atual
Α	635	20-25	20	35-40	35	50-55	35
В	1.886	15-20	15	25-30	22	40-45	25
С	3.548	18-20	15	22-27	17	35-40	18
D	4.064	12-17	12	25-30	20	35-40	10
EUA	6.738	15-20	10	22-27	12	35-40	13
E	7.679	05-10	05	15-20	05	25-30	05

Fonte: Crop Production and Crop Protection – Elsevier (1994).

A - Angola, Benin, Botswana, Cabo Verde, Chad, Congo, Costa do Marfim, Guiné-Bissau, Lesoto, Mauritânia, Moçambique, Namíbia, Sudão e Zaire.

B - Bolívia, Brasil, Colômbia, Equador, Guiana, Paraguai, Peru, Uruguai e Venezuela.

- C Argentina e Chile.
- D China, Japão e Koreas

E - Alemanha, Holanda, Áustria e Suíca

Taxas de crescimento da população mundial.

Ano	População total	Crescimento Anual (%)	Período para duplicação (anos)
1 Milhão a.C.	Alguns Milhares	-	-
8000 a.C	8 Milhões	0,0007	100.000
1	300 Milhões	0,046	1.500
1750	800 Milhões	0,06	1.200
1900	1.650 Milhões	0,48	150
1970	3.678 Milhões	1,9	36
2000	6.199 Milhões	1,7	41

Fonte: UNESCO.

1- INTRODUÇÃO

2- DOENCAS EM PLANTAS

- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

DOENÇAS EM PLANTAS

- O que causa doença em plantas?
- Princípios Básicos do controle
- Princípios de Whetzel
- Controle ou Manejo?

O que causa doença em plantas?

Doença infecciosa ou biótica

 Causada por fungos, oomicetos, procariotos (bactérias, fitoplasmas e espiroplasmas), nematóides, vírus, viróides e alguns protozoários.

Doença não infecciosa ou abiótica

- Decorrentes de alterações dos fatores ambientais de maneira continuada,
 podem afetar as plantas em qualquer estádio de desenvolvimento:
- Fatores ambientais: temperatura, umidade, luz, nutrientes e pH do solo)
- -Injúrias: descargas elétricas, chuvas de pedras, choque térmico
- Fatores químicos: (poluentes do ar, herbicidas)

- 1- INTRODUÇÃO
- 2- DOENCAS EM PLANTAS
- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

Princípios Básicos do controle

- RUPTURA DA INTERAÇÃO (ver Ciclo das Relações PxH)!!!!!
- Interrompendo o curso da doença;
 - Deve-se conhecer algum ponto fraco na interação → fácil controle
 Ex. Sarna da batata (Spongospora subterrânea)
 - Correção do pH para ±5,0.

Princípios de Whetzel

- **Exclusão:** Prevenção da entrada de um patógeno em uma área ainda não infestada;
- Erradicação: Eliminação do patógeno de uma área em que já foi introduzido;
- Proteção: Interposição de uma barreira protetora entre as partes suscetíveis da planta e o inóculo do patógeno, antes de ocorrer a deposição;
- Imunização: desenvolvimento de plantas resistentes ou imunes em uma área infestada com o patógeno;
- Terapia: Visa restabelecer a sanidade de uma planta já infectada pelo patógeno

Exclusão: Legislação Fitossanitária

- a) Proibição, fiscalização e interceptação de trânsito de material vegetal;
- b) Programa de registro de plantas matrizes;
- c) Programa de sementes certificadas a nível de propriedade:
 - 1) uso de sementes sadias,
 - 2) mudas sadias e
 - 3) cuidados com caixas e material de transporte; medidas de sanidade do viveiro.

O temor pela introdução de fitopatógenos exóticos é explicado, pois o hospedeiro na ausência do patógeno se torna extremamente suscetível.

A eficiência está diretamente relacionada com a capacidade de disseminação → insetos vetores dificulta.

Erradicação

- -Eliminação completa do patógeno na região;
- -Patógeno tem número restrito de hospedeiro;
- -Baixa capacidade de disseminação;
- -Economicamente viável;
- -Área geográfica atingida insignificante.

Medidas:

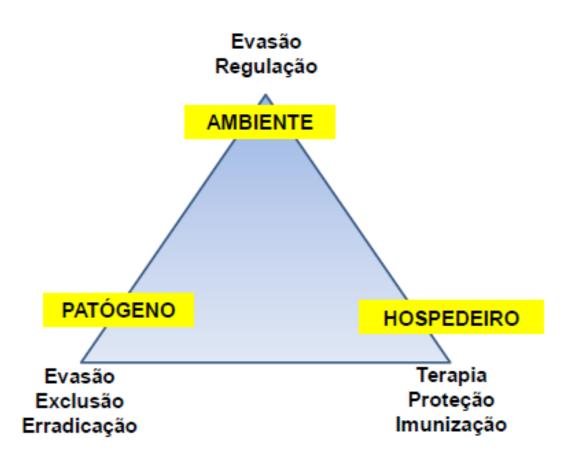
- -Eliminação de plantas doentes, hospedeiros nativos;
- -Aração profunda (fungo de solo), eliminação de restos da cultura;
- -Desinfestação do solo;-Tratamento de sementes.

Proteção

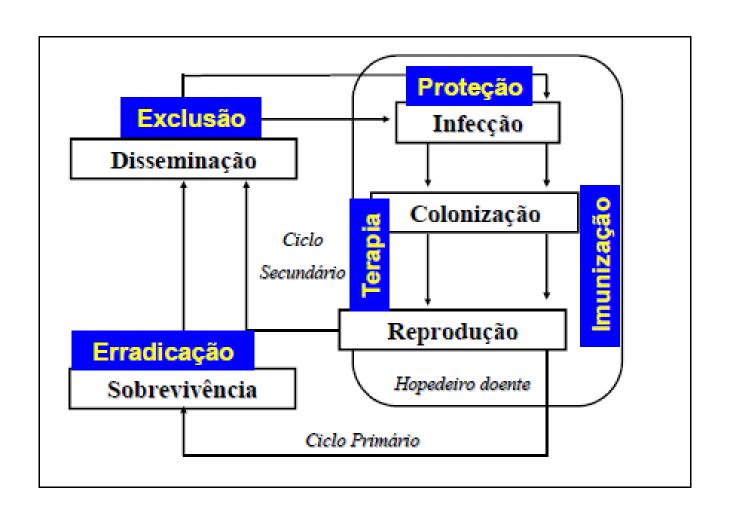
- Prevenção do contato direto do patógeno com o hospedeiro.
 - → Aplicação de produtos químicos fungicidas ou inseticidas → inseto vetor
- alta toxidade ao patógeno,
- grande estabilidade,
- não ser fitotóxico.
- não causar desequilíbrio ao ambiente.
- O método de aplicação, época, número de aplicações e de produtos devem ser levados em consideração.

Imunização

- Resistência encontrada pelo patógeno para causar a doença (penetração, colonização, esporulação) genéticos ou químicos.
- Resistência Método ideal de controle não onera custo de produção quando executado através de resistência genética.
- Fungicida sistêmicos –ação de maneira análoga à resistência induz a planta a produzir substância tóxica ao fungo.
- **Pré imunização** de plantas cítricas ou proteção cruzada = Planta cítrica inoculada com estirpe fraca do vírus da tristeza tolerante a estirpe forte.


Terapia ou Cura

- Recuperação da planta doente pela eliminação ou cura das partes que contenham o patógeno;
- Limitações técnico-econômicos;
- Espécies de elevado valor histórico ou sentimental Ex.:
 - a) Cirurgia dos troncos lesionados gomose do cítrus
 - b) Tratamento térmico de mudas de bananeira
 - c) Substituição do cerne por ferragens e concreto


Princípios de Whetzel e o triângulo da doença

Fases do ciclo das relações patógeno-hospedeiro onde atuam os princípios de controle de Whetzel

Controle ou Manejo?

Controle

Definição Econômica:

- Whetzel et al., 1925): "Prevenção dos prejuízos de uma doença"
- (Fawcetti & Lee (1926): Na prevenção e no tratamento da doença os métodos de controle empregados deveriam custar menos do que os prejuízos ocasionados

Definição Ecológica:

- "Redução da severidade ou incidência da doença"
- Doenças são controladas eficientemente com o conhecimento de sua etiologia, clima, ciclo das relações P x H.

Controle ou Manejo?

O controle de doenças de plantas não pode ser abordado isoladamente, mas integrado a outros fatores:

- Clima, variedade, adubação, tratos culturais, plantas daninhas e pragas, entre outro.
- Lei do Mínimo (Liebig): cada variável pode agir como fator limitante

Combinação de métodos de controle visando a redução na intensidade das doenças; resultando em alcance máximo em produtividade, sem reflexos negativos no meio ambiente, e que sejam aceitáveis pela sociedade e economicamente viáveis.

Eficiência das medidas para o controle das principais doenças do milho

Doença	Uso cultivar resistente	Rotação de cultura	Controle químico	Época de plantio	Irrigação adequada	Eliminação de hospedeiros infectados
Mancha por <i>E.</i> turcicum	+++	+++	+ a +++	+	ineficiente	-
Mancha por Phaeosphaeria	+++	+++	+ a +++	++	ineficiente	-
Ferrugem comum	+++	ineficiente	+ a +++	++	ineficiente	++
Ferrugem polissora	+++	ineficiente	+ a +++	++	ineficiente	-
Ferrugem branca	+++	ineficiente	+ a +++	++	ineficiente	-
Mancha por Cercospora	+++	+++	+ a +++	?	ineficiente	-
Queima bacteriana das folhas	+++	+	ineficiente	ineficiente	+++	-
Podridão do cartucho	+++	?	ineficiente	ineficiente	+++	-
Míldio do sorgo	+++	++	?	+	ineficiente	+++
Enfezamentos	+++	ineficiente	ineficiente	+	ineficiente	-
Mosaico comum	+++	ineficiente	ineficiente	+	ineficiente	++
Doenças da espiga	+++	+++	-	++	++	-
Podridões do colmo	+++	+++	-	ineficiente	+++	-

(+) medida de controle eficiente (número de + indica o nível de eficiência); (-) não se aplica, (?) sem informações

Fonte: Circular Tecnica n. 92 – Embrapa 2007.

- 1- INTRODUÇÃO
- 2- DOENCAS EM PLANTAS
- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

Mancha foliar de Phaeosphaeria (*Phaeosphaeria maydis*)

Danos:

- Seca Prematura das folhas e redução no ciclo da planta
- Redução no tamanho dos grãos
- Pode reduzir a produção de grãos em até 60 %

Condições favoráveis para ocorrência:

- Temperatura diurna entre 24 e 30° C,
- Temperatura noturna em torno de 14 e 16º C
- Umidade relativa do ar em torno de 60%
- Altitudes superiores a 700 m

- Folhas com lesões necróticas de cor de palha
- Lesões em número variável, com formas variando de circulares a elípticas com diâmetro oscilando entre 0,3 a 1 cm
- Os sintomas aparecem nas folhas inferiores evoluindo para as folhas superiores

Mancha foliar de Phaeosphaeria (*Phaeosphaeria maydis*)

Helminthosporiose (Helminthosporium turcicum)

Danos:

Perdas significativas na produção

Condições favoráveis para ocorrência:

- Temperatura diurna entre 18 e 27° C,
- Presença de orvalho nas folhas
- Fotoperíodos curtos e baixa luminosidade –
- Maiore severidade nos plantios de Agosto e Setembro e safrinha

- · Lesões necróticas nas folhas,
- lesões alongadas e grandes (5 a 12 mm de comprimento), coloração palha e bordas bem definidas
- Sintomas mais severos após o pendoamento

Helminthosporiose (*Helminthosporium turcicum*)

Helminthosporiose (Helminthosporium maydis)

Danos:

Perdas significativas na produção

Condições favoráveis para ocorrência:

- Temperatura diurna entre 20 e 32º C,
- Presença de orvalho nas folhas

- Lesões necróticas de bordos paralelos nas folhas,
- coloração palha aparecendo primeiro nas folhas baixeiras

Ferrugem (*Puccinia polysora*)

Danos:

- Seca prematura das plantas
- Redução acentuada no tamanho das espigas e na taxa de enchimento dos grãos

Condições favoráveis para ocorrência:

- Temperatura entre 27 e 34° C,
- Alta umidade relativa do ar
- Altitudes inferiores a 700 m

- Formato circular a elíptico, com coloração amarelo ao dourado
- Pustulas densamente distribuidas em ambas as faces do limbo, na bainha foliar, nas bracteas das espigas e no pendão das plantas.

Ferrugem (*Puccinia polysora*)

Ferrugem comum (*Puccinia sorghi*)

Danos:

- Seca prematura das plantas
- Redução acentuada no tamanho das espigas e na taxa de enchimento dos grãos
- Pode ocorrer em qualquer fase do desenvolvimento das plantas, sendo mais prejudicial quando ocorre em plantas jovens.

Condições favoráveis para ocorrência:

- Temperatura entre 16 e 23° C,
- Alta umidade relativa do ar

- Encontrada inicialmente nas folhas baixeiras
- presença de pústulas elípticas e alongadas localizazas em ambas as faces das folhas,
- Coloração marrom-claro a negra
- A medida que amadurecem se rompem as pústulas formando uma fenda característica.

Ferrugem comum (Puccinia sorghi)

Ferrugem branca (*Physopella zeae*)

Danos:

- Seca prematura das plantas
- Redução acentuada no tamanho das espigas e na taxa de enchimento dos grãos
- Pode ocorrer em qualquer fase do desenvolvimento das plantas, sendo mais prejudicial quando ocorre em plantas jovens.

Condições favoráveis para ocorrência:

- Temperatura entre 24 e 35° C,
- Alta umidade relativa do ar
- Regiões produtoras com altitude inferior a 500 m

- Pústulas de cor creme, de tamanho pequeno, formato circular ou oblongo e coloração clara
- Em condições de alta incidência pode ocorrer enrugamento e seca prematura das folhas

Ferrugem branca (Physopella zeae)

Antracnose (Colletotrichum graminicola)

Danos:

- Podridão do colmo, pode infectar o colmo em vários estádios de desenvolvimento da planta podendo levá-la a morte
- Redução na produção de grãos

Condições favoráveis para ocorrência:

- Alta umidade relativa do ar,
- Temperatura moderada;
- Extensos períodos nublados
- Restos de cultura e sementes.

- Se manifesta preferencialmente a partir do florescimento;
- Pode ocorrer em todas as partes da planta;
- Presença externa no colmo de lesões estreitas e alongadas no sentido longitudinal;
- De coloração pardo-avermelhada, que se tornam castanho escuras e pretas;
- Internamente os tecidos internos do colmo tornam-se escuros e passam por um processo de desintegração.

Bipolaris maydis (Cochliobulus heterostrophus)

Danos:

Redução na produção de grãos

Condições favoráveis para ocorrência:

- Alta umidade relativa do ar,
- Temperatura 20 e 32°C;
- Regiões quentes e úmidas

- lesões alongadas de coloração marrom claro a marrom castanho com bordos paralelos;
- Pode ocorrer lesões nas folhas, bainha, colmo, bractea, pedúnculo da espiga e podridão do sabugo

Bipolaris maydis (*Cochliobulus heterostrophus*)

Mancha Foliar de Cercospora (*Cercospora zea-maydis*)

Danos:

- É uma das mais importantes doenças da cultura na atualidade podendo reduzir drasticamente a produtividade;
- Ambas as espécies acontecem no Brasil sendo a Cercospora zea-maydis é mais importante por ser mais agressiva

Condições favoráveis para ocorrência:

- Longos períodos de alta umidade relativa do ar sem formação de água livre na superfície da folha,
- Temperatura 22 e 30°C;
- Sobrevive em restos de cultura;
- Disseminação via vento e via água

Sintomatologia:

- Primeiros sintomas na fase de floração;
- Ocorre primeiro nas folhas baixeiras;
- lesões delimitadas pelas nervuras;
- Formato linear retangular de coloração verde oliva;
- Em híbridos menos sensíveis, as manchas são menores e acompanhadas de bordos cloróticos ou avermelhados

Mancha Foliar de Cercospora (Cercospora zea-maydis)

Mancha Foliar de Exserohilum (Setosphaeria turcica)

Danos:

- O prejuízo depende da severidade e do estádio de desenvolvimento da cultura na época da infecção;
- Ataque severo antes do embonecamento é altamente danoso.

Condições favoráveis para ocorrência:

- Altitudes maiores de 700m;
- Primeiros plantios das regiões tropicais de altitude entre Agosto e Setembro;
- Plantios após Novembro no Centro Oeste
- Temperatura 18 e 27°C;
- Adubação nitrogenada em excesso favorece a incidência da doença

Sintomatologia:

- As lesões são necróticas, elíptica, variando de 2,5 a 15 cm de comprimento;
- Lesões primeiro nas folhas baixeiras;
- Coloração do tecido necrosado de verde-cinza a marrom.

Mancha Foliar de Exserohilum (Setosphaeria turcica)

Mancha Foliar de Diplodia (Stenocarpella macrospora)

Danos:

• A incidência dessa mancha foliar tem aumentado ano a ano e o principal acarretado pelo ataque nas folhas é o aumento de inóculo para as infecções de espigas e colmos, essas sim, podem proporcionar enormes prejuízos para a cultura do milho

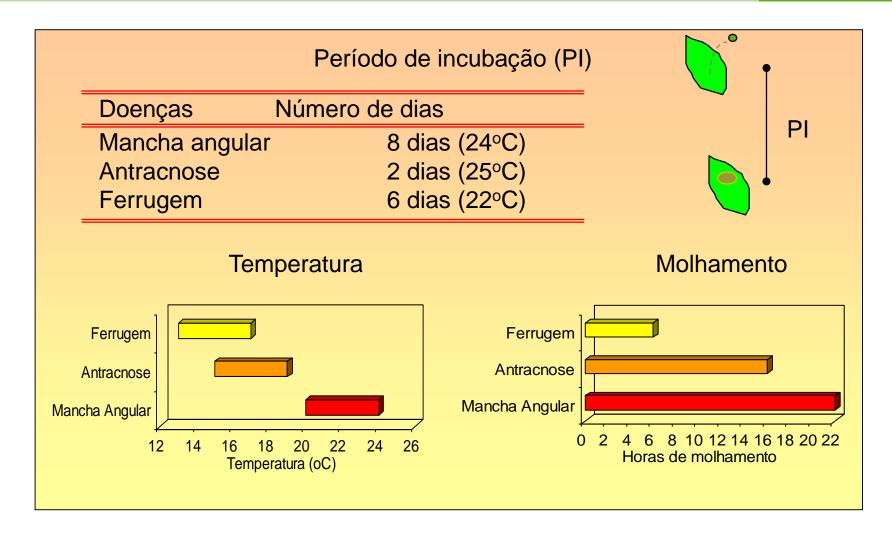
Condições favoráveis para ocorrência:


- Altitudes elevadas;
- Longos períodos de chuva e nebulosidade
- Temperatura elevada;

Sintomatologia:

- Lesões necróticas com formato variado, de elípticas a estrias compridas com clorose nas margens, variando de 1,5 a 25 cm de comprimento e com 0.5 a 2.5 cm de largura.
- Sintomas podem ser confundicos com E. turcicum

Mancha Foliar de Diplodia (Stenocarpella macrospora)



- 1- INTRODUÇÃO
- 2- DOENCAS EM PLANTAS
- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

Principais doenças do Feijão

Antracnose (Colletotrichum lindemutianum)

Sintomas:

- Ataca toda a parte aérea das plantas;
- ✓ Aparecem 6 dias após o início da infecção;
- Nas folhas os sintomas aparecem primeiro nas nervuras;
- Nas vagens as lesões são bem deprimidas e de coloração rosa;

Condições favoráveis:

- Penetração pela cutícula e epiderme;
- ✓ Temperatura baixa a moderada (13-27 °C), ótimo de 21 °C;
- ✓ Alta umidade (> 91%);

<u>Disseminação:</u>

- ✓ Sobrevive em restos de culturas;
- ✓ Pelas sementes, respingos de chuvas, homem e insetos.

Antracnose (Colletotrichum lindemutianum)

Danos:

- ✓ Qualidade grãos;
- Seca prematura de folhas;
- ✓ Perdas variam até 100%.

Controle:

- ✓ Redução do inóculo (rotação de culturas);
- Tratamento de sementes;
- Controle químico.

Antracnose (Colletotrichum lindemutianum)

Mancha Angular (*Phaeoisariopsis griseola*)

Sintomas:

- ✓ Caule, folhas e vagens;
- ✓ Aparecem 8 -12 dias após a infecção.

Condições favoráveis:

- ▼ T °C ideal: 20-28 °C;
- ✓ Penetração pelos estômatos;
- ✓ Esporulação ocorre só com alta umidade;

Disseminação:

- ✓ Sobrevive em sementes e restos de cultura
- ✓ Vento, respingos de água de irrigação ou chuvas e partículas de solo.

Mancha Angular (*Phaeoisariopsis griseola*)

DANOS:

- ✓ Fotossíntese;
- ✓ Seca prematura de folhas;
- ✓ Perdas variáveis (início do ataque).

CONTROLE:

- ✓ Redução do inóculo (rotação de culturas);
- ✓ Tratamento de sementes;
- ✓ Controle químico .

Ferrugem (*Uromyces appendiculatus*)

Sintomas:

- Predominam nas folhas;
- Aparecem 6 dias após o início da infecção, tornando típicos 10-12 dias após.

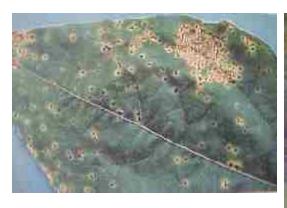
Condições favoráveis:

- Penetração pelos estômatos;
- ✓ Temperatura ideal: 17-27 °C;
- ✓ Alta umidade (> 95%);
- Ocorrência regular orvalho.

Disseminação:

- ✓ Parasita obrigatório sobrevive em formas de resistência;
- ✓ Uredosporós homem, vento, implementos.

Ferrugem (*Uromyces appendiculatus*)

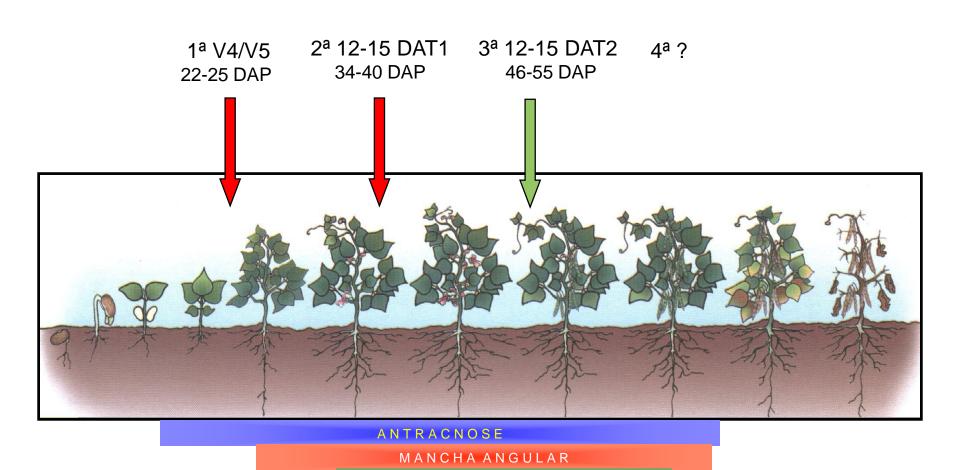


DANOS:

- ✓ Fotossíntese
- ✓ Seca prematura de folhas
- ✓ Perdas variáveis

CONTROLE:

- Cultivares resistentes
- ✓ Controle químico



Recomendação de controle

FERRUGEM

Características da doença

- Fungo de solo
- Desenvolvimento do fungo: Tº UR%
- Formas de aparecimento:
- (assexuada/miceliogênica e sexuada/carpogênica)
- Importância da doença
- Forma de disseminação
- Viabilidade solo/semente(dormência)
- Sobrevivência do apotécio(2 a 17 dias)
- Maturidade dos ascosporos(2 milhões /apotécio)
- Ataca 360 plantas de 64 famílias(soja/batata/tomate/ervilha/algodão/picão preto/ carrapicho/mentrasto/etc)

Ciclo de Vida do Fungo

- Escleródios;
- Germinação no solo;
- Formação de apotécios no solo;
- Liberação dos ascosporos;
- Germinação dos ascosporos nas flores;
- Colonização das flores;
- Infecção da planta;
- Murcha da planta;
- Formação de escleródios na vagem/caule.

Sintomas do Mofo Branco

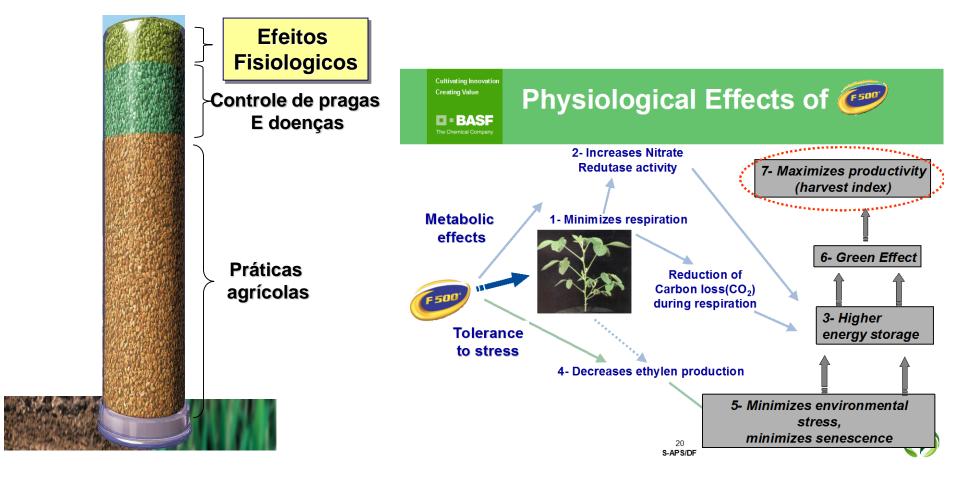
- Hastes/folhas e vagens
- Inserção do pecíolo
- manchas marrons/aquosas/murchas
- massa branca(algodão)
- massa pardacenta
- surgimento dos escleródios
- sementes sem brilho/leves

Sintomas nas hastes

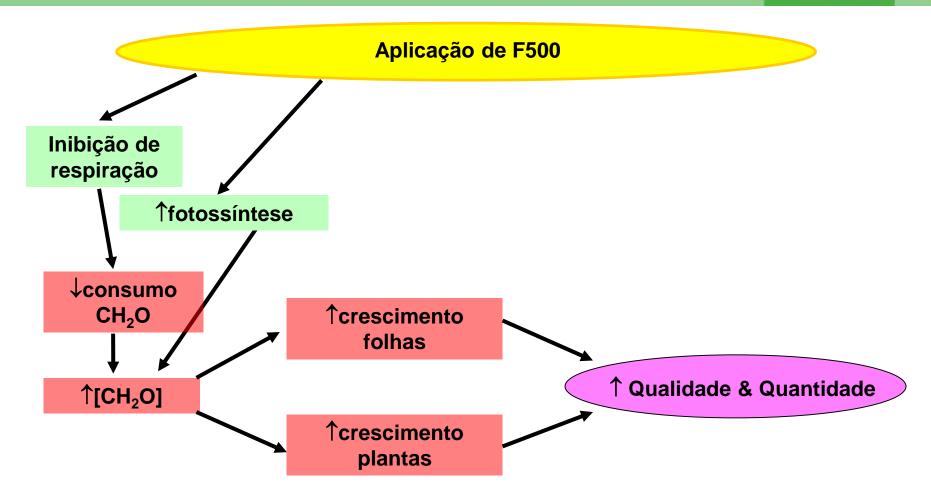
Escleródios com apotécio

Liberação de ascosporos das ascas formadas nos apotécios

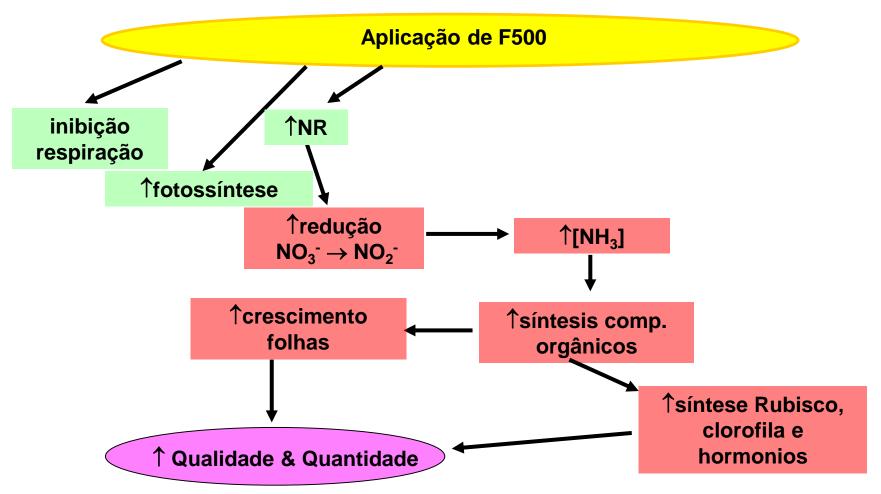
- Ataca todas as partes da planta de feijão;
- ✓ A evolução da doença leva a formação de uma prodridão mole;
- Em condições favoráveis forma tecido micelial cotonoso;
- ✓ Transmitido pela semente (até 3 anos de sobrevivência);
- ✓ Especialmente importante em períodos frios e úmidos;
- ✓ Possui vários hospedeiros (tomate, batata, girassol, nabo forrageiro, etc)
- Escleródios podem sobreviver dormentes no solo por até 5 anos;

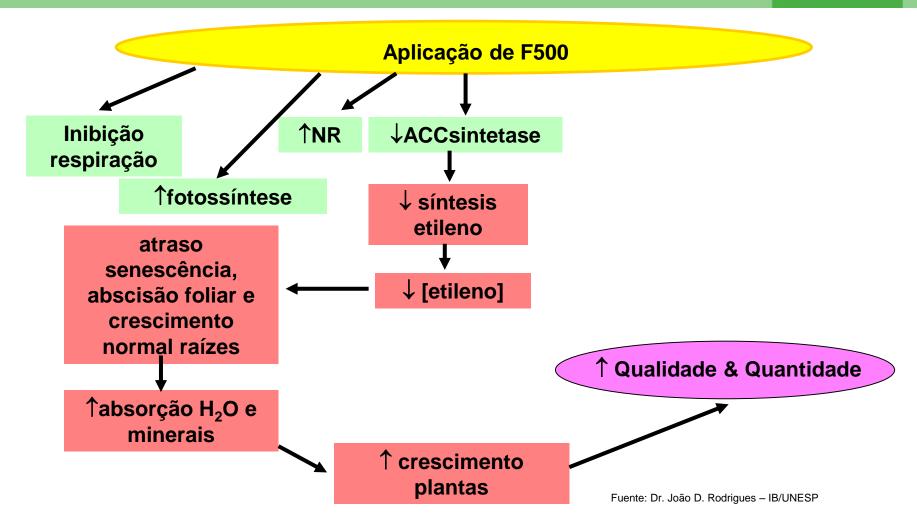

- 1- INTRODUÇÃO
- 2- DOENCAS EM PLANTAS
- 3- MEDIDAS DE CONTROLE
- 4- DOENÇAS DO MILHO e CONTROLE QUIMICO
- 5- DOENÇAS DO FEIJÃO e CONTROLE QUIMICO
- 6- EFEITOS FISIOLOGICOS

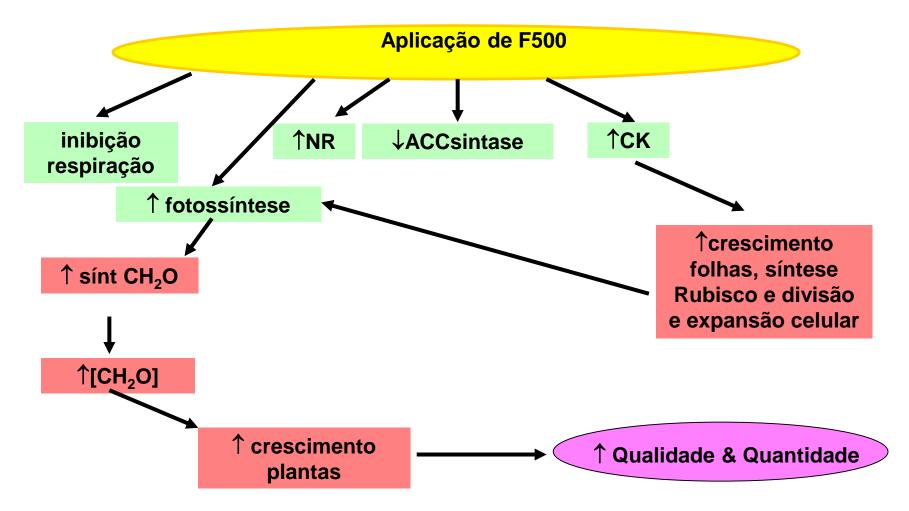
Efeitos Fisiológicos - Modelo proposto



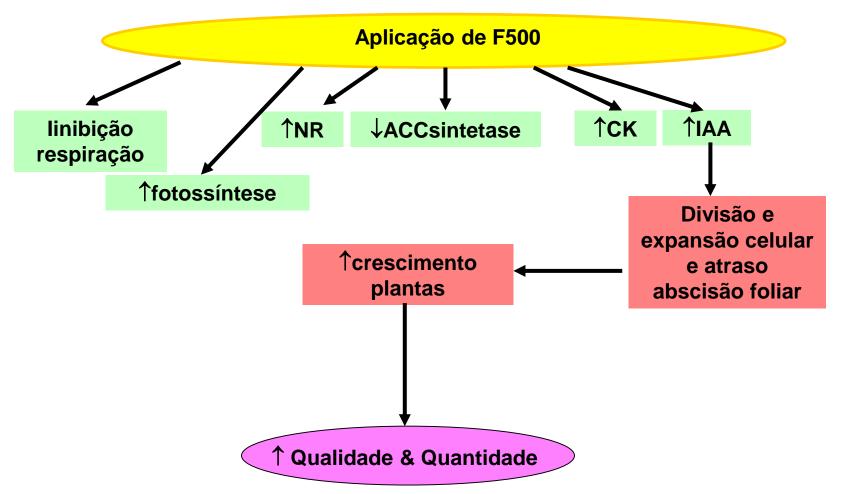
Beneficios além do controle de doenças

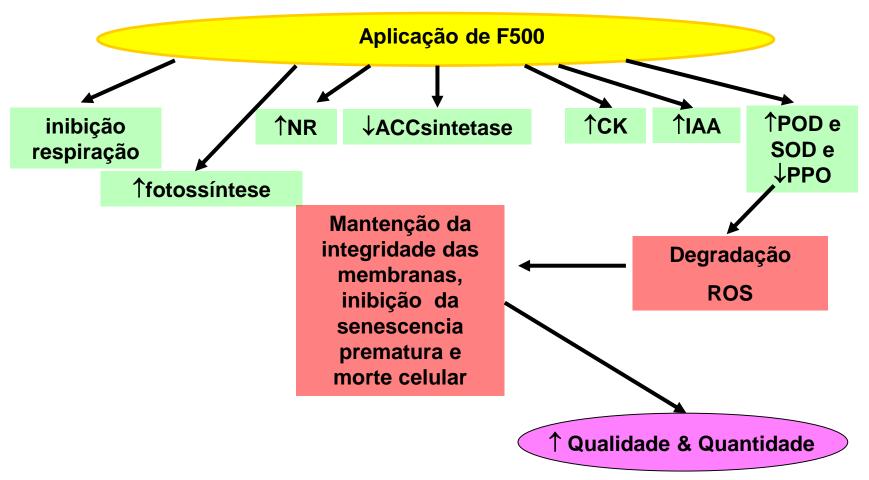

Aumento da Produtividade

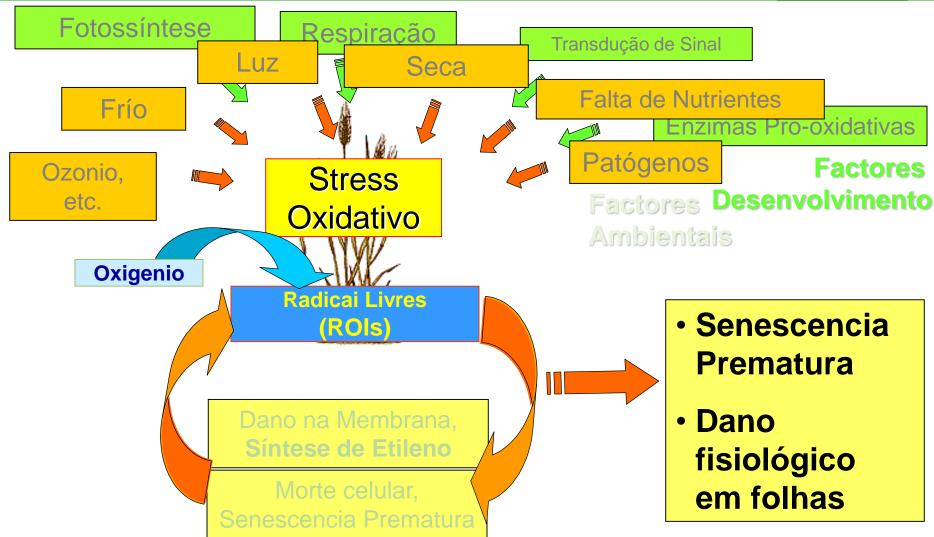




Fonte: Dr. João D. Rodrigues - IB/UNESP







Fonte: Dr. João D. Rodrigues – IB/UNESP

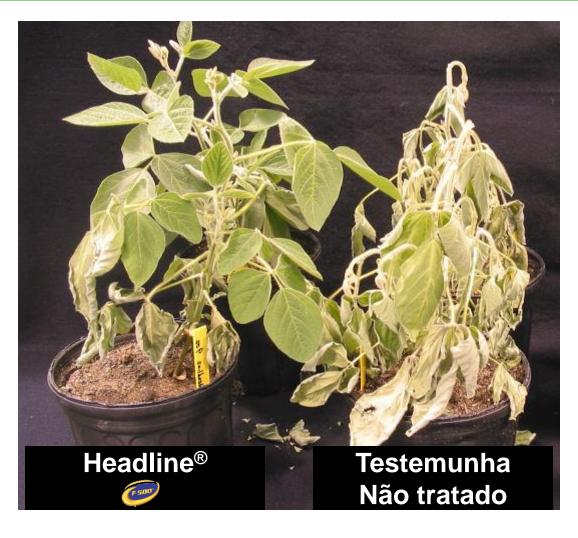
Impacto do stress no comportamento fisiológico

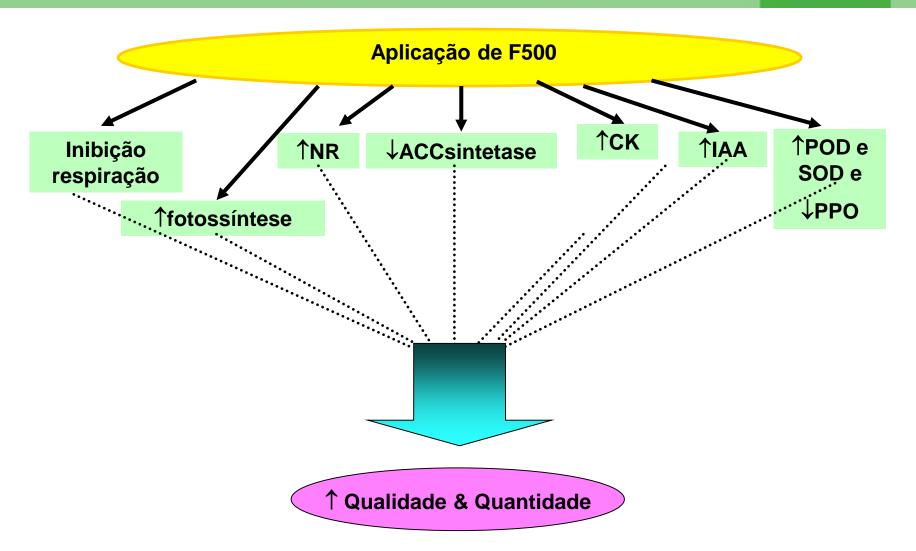
FONTE: BASF Corporation

Tolerancia ao frío

FONTE: BASF Corporation

Tolerancia a seca 3 Dias sem água




FONTE: BASF Corporation

Tolerancia a seca 7 Dias sem água

The Chemical Company