SMM0562 – Termodinâmica dos Materiais

Aula 5 – Termodinâmica Estatística

Prof. Eduardo Bellini Ferreira

Departamento de Engenharia de Materiais –

EESC/USP

Termodinâmica

Clássica (Fenomenológico)

- O sistema termodinâmico é um meio contínuo ou uma coleção de meios, separados por uma interface, mas todos contínuos.
- Ao sistema são atribuídas propriedades (C_P , α , U, etc.).
- O conhecimento da variação dessas propriedades com o estado do sistema é suficiente para descrever os fenômenos macroscópicos experimentados pelo sistema (mudar de temperatura, expandir, etc.).

Estatística (Atomístico)

- O sistema é composto por átomos ou moléculas.
- Seu comportamento é relacionado às propriedades das partículas que o compõem.
- Faz conexão entre o comportamento dos átomos e as propriedades macroscópicas do sistema.
- Permite prever o valor das propriedades do sistema, e entendê-las fisicamente.
- Lidamos com um número muito grande de partículas, $N\sim10^{23}$.

Termodinâmica estatística

- Descrição do **microestado** de um sistema (ex.: listagem da energia de todos os átomos que o compõem).
- A estatística dá as ferramentas necessárias para lidar com tal número de possibilidades.
- Função de distribuição: átomos que têm valor similar de dada propriedade são agrupados em classes (ex.: níveis de energia).
- A função de distribuição simplesmente fornece o número de partículas em cada classe (nível de energia) – a quantidade de informação necessária para descrever o sistema diminui enormemente!
- A especificação do estado do sistema em termos de tal função de distribuição é chamada de macroestado do sistema.

- Microestado de um sistema: descrição, especificando a condição ou estado de cada partícula que compõe o sistema.
- Se a descrição é alterada (átomos mudam de condição), o sistema é considerado estar em um microestado diferente.
- Devido ao grande número de partículas e condições possíveis, o número de microestados diferentes que um sistema pode exibir é enorme!
- Mas as partículas são consideradas fisicamente idênticas e o comportamento macroscópico do sistema não depende de qual partícula pertence a qual estado, mas meramente do número de partículas em um dado estado.
- Veja o exemplo no próximo slide.

Exemplo: sistema de 4 átomos e 2 níveis de energia

Microstates and Macrostates for a Simple System

List of Microstates					
State	$arepsilon_1$	$oldsymbol{arepsilon}_2$	State	$arepsilon_1$	$oldsymbol{arepsilon_2}$
A	abcd	_	I	bc	ad
В	abc	d	J	bd	ac
C	abd	c	K	cd	ab
D	acd	b	L	a	bcd
E	bcd	a	M	b	acd
F	ab	cd	N	c	abd
G	ac	bd	O	d	abc
Н	ad	bc	P	_	abcd

	• -	_			
ı	ıct	Ωt	M	acrostates	2
		•	/ V 10	iciostate	Э.

	Number of Particles				
State	$oldsymbol{arepsilon}_1$	$arepsilon_1$	Corresponding Microstates	Number	Probability
I	4	0	A	1	1/16
II	3	1	B,C,D,E	4	4/16
Ш	2	2	F,G,H,I,J,K	6	6/16
IV	1	3	L,M,N,O	4	4/16
\mathbf{V}	0	4	P	1	1/16

Particles: a,b,c,d; States: ε_1 , ε_2 ; Number of microstates = $2^4 = 16$.

Microstates and Macrostates for a Simple System

	_		
lict	Λt	MICK	ostates
LIST	O.	741161	ostates

State	$arepsilon_1$	$arepsilon_2$	State	$arepsilon_1$	$arepsilon_2$
A	abcd	_	I	bc	ad
В	abc	d	J	bd	ac
C	abd	c	K	cd	ab
D	acd	b	L	a	bcd
E	bed	a	M	b	acd
F	ab	cd	N	c	abd
G	ac	bd	O	d	abc
Н	ad	bc	P		abcd
			List of Macrostates		
Number of Particles					
State	$oldsymbol{arepsilon}_1$	$oldsymbol{arepsilon_1}$	Corresponding Microstates	Number	Probability

Number of Particles				
$arepsilon_1$	$arepsilon_1$	Corresponding Microstates	Number	Probability
4	0	A	1	1/16
3	1	B,C,D,E	4	4/16
2	2	F,G,H,I,J,K	6	6/16
1	3	L,M,N,O	4	4/16
0	4	P	1	1/16
	ε ₁ 4 3 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ε₁ ε₁ Corresponding Microstates 4 0 A 3 1 B,C,D,E 2 2 F,G,H,I,J,K 1 3 L,M,N,O	ε₁ ε₁ Corresponding Microstates Number 4 0 A 1 3 1 B,C,D,E 4 2 2 F,G,H,I,J,K 6 1 3 L,M,N,O 4

Particles: a,b,c,d; States: ε_1 , ε_2 ; Number of microstates = $2^4 = 16$.

- Tanto faz se são as partículas a e b que estão presentes no estado ε_1 , ou as c e d as propriedades macroscópicas serão as mesmas.
- Ou seja, os **microestados** *F* , *G* , *H* , *I* , *J* , *K* resultarão nas mesmas propriedades macroscópicas para o sistema.
- Cada um desses microestados corresponde à condição: "duas partículas no estado ϵ_1 e duas partículas no estado ϵ_2 " — esse é um **macroestado** do sistema (uma forma muito mais eficiente de descrever o estado de um sistema em nível atômico).
- Para especificar o macroestado de um sistema em um dado tempo, focamos não no átomos ou partículas, mas na lista de condições ou estados possíveis que os átomos individuais podem assumir.

 Generalizando para r estados que cada átomo pode assumir:

- Um macroestado é descrito especificando o número de partículas (n_i) em cada estado.
- Função de distribuição: $(n_1, n_2, ..., n_r)$

- No exemplo de 4 átomos e 2 estados (níveis de energia), o número de microestados é $2^4 = 16$
- O número de macroestados é significativamente menor: 5 (um macroestado compreende um número de microestados).
- Quando o número de partículas e níveis de energia aumenta, o número de microestados que corresponde a um dado macroestado pode se tornar muito grande!
- Por exemplo, um sistema com 10 átomos e 3 níveis de energia apresentará $3^{10} = 59.049$ microestados e 60 macroestados.
- Sistemas termodinâmicos reais podem conter 10^{22} átomos e 10^{15} níveis de energia!
- Encontrar o número de microestados que corresponde a um dado macroestado é uma operação central na Termodinâmica Estatística.

Processo termodinâmico do ponto de vista atomístico

- Uma mudança no estado macroscópico do sistema corresponde a uma redistribuição dos átomos nos estados alocáveis (que podem ser ocupados; correspondentes a níveis de energia possíveis);
- Isto é, o conjunto de alterações no número de partículas (ou átomos) em cada estado de energia atômico.

Probabilidade de um dado macroestado ocorrer

- O tempo que cada partícula passa em um dado estado ou nível de energia, a longo prazo, pode ser considerado o mesmo para todas as partículas, já que todas são iguais.
- Pode-se argumentar que o tempo que o sistema passa em um dado microestado é o mesmo para qualquer microestado.
- O tempo que o sistema passa em um dado macroestado é a soma do tempo que o mesmo passou em cada microestado que corresponde àquele macroestado.
- A fração de tempo em que um sistema passa em um dado macroestado, ao longo de sua existência, é então a razão entre o número de microestados que corresponde ao macroestado em questão, e o número total de microestados que o sistema é capaz de assumir.
- Essa fração pode ser interpretada, de forma plausível, como a probabilidade de um sistema assumir o macroestado em um certo instante de tempo, ao acaso.

Probabilidade de um dado macroestado ocorrer

- No exemplo de 4 átomos e 2 estados (ou níveis de energia), o número total de microestados é $2^4 = 16$.
- Ou seja, o sistema passa $\frac{1}{16}$ do tempo em cada microestado.
- O macroestado *II*, por exemplo, é constituído por 4 microestados: *B*, *C*, *D* ou *E*.
- Cada um desses microestados corresponde a $\frac{1}{16}$ do tempo de existência do sistema. Assim, o macroestado II ocorrerá durante $4 \times \frac{1}{16} = \frac{1}{4}$ do tempo.
- Ou seja, a probabilidade de que o macroestado II seja observado em um instante qualquer é $\frac{1}{4}$ ou 25%.
- É preciso calcular o número total de microestados que um sistema pode exibir, e o número de microestados que corresponde a um macroestado qualquer.

Generalizando: número total de microestados de um sistema

- Considere um sistema com um número N_0 muito grande de partículas (por exemplo, 1 mol, ou seja, $N_0 = 6,023 \times 10^{23}$).
- Suponha que cada uma dessas partículas possa existir em qualquer um de um grande número r de estados ou condições.
- Tomando as partículas uma a uma, a partícula \boldsymbol{a} pode ser alocada em qualquer um dos \boldsymbol{r} estados. A partícula \boldsymbol{b} também pode ser alocada, independentemente, em qualquer um dos \boldsymbol{r} estados. Com apenas essas $\boldsymbol{2}$ partículas teremos $\boldsymbol{r}\cdot\boldsymbol{r}=\boldsymbol{r}^2$ arranjos.
- Se houver uma terceira partícula, ela também poderá ser colocada em qualquer um dos r estados, e o número de arranjos aumenta para $r \cdot r \cdot r = r^3$.
- Assim, o número de maneiras diferentes em que N_0 partículas podem ser arranjadas em r estados é r^{N_0} .
- Observe que mesmo para r pequeno, por exemplo 2, o número de arranjos para 1 mol de partículas é enorme: $r^{6,023\times10^{23}}$!

Generalizando: número de microestados para um dado macroestado

• Para um sistema com N_0 ditribuidas em r estados, a descrição de um macroestado específico tem a seguinte forma:

$$(n_1, n_2, n_3, ..., n_i, ..., n_r)$$

- O cálculo do número de microestados que corresponde a esse macroestado é equivalente a responder: de quantas maneiras diferentes N_0 bolas podem ser distribuídas em r caixas, de modo a termos n_1 bolas da primeira caixa, n_2 bolas na segunda caixa, e assim por diante até n_r bolas na rézima caixa.
- Da análise combinatória, o número Ω de microestados é:

$$\Omega = \frac{N_0!}{(N_0 - n_1)! \cdot n_1!} \cdot \frac{(N_0 - n_1)!}{(N_0 - n_1 - n_2)! \cdot n_2!} \cdot \frac{(N_0 - n_1 - n_2)!}{(N_0 - n_1 - n_2 - n_3)! \cdot n_3!} \cdot \cdots$$

• Simplificando (onde $N_0-n_1-n_2-n_3-\cdots-n_r=N_0-N_0=0$)

$$\Omega = \frac{N_0!}{n_1! \cdot n_2! \cdot n_3! \cdot \cdots \cdot n_r!}$$

Número de microestados em dado macroestado

- No exemplo de 4 átomos e 2 estados:
- Macroestado I (4,0): $\Omega_I = \frac{4!}{4! \cdot 0!} = \frac{(4 \cdot 3 \cdot 2 \cdot 1)}{(4 \cdot 3 \cdot 2 \cdot 1) \cdot (1)} = 1$
- Macroestado II (3,1): $\Omega_{II} = \frac{4!}{3! \cdot 1!} = \frac{(4 \cdot 3 \cdot 2 \cdot 1)}{(3 \cdot 2 \cdot 1) \cdot (1)} = 4$
- Macroestado III (2,2): $\Omega_{III} = \frac{4!}{2! \cdot 2!} = \frac{(4 \cdot 3 \cdot 2 \cdot 1)}{(2 \cdot 1) \cdot (2 \cdot 1)} = 6$
- Macroestado *IV* (1,3): $\Omega_{IV} = \frac{4!}{1! \cdot 3!} = \frac{(4 \cdot 3 \cdot 2 \cdot 1)}{(1) \cdot (3 \cdot 2 \cdot 1)} = 4$
- Macroestado V(0,4): $\Omega_V = \frac{4!}{0! \cdot 4!} = \frac{(4 \cdot 3 \cdot 2 \cdot 1)}{(1) \cdot (4 \cdot 3 \cdot 2 \cdot 1)} = 1$

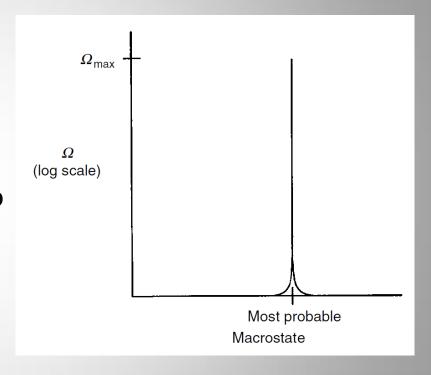
Probabilidade de um dado macroestado ocorrer

- Assim, a probabilidade de um dado macroestado ocorrer é dada pela razão entre o número de microestados que corresponde ao macroestado em questão, Ω_J , e o número total de microestados possíveis para o sistema.
- De forma geral:

$$P_J = \frac{\Omega_J}{r^{N_0}} = \frac{N_0!}{\prod_{i=1}^r n_i!} \cdot \frac{1}{r^{N_0}}$$

O macroestado que observamos na prática é o de maior probabilidade

- De todos os macroestados que podem existir para um sistema, um terá mais microestados que qualquer outro.
- Esse macroestado terá Ω máximo, e portanto também o máximo de probabilidade.
- Para sistemas com um grande número de partículas, Ω_{max} será extremamente grande, muito maior que qualquer outro.
- O estado de maior probabilidade é o que se observa a maior parte do tempo.



 Se interpretamos esse estado de máxima probabilidade como o estado de equilíbrio, essa hipótese forma a base para a conexão entre a termodinâmica fenomenológica e a descrição estatística, atomística do sistema.

Conexão entre termodinâmica fenomenológica e estatística

- Na termodinâmica clássica, o estado de equilíbrio é também caracterizado por um extremo: o máximo de entropia em sistemas isolados.
- A conexão entre entropia e Ω é então razoável.
- Como são valores com ordens de grandeza de diferença de magnitude, há necessidade de ajustar a função para que um valor corresponda ao outro.

Hipótese de Boltzmann

$$S = k \ln \Omega$$

- De onde observa-se que k é uma constante universal, chamada constante de Boltzmann.
- $k = 1,3806505 \times 10^{-23} \frac{J}{atm \cdot K}$
- $k = \frac{R}{N_0}$
- R é a constante dos gases!

Condições para o equilíbrio em termodinâmica estatística

- Em termodinâmica estatística, o **estado de equilíbrio** é o macroestado $(n_1,n_2,\ldots,n_r)_{eq}$ que **maximiza a entropia quando o sistema é isolado**.
- Usamos a mesma estratégia geral já vista:
 - 1. Escrevemos uma expressão para a mudança de entropia do sistema em termo das variáveis que definem seu estado. Nesse caso, as variáveis são $(n_1, n_2, ..., n_r)$.
 - 2. Escrevemos expressões para as restrições em tais variáveis devidas à limitação de que o sistema é isolado.
 - Encontramos o conjunto de equações que devem ser satisfeitas para que a entropia seja máxima, considerando as restrições do isolamento.

• Considerando $S = k \ln \Omega$ e $\Omega = \frac{N_0!}{\prod_{i=1}^r n_i!}$

$$S = k \ln \left(\frac{N_0!}{\prod_{i=1}^r n_i!} \right)$$

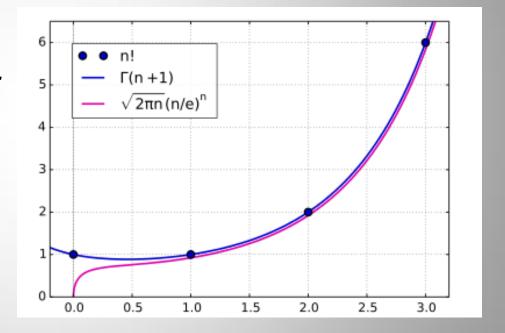
$$S = k \left[\ln N_0! - \sum_{i=1}^r \ln(n_i!) \right]$$

Aproximação de Stirling

 O cálculo usando fatoriais é muito facilitado pela aproximação de Stirling:

$$\ln x! \cong x \ln x - x + \frac{1}{2} \ln 2\pi x$$

- Vale para x muito grande.
- Em geral, os dois primeiros termos já são suficientes:



$$\ln x! \cong x \ln x - x$$

$$S = k \left[\ln N_0! - \sum_{i=1}^r \ln(n_i!) \right]$$

Usando a aproximação de Stirling:

$$S = k \left[(N_0 \ln N_0 - N_0) - \sum_{i=1}^r (n_i \ln n_i - n_i) \right]$$

$$S = k \left[N_0 \ln N_0 - N_0 - \sum_{i=1}^r n_i \ln n_i + \sum_{i=1}^r n_i \right]$$

• Mas observe que $N_0 = \sum_{i=1}^r n_i$

$$S = k \left[N_0 \ln N_0 - N_0 - \sum_{i=1}^r n_i \ln n_i + N_0 \right]$$

$$S = k \left[N_0 \ln N_0 - \sum_{i=1}^r n_i \ln n_i \right]$$

$$S = k \left[N_0 \ln N_0 - \sum_{i=1}^r n_i \ln n_i \right]$$

• Considerando novamente $N_0 = \sum_{i=1}^r n_i$

$$S = k \left[\left(\sum_{i=1}^{r} n_i \right) \ln N_0 - \sum_{i=1}^{r} n_i \ln n_i \right]$$

$$S = k \left[\left(\sum_{i=1}^{r} n_i \ln N_0 \right) - \sum_{i=1}^{r} n_i \ln n_i \right]$$

$$S = k \left[\sum_{i=1}^{r} n_i (\ln N_0 - \ln n_i) \right] = k \sum_{i=1}^{r} n_i \ln \left(\frac{N_0}{n_i} \right)$$

$$S = -k \sum_{i=1}^{r} n_i \ln \left(\frac{n_i}{N_0} \right)$$

- Considerando um dado processo: $(\Delta n_1, \Delta n_2, ..., \Delta n_i, ..., \Delta n_r)$
- Para mudanças infinitesimais: $(dn_1, dn_2, ..., dn_i, ..., dn_r)$

$$dS = -kd \left[\sum_{i=1}^{r} n_{i} \ln \left(\frac{n_{i}}{N_{0}} \right) \right] = -k \sum_{i=1}^{r} d \left[n_{i} \ln \left(\frac{n_{i}}{N_{0}} \right) \right]$$

$$dS = -k \sum_{i=1}^{r} d \left[n_{i} \ln n_{i} - n_{i} \ln N_{0} \right]$$

$$dS = -k \sum_{i=1}^{r} \left[\ln n_{i} \cdot dn_{i} + n_{i} \left(\frac{1}{n_{i}} \right) dn_{i} - \ln N_{0} \cdot dn_{i} \right]$$

$$-n_{i} \left(\frac{1}{N_{0}} \right) dN_{0}$$

$$dS = -k \left[\sum_{i=1}^r (\ln n_i - \ln N_0) dn_i + \sum_{i=1}^r dn_i - \sum_{i=1}^r \left(\frac{n_i}{N_0} \right) dN_0 \right]$$

$$dS = -k \left[\sum_{i=1}^{r} (\ln n_i - \ln N_0) dn_i + \sum_{i=1}^{r} dn_i - \sum_{i=1}^{r} \left(\frac{n_i}{N_0} \right) dN_0 \right]$$

• Como $N_0 = \sum_{i=1}^r n_i$, então:

$$dN_0 = \sum_{i=1}^r dn_i$$
 e $\sum_{i=1}^r \frac{n_i}{N_0} = 1$

• Portanto:

$$dS = -k \left[\sum_{i=1}^{r} (\ln n_i - \ln N_0) dn_i + dN_0 - 1 \cdot dN_0 \right]$$

E finalmente:

$$dS = -k \sum_{i=1}^{r} \ln \left(\frac{n_i}{N_0} \right) dn_i$$

Avaliação das restrições devido ao isolamento do sistema

- Sistema fechado implica que:
 - A massa (ou seja, o número total de partículas) do sistema não pode mudar
 - A energia interna do sistema não pode mudar.
- A massa ou a soma do número total de partículas em cada nível de energia é dada por:

$$N_0 = \sum_{i=1}^r n_i$$

A condição de que o sistema é fechado implica que:

$$\mathrm{d}N_0 = \sum_{i=1}^r \mathrm{d}n_i = 0$$

 A energia interna é a soma da energia de cada nível multiplicada pelo número de partículas do nível correspondente:

$$U = \sum_{i=1}^{r} \varepsilon_i n_i$$

E a condição de que o sistema é fechado implica que:

$$\mathrm{d}U = \sum_{i=1}^r \varepsilon_i n_i$$