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Econometrica, Vol. 55, No. 2 {(March, 19387), 303-328

AGGREGATION AND LINEARITY IN THE PROVISION OF
INTERTEMPORAL INCENTIVES

By BenaT HoLMSTROM AND PAUL MILGROM'

We cansider the problem of providing incentives aver time for an agent with constant
ahbsolute risk aversion. The optimal compensation scheme is found to be a linear function
of a vector of N accounts which count the number of times that each of the N kinds of
abservable events oecurs. The number N is independent of the number of time periads,
so the accounts may entail substantial aggregation.

In a continuous time version of the problem, the agent controls the drift rate of a vector
of accounts that is subject to frequent, small random fluctuations. The solution is as if the
problem were the static one in which the agent controls only the mean of 2 multivariate
normal distribution and the principal is constrained to use a linear compensation rule. If
the principal can observe only coarser linear aggregates, such as revenues, costs, or profits,
the aptimal compensation scheme is then a linear function of those aggregates. The
combination of exponential utility, normal distributions, and linear compensation schetnes
makes computations and comparative statics easy to do, as we illustrate.

We interpret our linearity results as deriving in part from the richness of the agent's
strategy space, which makes it possible far the agent to undermine and exploit complicated,
nonlinear functions of the accounting aggregates.

KEywoRDS: Principal-agent problems, moral hazard, incentives, piece-rates, Brownian
motion, aggregation, linear incentive schemes.

“Then I thought a minute, and says to myself, hold on,—s'pose you'd a done right and
give Jim up; would you felt better than what you do now? No, says I, I'd feel bad—I'd
feel just the same way [ do now. Well, then, says I, what's the use you learning to do right
when it's traublesome to do right and ain't no trouble to do wrang, and the wages is just
the same? [ was stuck. [ couldn’t answer that. Se I reckoned I wouldn't bother no more
about it, but after this always da whichever come handiest at the time.” Huckleberry Finn

1. INTRODUCTION

THERE 1S A LONG TRADITION in economic theory of analyzing the conditions
under which market-mediated outcomes are efficient, but only recently has there
been a systematic effort to investigate the kinds of nonmarket arrangements that -
might prevail when thase conditions fail. Much of this recent work has centered
on the simplest nanmarket paradigm: the principle-agent {or multiagent) relation-
ship. Principal-agent models, in which the agent enjoys some informational
advantage over the principal, offer a naturat framework for investigating the
thesis that informational constraints are economically significant in many trading
relationships and should therefore be treated on par with standard resource
constraints, These models have been successful in suggesting explanations for
nonmarket institutions and contracting practices that had been teft unexplained
by received micro theory.

Yet, those interested in incorporating the rudimentary agency models into more
lively and realistic economic settings have encountered a problem: Optimat
incentive contracts tend to be complicated even in the simplest situations, making

! This research was supported by NSF Grants IST-8411595 and SES-8411732. For their helpful
comments, we thank Jacques Dreze, Darrell Duffie, David Kreps, Michael Harrison, Edward Shetry,

two anonymous referees, and the participants in seminars at JMSSS (Stanford), MIT, Hebrew
University, Oxford, and CORE {Louvain).
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the models hard to work with in extended settings. Indeed, very few restrictions
can be placed on the shape of optimal contracts; even such a basic property as
monotonicity may be hard to assure (Milgrom, 1981; Grossman and Hart, 1983).
This is explained by the fact that outcomes {output, profits, etc.) provide informa-
tion abaut the agent’s action. Optimal contracts respond directly to the strength
of this information, which may vary in a rather arbitrary way with the outcome.
For the same reason, when agents are risk averse, optimal contracts will generalty
depend on all available information about the agent’s action (Holmstram, 1979,
Shavell 1979}. This admits aggregation through sufficient statistics, but such
statistics rarely correspond to common accounting measures, which aggregate
information to a substantially greater degree.”

Real warld incentive schemes appear to take less extreme forms than the finely
tuned rules predicted by the basic theory. One could explain the simplicity of
actual incentive schemes partly by the costs of writing intricate contracts, but
that is hardly the whole story. Agents in the real world typically face a wider
range of alternatives and principals a more diffuse picture of circumstances than
is assumed in the usual models. Optimal schemes derived from a spare and
approximate model of reality may perfarm quite poorly in the richer real environ-
ment. Indeed, it is our purpose to show that a linear compensation scheme based
on aggregates—whose performance is quite robust to the specification of the
environment®—emerges as optimal in a class of intertemporal problems for which
the agent has great freedom of action.*

QOur main idea can best be described in the context of a nonexistence result
discovered by Mirrlees (1974). Consider a moral hazard problem in which the
principal is risk neutrat and the strictly risk-averse agent privately (and at a cost}
controls the mean of a normal distribution with fixed variance. If the agent’s
utility is additively (or multiplicatively) separable in consumption and action
and unbounded from below in consumption, there is no optimal solution, because
the first-best (informationally unconstrained) solution can be approximated
arbitrarily closely using a compensation scheme of the fotlowing sort: Pay a fixed

2There is a trivial and uninteresting sense in which it is always possible to make the optimal
compensation of the agent a linear function of 2 single numerieal “aggregate,” namely, his optimal
compensation rule can be expressed as a linear function of any multiple of that rule, and the latter
is a single numerical aggregate. When we say that compensation can be based on aggregates, we
have something more sensible in mind. First, the aggregate must be determined as a finear function.
of some separately observed variables, such as the profits earned in two different periods of time.
Second, its definition must not depend on such parameters of the problem as the risk aversion of
the principal or agent or the costs of various actions the agent may take.

[dealized accounting systems are based on aggregates of this sort. Account balances are accumulated
sums over time, and they are defined in a way that depends only to a limited degree on the tastes of
the owners and managers.

3 Bull, Schotter, and Weigelt {1983) have found in experimental studies that piece-rate compensation
schemes are more consistent than tournament schemes for eliciting productive behavior.

* Recently, Laffont and Tirole (1985) and McAfee and MceMillan (1986) have proposed another
explanation of linear contracts. In their analyses, the principal and agent are both risk neutral and
therefore indifferent across a range of incentive contracts which sometimes includes linear contracts.
That idea is complementary to our contention that linear contracts enjoy a robustness that makes
them effective in a wide range of situations.
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wage unless output is very low, and pay a very low wage for very law output.
This “two-wage” scheme is effective because normal distributions have the
property that very low outputs are much more likely when the agent shirks than
when he does nat. Consequently, the two-wage scheme can be designed to impaose
virtually no risk on an agent who follows instructions but a large risk on an agent
who shirks.

This nonexistence result and the near-aptimal rules that go with it are disturbing.
In practice, one feels, schemes that adjust compensation only when rare events
occur are not likely to provide correct incentives for the agent in ordinary, high
probability circumstances. Mareover, to construct the scheme, the principal
requires very precise knowledge about the agent’s preferences and beliefs, and
about the technology that he controls. The two-wage scheme performs ideally if
the maodel’s assumptions are precisely met, but can be made to perform quite
poorly if small deviations in the assumptions about the variance or (especially)
about the agent’s ability to cantrol the probability of rare events are introduced.
Later, we shall consider a variant of the Mirrlees model in which the agent
chooses his labor input over time in response to observations of how well he is
daing. In our model, a two-wage scheme paid as a function of profits over some
period of time leads the agent to work hard only when that appears necessary
to avoid a disaster. Intuitively, a linear scheme, because (apart from wealth
effects) it applies the same incentive pressure on the agent no matter what his
past performance has been, would lead to a more appropriate choice of eftort
over time.

We show in this paper that this intuition can be made precise. We consider a
continuous time model in which the agent controls the drift rate of a Brownian
motion over the unit time interval. Assuming that the agent has an exponential
utility function (to abstract from wealth effects) and that the cost of contral is
manetary, the optimal incentive scheme will indeed be linear in output. The agent
will choose a constant drift rate independently of the path of output. This means
that the optimal incentive scheme can be computed as if the agent were choosing
the mean of a normal distribution anly once and the principal were restricted a
priori ta using a linear rule. Thus, the dynamic perspective leads not only to a
natural resolution of the Mirrlees nonexistence problem, but also to a remarkably
simple and easily computed optimal incentive scheme. Moreover, the resulting
linear rule is quite robust; the agent’s behavior and both parties’ payoffs hardly
vary when one makes small changes in the specifications of the problem.

We turn to a brief outline of the analysis we will pursue. Section 2 presents a
single-period model of moral hazard with the agent controlling a multinomial
distribution. The purpase of this section is two-fald: to isolate the key implications
of the agent's exponential utility function and to jllustrate how “richness” in the
agent’s appartunity set limits the principal’s choice of incentive schemes.

In Section 3 we look at a finitely repeated version of the single-period multi-
nomial model. The main result is that even though the principal can observe the
outcames of each period separately, the optimal scheme depends anly on aggre-
gates, and it depends linearly on them. The aggregates are enumeration aggregates,
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that is, they count the numbers of times that each particular outcome occurs
during the pay period. For instance, in a three-period prablem it is enough to
know that the agent made $200 twice and $100 once; the principal gains nothing
from further information abaut the precise sequence af these events. Hawever,
it is not generally the case that an optimal scheme is a function of profits only,
nor ig it true that if the scheme were restricted ta be a function of profits only,
the constrained optimal scheme would be a lirear function of profits.

In Section 4 we go on to study a continuous time approximation of the discrete
time model in which optimal compensation schemes ¢an be shown to be linear
functions of more comprehensive aggregates than the simple enumeration
accounts of Section 3. In the madel, the agent controls the instantaneous drift
(but not the covariance) of a multi-dimensional Brownian motion. This model
serves as a good approximation to any repeated multinomial model satisfying
three conditions: (i} the multinamial model involves a large number of periods,
(i) the costs and profits in each individual period are small relative to the
principal’s and the agent’s risk tolerances, and (iii) the number of outcomes that
the principal can distinguish in a single period is smaller than the dimension of
the agent’s cantral set. The aptimal scheme for the multidimensional Brownian
madel is a linear function of the end-of-period levels of the different dimensions
of the process (which we interpret as different account batances). In analogy
with the discrete time maodel, the optimal scheme uses only account balances
aggregated over time, but it generally requires more information than just the
accumulated profits. Only for the one-dimensional case is the scheme generally
linear in end-of-periad profits.

This may seem to make the one-dimensional Brownian “linearity in profits™
result very special. However, it has an important corollary implication for the
multidimensional Brownian maodel, in which the manager controls a more interest-
ing and complex process. If, in the latter model, the compensation paid must be
a function of profits alone (perhaps because reliable detailed accounts are unavail-
able) or if the manager has sufficient discretion in how ta account for revenues
and expenses, then the optimal compensation scheme will be a linear function
of profits. This is a central result, because it explains the use of schemes which
are linear in profits even when the agent controls a complex multi-dimensional
process.

We devote Section 3 to illustrations of the ease with which one can apply the
continuous time model ta obtain simple and explicit solutions to various kinds
of agency problems. Our examples should be viewed as merely suggestive, we
do nat attempt any systematic analysis of possible applications.

2, A SINGLE-PERIOD MODEL

We begin by studying a fairly general single-period model of maoral hazard.
An agent controls a stochastic technology owned by a principal. Uncertainty
is described by a state of nature 8, which can take a finite number of values
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8y, ..., 0y The agent's actions affect the probability distribution over these states:
p=(pa,...,pn). With little loss of generality we can view p itself as the agent's
action. The feasible set of actions is then a subset P in the N-dimensional
probability simplex. P is convex by randomization and compact by assumption.

Each state 8; is associated with a monetary payoff o, that belongs to the
principal and a publicly abserved information outcome x;,. We will write # for
the random payoff and refer to it as “profits.” The random public information
is denated x and called the “public outcome” or just the “autcome’ of the agent’s
action. Note that if x; = x; implies m; = m;, then the outcome x contains at least
as much information as = {i.e. profits are observed). Notice, too, that it is possible
that some of the information states are never abserved.

Bath the principal’s and the agent’s preferences over wealth can be described
by exponential utility functions. The constant coefficient of absolute risk aversion
is R for the principal and r for the agent; hence, the utility function is #{y) =
—exp {(—Ry) for the principal and u(y}= —exp (—ry) for the agent. The case
R =0 (r=0) represents a risk neutral principal {agent) with utility function
o(y) = p{u(y)=y).

The principal rewards the agent based on the observable outcome x using a
sharing rule s{x). The agent’s final income is s{x) minus the cost of taking the
action p. Thus, we assume that the agent’s cost of action is a financial expenditure
or an opportunity cost incurred by faregaing some other income generating
activity. The cost is allowed ta be stochastic and we write it ¢{p; 8). The cost
function is assumed to be continuously differentiable on P.

The principal's problem is to select a sharing rule s and instructions p for the
agent under the two standard constraints that (i) the agent can maximize his
expected utility by following instructions and (ii) the agent can attain a certain
minimum level of expected utility from the contract. We wilt measure this
minimum expected utility levet in terms of the agent’s certain equivalent w; thus,
his expected utility has to be at least u{w). The Principal’'s Problem can then be
formally stated as:

(1) n}a}xz o{m; —s(x))pi, subject to:
{2) pmaximizesZu(s(x,-)—c(p’; &}}pion P

(3} T uls(x)—c(p; 8.))p = u(w).

Befare going on to analyze this problem it may be helpful to suggest same
interpretations that indicate the scope of the formulation.

In the simplest situation and the one most often studied, the agent controls a
one-dimensional action variable, usually interpreted as effort. The cast of effort
is deterministic and the agent chooses his effort with no more information about
the production passibilities than the principal has. Commaonly, output is the anly
observable variable. In our formulation this standard set-up would correspond
to letting P be a one-dimensional manifold (a curve} in the (N-}simplex, letting
c{p; 6;)=c(p) for all §; and letting x, = =, for all i
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The standard model ¢an be enriched by having the agent observe a signal about
the production technology or the cost function before choosing his effort but
after entering into a binding contract with the principal. Since the agent is assumed
to have no private information at the time of contracting, this is not a model of
adverse selection in the usual sense; we refer to it as a Hidden Information
Model.* In a Hidden Information Model, the agent's action can be thought of
as a strategy that maps his observed signal into an effort level. Note that any
such strategy, when paired with a prior distribution over signals, induces a
distribution over the final outcome. Therefore, we can again think of the agent
as choosing among final distributions at the outset, before any information has
been revealed. The set of distributional strategies available to the agent is, of
course, restricted. For a distribution to be feasible, the agent must be able to
induce via some contingent effort strategy. Such restrictions can be incorporated
into the feasible set P, implying that the Hidden Information Model is indeed
subsumed in aur general framework.®

Our formulation includes many more complex models than the Hidden Infor-
mation Model discussed abave. The agent could be choosing a sequence of
actions over time. Information of relevance for future decisions could be entering
alang the way. The agent’s actions could influence this information stream as
well as future costs, payoffs, and opportunity sets. At each st’agc actions could
be multi-dimensional (e.g. include effort choice, production decisians, project
sebections, etc.). The cast of action could be stochastic and the observable
information (x) essentially anything. In short, we could permit rather arbitrary
production and information technologies and stilt have the reduced form map
into the conceptually simple structure (1)-(3), where the agent is viewed as
choosing at the outset a finat distribution over states 8 from some feasible set P,
Qur principal restrictions are that (i) the agent evaluates wealth at a single point
in time, after all actions have been taken, (ii) the cost of actions can be expressed
in monetary units, (iii) the utility functions are exponential, and {iv} neither party
has any relevant private information at the time the contract is signed.

In view of our subsequent interests it is warth noting that even if the agent's
action is a one-dimensional variable (e.g. effort), a contingent strategy, arising
in the extended settings just discussed, often permits control of p in more than
one dimension. Far instance, in the Hidden Information Model, the set P that
the agent can choose from will generally be of higher dimension than one, even
though the action itself is one-dimensional. Thus, a natural way of increasing
the dimensionality of P and hence enriching the agent’s action space, is to let
the agent act on the basis of private information.

We now proceed to analyze the Principal's Problem. As is well known, the
existence of a solution to the program (1)-(3) cannot be taken for granted. The

% This descriptive language was supgested by Arrow (1985}, who emphasized the distinetion between
hidden knawledge (about a state variable) and hidden action. For a cantract theary such as aurs, a
moare important distinction is between informational asymmetries that arise before the contract is
signed and those which arise after.

®The attentive reader will notice that in the Hidden Information Madel, the agent’s cast function
will generally depend nontrivially on 8.
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following result gives sufficient conditions for existence; it is a variant of an
existence result of Grossman and Hart (1983).

THEOREM 1: Suppose that P is compact and that (-, 8;) is continuous for all i
Let p' maximize ¥, pu{—c{p, &;}} and suppose that for all p assigning zera probability
to some public outcome, c(p, 6;)> c{p’, ;) + maxy (m; — =) foralli. Then a solution
(p*, s*) to the Principal's Problem exists and p* assigns positive probability to every
outcome.

ProoF SKETCH: Let p’ be as specified in the Theorem and let —y be the agent’s
certain equivalent for the random variable —c¢{ p, 8). Then, since u is exponential,
the pair (p', 5'), in which s'(x,)=w+ v for all i, satisfies (2) and (3). One can
show that the set of pairs {p, 5), such that (2) and (3) are satisfied and the
principal's payoff is at least as high as for (p’, 5'), is compact and excludes any
p that assigns zero probability to any outcome. Also, the principal’s payoff is
continuous in (p, s) on this set. Hence there is some optimum ( p*, s*) with the
required property. QED.

Given any sharing rule s, the agent’s problem (2) has a solution p because P
is compact and the objective function is continuous. If the sharing rule s and
the aptimal respanse p results in an expected utility level with certain equivalent
w, we say that s implements p with certain equivalent w. The set of sharing rules
that implement p with certain equivalent w is denoted S{p, w). This set may be
empty for some (p, w). Therefare, define P%(w)={p|S{p, w) is not empty} and
P*(w)={p|forsome s, (s, p) solves the Principal’s Problem}. The key implications
of assuming that the agent’s utility is exponential can now be stated as follows:

THEOREM 2: For any s, w and pe PYw): (i) se S{p, w) if and only if s—we
S{p, 0), (i) P%w) =P for all w, (iil) P*(w)= P* for all w.

Proor: Because utility is exponential,
(4) Lu(s(x;)=w—c(p; 6.} p = —u{—w) L u(s(x;) —c(p; 6.))p.

Since —u(—w) >0, any p that is best for the agent against s{x)—w is also best
against s(x), and conversely. Also, —u(—w)u{w) = u(0). This proves (i) and (ii).
Part (iii) then follows from the exponential form of the principal's objective
function in {1), Q.E.D.

Thearem 2, part (iii) asserts that the optimal choice of an instruction p* given
to the agent does not depend on the required minimum certain equivalent w.
Also, the optimal incentive scheme s* adjusts to changes in w by a simple shift,
that is, s* —w does not depend on w. Computationally, this means that the
principal can deal with the two constraints (2) and {3} separately. He governs
the agent’s incentives by the choice of the differences s{x,} —s(x,), i=1,..., N,
and he assures sufficient expected utility by adjusting s(x,). This separation result
will play a key simplifying role in the subsequent multi-period analysis.
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For notational convenience, we will henceforth write S(p) for S(p, 0). From
S{ p} we can recover schemes in $(p, w) by adding w. Note that Theorem ! says
nothing about the shape of an optimal scheme s*( ). Indeed, our approach is
not to characterize the solution to the one-period problem directly, but rather to
say something about the relationship between the solution to the one-period
problem and its multi-period extension (which cauld, of course, itself be viewed
as an extended one-period problem in the way described earlier).

Before moving on to the multi-period case, we wish to make a brief digression
into the relation between the dimensionality of the agent’s feasible set of actions
P and the principal’s freedom to choase a sharing rule to implement any particular
pe P This relationship will play a central role in the Brownian made] treated
in Section 4.

Notice that the principal chooses a sharing rule, which is a point in an
(N +1)-dimensional space, to control the agent’s choice of action and to provide
a particular certain equivalent. When the agent’s chaice is a distribution from a
ane-dimensional manifold in P, the mapping from sharing rules to action-certain
equivalent pairs is a mapping from RN"" into R”, so there is typically an N —1
dimensional continuum of sharing rules that lead to any implementable { p, w)
pair. As the agent's action space grows in dimension (for instance, because the
agent acts based on private information), the principal’s options for inducing a
given behavior become correspondingly more limited. We show belaw that in a
simple version of our model where the agent’s action space is of full dimension,
the rule that implements any particular ( p, w) pair is in fact unique. This requires
an additional assumption.

AssumprioN A: (i) P has a nonempty interior in the N-dimensional simplex,
(i} e(p; 8;)=c{p) for all 6;; (iii) c(p} is continuously differentiable on P; (iv)
c(p) —c(p'y=max; (m, — m) for p on the boundary of P, where p’ minimizes ¢( p).

THEOREM 3: For any p in the interior of P, the set S(p) is either empty or a
singleton under Assumpiion A, that is, if an interior p can be implemented, then
the implementing scheme (with any certain equivalent w) is unigue. In particular,
the sharing rule that implements an aptimal action p* with any certain equivalent
w Is unique.

Remark: It could still be the case that P* has more than one element and
therefore that there are many optimal incentive schemes.

Proor: Assume for the moment that x; = m; for all & Fix a p in the interior
of P. Let ¢; be the partial derivative of c( p} with respect to p; after substituting
po=1—%, p, into the cost function. If S(p) is empty we are done, so assume
there exists an s € S(p). Since p is in the interior of P which is of full dimension,
the first-order conditions for the agent's optimization problem {2}, imply:

N
(5) ‘_gﬂ wis(x)~c(p)lgp +uls(x) —clp)) —uls{xy) —e(p)) =0,
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for j=1,..., N. If we define z; = u(s{x;)}/ u{s(xq)) = —u(s(x;)— 5(xy)), then (5)
can be written (using ¢the exponential form of utility) as:

(6) z rzl'pi'cj+zj_1:0 (jzl'r"',N)‘
i=0
Let
N
K=7Y rzp.
i=0
Then

z=1-¢K and

N
K=Y rH{1-¢K)p: or

i=0

N
K=r/(l+ Y rc,-p,-),
i=0

which implies unique values for the z’s. Note that if SN, rep:=—1, then (6) has
no solution contradicting the assumption that S(p) is nonempty. Consequently,
s(x;)—s{xs) is uniquely determined for all i; specifying s(x,) determines the
agent’s certain equivalent.

If we do not have x; = 7; as assumed, but instead have that x provides coarser
information than the state, then uniqueness is implied a fortiori, because system
(6} will have added constraints of the form z = z; (in case x; =Xx,).

The last statement of the theorem follows from the first part and the fact that
part {iv) of Assumption A implies that P* is in the interior or P. Q.ED.

Theorem 3 contrasts sharply with the conclusions of the one-dimensional moral
hazard models. When P is one-dimensional (that is, a curve), ${p, w) normally
contains infinitely many schemes (unfess N =1). The analysis then centers on
the characterization of the best scheme in S(p, w). Under some rather restrictive
assumptions {see Grossman and Hart, 1983; Rogerson, 1985) one can use vari-
ational techniques to provide an intuitive and useful characterization of the best
scheme (Mirrlees, 1974; Holmstrom, 1979}). However, little can in general be said
about the optimal choice of p. Also, once the agent’s action space expands, the
corresponding characterization result becomes much less informative. It may
then be both realistic and analytically tractable to go to the oppaosite extreme
and fet P be of full dimension so that s{ p) can be obtained uniquely from (6).
This route has the potential of offering more information about the optimal p to
be implemented and in addition providing a useful characterization of the best
scheme. In fact, this point is illustrated by earlier Hidden Information Maodels
such as Mirrlees’ (1971} model of optimal taxation {as well as by adverse selection
and other nonlinear pricing models). It will also be illustrated by our Brownian
model far which we shall derive an explicit closed form for the sharing rule that
implements any given implementable strategy with any given certain equivalent.
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3 A MULTI-PERIOD MODEL

Consider a T-period version of the previous model. In each period £ =1, ..., T,
the agent picks a p' € P, incurring a periodic cost ¢( p'; 6;). We denote the outcome
x', the resulting state 8%, and the profit level #". It is assumed that periods are
stochastically independent. We call X ={x',..., x') the history of the stachastic
outcome process up to time r. A key assumption is that the agent can observe
X'"" befare deciding p’. Thus, a strategy for the agent is a stochastic process
(P (X}

We assume that the principal pays the agent at the end of the last period based
on the entire realized path X7 of the outcome process. The incentive scheme is
denoted s(X 7). The agent is assumed to be concerned about his final wealth,
which will equal s(X 7} —-le ¢(p’; 8'). He values this wealth accarding to the
exponential utility function u(y) = —e™™. The principal’s final wealth is Z,T:, T’ —
s(X "), which he values according to the exponential utility function o(y) = —e™ ™.

The principal’s problem is to select a sharing rule and a strategy for the agent
(interpreted as a set of instructions) such that it maximizes his expected end of
period utility, subject to the instructions being incentive compatible and the agent
being assured a minimum certain equivalent, which we henceforth normalize to
zero. Formally, the problem can be stated as:

{7) max E[u(i w’—s(XT])}, subject to

{p'hs

(8) E{u(s(XT]— ‘:,_‘1 e(p' (X" 6’))}:314(0),

T
(9) { p'} maximizes E{u(s(XT) - ¥ e(p(X™T ") 6'))}‘

=1
The expectations are taken with respect to the distribution over states induced
by the agent’s strategy {p'}.

We analyze the agent’s problem using dynamic programming. Fix a compensa-
tion rule s{X ") and let {p'(-)} be an optimal strategy for the agent given that
rufe. Define V, = V,{X') by

)

Since u is exponential, V, differs from the standard dynamic programming value
function only by the multiplicative factor ~u{¥'_, c(p”; 67)), which is a positive
constant from the perspective of time 1. Thus, we may use V, for purposes of
dynamic programming, interpreting it as the maximal expected utility to the agent
of continuing after time ¢ given the history up to and including the outcome at
time ¢, but excluding the accumulated sunk costs. Let w, = w,(X’) be the corre-
sponding certain equivalent; i.e. u(w,) = V,. We wish to examine w, as a function
of x', holding the history X'~' constant. For this purpose we will write w,(X*) =
w, (X', x'). The dynamic programming equation for the agent’s program

M=E{“[~‘(X’")— Y e(p” 6’)}

r=i+1]
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requires that p'(X"™") solve
N
(10) max ¥ u(w (X", x)~c(p; 6))p.
o i=0

Note that the sunk cast term Z::l ¢(p™: 67) has been drapped as it gives rise to
a positive constant that can be factared out.

The problem {10) has the same form as the single-period problem (2). Thus,
Theorem 2 applies. It follows that p'{ X'} is optimal in (10} and makes the
certain equivalent of the maximum value of (10) equal to w,_ (X'~} if and only
if w (X', )—w_ (X' ") e S(p'(X'")). Thus,

(11) WXy =505 p (X TN+ w (X7,

where s,(-; p) denotes a scheme in S(p), that is, a scheme which in the single-
period problem implements p with certain equivalent zero. Summing (11) over
¢t (from 1 to T) and noting that, by definition, wr(XT)=5s(X") gives the
following:

THEOREM 4: A strategy {p'(X'™")} can be implemented if and only if for every
date and history, p (X' "'ye P° (that is, if and only if each p'{X'™") can be
implemented in the single period problem). A sharing rule s(X") implements
{p(X ")} with certain equivalent w, if and only if it can be written in the form:

T
{12) s(XT)= % s(x'5 p' (X)) + w,

=1
where each s,( -, p) is a sharing rule that implements p with certain equivalent zero
in the single-period problem.

It is instructive to think of each possible outcome as being recorded in a
different account. There may be fewer than N +1 such outcomes, since two
different states may correspond to the same outcome (x; =x;). If there are M
possible autcames, then there are M accounts. Let A; be the number of times
in the fiest ¢ periods that the ith outcome ocecurs and let A’ be the vector
(Al,..., A} Also, it is convenient ta represent the sharing rule s,{-; p) by the
M-vector s,( p) whose ith component is the compensation payable when the ith
outcome accurs. Then we can write (12} as:

(13 s(XT)= T s(pXT) - (A= AT 4w,

Written this way, the sharing rule can be thought of as a “*stochastic integral™ of
the account process {A'}; it is this form that is suitable for an extension to
continuous time models.

Theorem 4 recovers a sharing rule from the strategy that is to be implemented.
Note that there may be many sharing rules that implement the same strategy,
because we may not have uniqueness in the single-period model. Of course, in
view af Theorem 3, if each p' always lies in the interior of P and ¢{-} is
differentiable, we do have a unique implementation.
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We wish to stress that while (12) has an additive form over time, this does not
imply that every sharing rule s(X ") is additively separable in the x"s. Indeed
no sharing rule that implements a history-contingent strategy has this separability
property because, for history-contingent strategies, x' affects the actions and
hence the summands in periods after time ¢

Without assuming exponential utility, we could have derived a formula similar
to {12), namely:

(14) $(XT) = wot g sl p (XY, wo (X T = w (X

where 5,(-; p, w} (s 2 scheme that implements p with certain equivalent w in the
single-period problem. What is special about exponential utility is that
s{-ipw)=w+s(-;p)as we saw in Theorem 2.

Turning to the Principal’'s Problem, we see from (12) that the principal's
expected utility is:

(15) E{v[)E w'—S;(x';p'(X'_‘}}—w@]}.

Thus, the Principal’s Problem reduces to choosing {p’, 5,} and w, with wy =0 and
5. € 8(p') to maximize (15). Our next Theorem characterizes one optimal salution.

THEOREM 5: An optimal strategy for the principal to implement is p'(X'~") = p*
Sor all t, where p* is any single-period optimum. An optimal compensation rule to
use is:

T
(16)  s(XT)= L s(x'; p*)=s(p*)- AT,

=1
where s(-; p¥) is an optimal single-period scheme that implements p*, and s(p*)
is the corresponding M-vector.

Proor: The proof is by induction. For the case when T =1, the Theorem
merely restates the definitions of p* and s*,

Suppose the conclusions hold when T = 7. Let v% be the optimal value for the
T-problem when w,=0. Then, suppressing the arguments of s,, the principal’s
payoff in the T =r+1 problem is, by (15) and the exponential form of v, equal
to:

—exXp (RwO]EI:u(qr' —SI}E{v[T)iI (ﬂ-'—s,):| | X,}]

<-exp (Rwo) E[v(r' —s,)0¥]< ~exp (Rwo)v¥ v},

where the inequalities follow from the definition of v¥% for T = 1, 7. By the inductive
hypothesis, the first inequality holds as an equality when p, = p* and s, = s* for
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all t=2. The second holds as an equality when p, =p* and s, = s*. With those
substitutions, {14) becomes {16). Q.E.D.

Again we note that the scheme in (16) is generally not the unique scheme that
implements p* (unless Thearem 3 applies). And even if s(x") is unique in
implementing p*, there will be several optima if P* has more than one element.
Any string of actions from P* with accompanying one-period optimal schemes
would solve the principal’s problem. However, Theorem 5 tells us that there is
no need to do anything mare complex than apply the same scheme in each period
separately.

The sharing rule in {16) has a ready interpretation in terms of aggregation and
linearity. The agent’s optimal compensation is a linear function of the account
balances recorded in A™. These balances represent time-aggregated information
about the outcome path. In view of previous sufficient statistics results (Holm-
strom, 1979, Shavell 1979), it is noteworthy that an optimal scheme can be based
on the aggregated information A7, which is not a sufficient statistic for the agent’s
full strategy.” At the particular optimum identified in the theorem, the only binding
incentive canstraints are those that prohibit the agent from switching from the
specified constant, uncontingent action p* to another constant, uncontingent
action. The time-aggregated information is a sufficient statistic for deviations in
that class, and so an aptimal compensatian scheme can be based on it.

According to Theorem 5, the principal suffers no loss by relying on enumeration
aggregates, that is, aggregates that report the number of times that each observable
outcome occurs. Can some further aggregation of information be done without
loss to the principal? For instance, suppose each x’ is a monetary payofi, say
profits, of the agent’s activity in period ¢, so that A; is the number of periods the
agent has made a profit of $x;. When will the optimal incentive scheme be linear
in the tatal profits Z,T:l Alx,? Theorem 5, it should be stressed, does not tell us
that the optimal scheme is linear in profits: Two periods with a profit of $100K
each are not generally compensated the same as one of $50K and one of $150K.
Nevertheless, there is a special case for which the optimal scheme in (16) is linear
in maney. That is the case when there are only two autcomes yielding two different
prafit levels; in other wards, if the agent controls a binomial process. In that
case, the two account balances Al and A7 are both linear in total profits, so the
compensation rule (16) is linear in profits.

In the next section we will take a maore careful loak at linearity in nonenumer-
ation accounts using a continuous time model, which will prove to be better
suited for this analysis. Before that a few remarks on the robustness of our discrete
time rasults are in order.

1. Two assumptions drive our results: exponential utility and a history- and
time-independent technology. We elaborate on the roles on these assumptions

" This conclusion does not contradict the results of Holmstrem (1979} and Shavell {1979). These
results posit that only local incentive constraints are binding and show that the optimal compensation
scheme will utilize any evidence that the employee has “shirked” {made a local deviation). In their
madels, as in ours, the optimal contract does not use evidence that bears solely on violations of
nonbinding incentive constraints.
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here. Thearem 4, stating how a given strategy for the agent can be implementad,
follows directly from the form. of the agent’s preferences. If the agent’s feasible
set P and cost function ¢(-,-) at time ¢ depended on the history of public
outcomes X', our argument would establish the decomposition {12) where
5(+; pX'} implements p in the one-period problem indexed by the available
technology at time ¢, which might depend on the history X' Theorem 5—the
basic aggregation result--requires the twa additional assumptions that the prin-
cipal has exponential utility and that the technology is stationary and history
independent. These assure that the T single period problems faced by the principal
are identical, and so have identical solutions.

2. Our conclusion that the optimal sharing rule is a linear function of time
aggregates depends on specifying preferences for the principal and agent that
are stationary over time. Hawever, the specification used here is not the anly one
with that property. In Fudenberg, Holmstrom, and Milgrom (1986), similar results
are obtained with a time-separable utility function and periodic consumption,
when the agent has access to a bank for borrowing and saving. That model
assumes that both the principal and the agent discaunt payofis aver time. Then,
the relevant time aggregates are discounted enumeration accounts. Of course, if
periods of pay are relatively ¢lose to each other, the effects of discounting on
the aggregation are negligible, and the optimal compensation scheme resembles
the one derived here.

3. As we stressed in the introduction, the timing of information is a crucial
aspect of the formulation. It matters a great deal that the agent gets to observe
his performance before proceeding to the next period. Thus, if instead of choosing
sequentially the probabilities of success of T identical binomial variables, the
agent were to choose them simultaneously, the optimal scheme would no longer
be linear in the number of successes. The principal could do better, because he
would be faced with fewer incentive constraints. This point is dramatically
illustrated by the contrast between the Mirrlees “normal distribution” model,
described earlier, and the Brownian model which we turn to next.

4. THE BROWNIAN MODEL

In this section we investigate a situation in which the agent takes actions very
frequently in time. We will use a controlled Brownian process as the relevant
abstraction. The formal analysis of the model requires some sophisticated mathe-
matics, but it repays the investment with some strikingly simple results. We will
show that if the agent controis the drift rate of a multi-dimensional Brownian
process aver the unit time interval then, analogously to the multinomial model
of the preceding section, the optimal incentive scheme will be linear in the
end-of-periad positions of the components of the process. But there are two
significant advantages to the Brownian specification. One is that the optimal
sharing rules are especially easy to characterize and compute. The other is that
when compensation schemes are restricted to be functions of certain linear
aggregates of the enumeration accounts, the optimal schemes are necessarily



AGGREGATION AND LINEARITY 317

linear functions of these aggregates. This is important because such common
accounting aggregates as profits, sales, inventories, selling expenses, and cost-of-
goods sold are all aggregates of this type.

To mativate our results and illuminate their relationship to the discrete-time
theory, we begin with a variant of our earlier discrete-time model.

Assume that the agent acts T times in a period of fixed length such as a year.
Assume further that (i) T is large and (ii) that the possible marginal costs of the
agent’s actions and the possible variations in the profits earned in any single
period are quite small as a fraction of risk tolerances of the principal and agent.®
Assumption (i} implies that if the single period profits had mean u and variance
a?, the principal’s certain equivalent value for the profit lottery would be approxi-
mately p ~ Ra/2 and the agent’s would be approximately u — ra/2. We further
assume (iii) that P has dimension N and is open relative to the N-simplex of
probability distributions, and (iv) that the agent’s costs take the form ¢ = c(p),
with ¢(+) differentiable. By Theorem 3, the last two assumptions imply that there
is at most a single sharing rule that implements any action p< P with certain
equivalent w.

Consider the agent’s single periad problem under the assumptions just
described. The agent chaoses p e P, incurs a cost ¢(p), and collects a payment s,
if the reatized profit level is ;. {For notational simplicity, we assume here that
profit levels are observed.) Suppose that p is implemented by the sharing rule
s=(sq,...,5x). Define §(f) =% pis; to be the agent’s expected compensation if,
faced with sharing rule s, he takes the action f. Then the agent’s certain equivalent
payofl is approximately his mean return minus a risk premium:

(A7) w(p)=~c(p)+5(F)~4r £ fils:—S(A).

Let e; be the (N +1)-vector whose ith component is unity and whose other
components are zero. Define

d
a(py=—r . c(ee,+(1—¢€)p).

By hypothesis, p maximizes the certain equivalent (17) and so satisfies the
following first-order necessary conditions:

(18) 5;—5(py=¢{p)+2{(s;—5(p))’—ai] for j=0,... N,

where o5 =Y p,(s,— §(p))’ is the variance of the agent’s compensation. Hence-
forth, we write § for §( p).

In (18), the coefficient of r has mean zero (by the definition of ¢%). So, it is
smaller than o’ = Max; (s; - §)°. By assumption (ii), ra is quite small, so the term

4 Risk tolerance is the inverse of the coefficient af absalute risk aversion and is measured in units
of wealth. Risk neutrality corresponds to a risk tolerance of +o0,
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in (18) involving r is much smaller than «. Hence, an approximate solution of
(18) is:

(19)  s=5+¢(p)

with errors much smalier than «, for all j. Computing § from (17) and substituting
inte (19} yields:

(20} s;=wrc(p)+ros/2+¢(p) forallj.

Thus, we have determined a simple approximate relation between the action p
to be implemented and the unique rule that implements it with certain equivalent
w for the case where single period risks are small.

Notice that ). p,c;{ p) = €. Consequently, if the sharing rule (20) is used to induce
the agent to take action p, the principal’s certain equivalent will be approximately:

21y Y pmi—w—c(p)—roiu/2—Rop/2

where ap =3, gl — ¢.(p) 1P =¥, p.{or: — ¢;(p))]’ is the variance of the principal’s
return. The approximate forms (20) and (21) will be exact for the Brownian
model {after a suitable change of variables).

To derive a Brownian model that approximates some discrete time model, we
change our notation and normalizations as follows: Let 7, ={#,— @) T denote
the profit in excess of m,T that would result if outcome 8; occurred in all T
periods. We shall regard 77,/ T as the contribution to profit from a single occurrence
of 6,. Replace the enumeration accounts {A}; i=0,..., N} by the accounts
Z{t/ Ty =(#] T A]— p.1) that record the accumulated profits from events of type
8,, in excess of some “normal” standard, up to time r. Here, j is some vector of
strictly positive probabilities that defines a suitable standard. The time index for
Z{ ), instead of being an integer designating the period number, now records
the fraction of the accounting cycle that has elapsed. Since Zy{ -} =0, we omit it
from our list of accounts. Represent the agent’s action choice as one of controlling
the rate of drift w of the vector of accounts Z=(Z,,...,Zy). Thus, pu, =
#,(p;— p;}. Finally, let ¢{p}=¢(p)T so that the agent’s single period cost of
control is ¢{u)/ T. We assume that x lies in some open bounded set M <®&".

Suppose the agent chooses a constant action w. Then, for any interval of time
(4 t'), Z(t') = Z(t)~ u{t' —t) is the sum of approximately T/(¢' — 1} independent
and identically distributed random wvectors with finite range and mean zero.
Hence, for T large, it has approximately a multivariate normal distribution with
a covariance matrix that is proportional to (¢'—t). For the Brownian model, we
take this approximation to be exact and write:

(22)  dZ=pdt+dB,

where B is a driftless N-dimensional vector Brownian motion with covariance
matrix X. In particular, B(0) =0 and for all £'>1r, Var{B{(t')—- B{t))={t'—1}X.

As in Section 3, we assume that the agent chooses w(r} at time ¢ in full
knowledge of the history {Z(7}| r=r}. The principal can base the agent’s com-
pensation, s{(Z') on the entire realized path of the Brownian process: Z'=
{Z{7}|0=7=1}. Given our construction, it is natural to assume that the agent
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incurs an instantaneous cost of ¢{u (1)) dr. The derivative of ¢ is denoted ¢' {its
values are N-vectors); we assume that ¢ is canvex and continuously differentiable
and that ¢’ is bounded on M. The Principal’s profits over the unit time interval
are ¥ Z,(1). The agent’s final payoff is E{u(s(Z") —[é c{w(t)) dt)} and the prin-
cipal’sis E{u(zi’:, Z(1)—s(Z"))}, where u and v are exponential utility functions
as before and the expectation is taken with respect to the distribution induced
by {u(t)}.

Analoguosly to Theorem 4 and equation (13) we have the following Theorem.

THeEOREM 6: The stochastic process {p{t); 0= t <1} is implemented with certain
equivalent w by sharing rule s{Z") only if"

(23) S(Zl]=w+I0 0 dr+[J‘o c'(,u(:))sz_J‘

1]

() Tult) df}

+(r/2) J‘ () Ze'(u(r)) dr

a

The proof is given in the Appendix. The ““local’ sharing rules which form the
integrands in (23) are identical in form to the sharing rules described by (20},
The first two terms in (23) provide the agent with the desired certain equivalent
plus direct compensation for the costs he would incur by following directions.
The ()T dZ term in the first line provides the incentive for effort at time
From that incentive term we subtract its conditional expectation at time ¢,
c'(w(€))"1u(t) dt, so that the component of compensation in the bracketed term
in (23) has mean zero and corresponds to the ¢ term in (20). Finally, to compensate
the agent for the risk he must bear, a risk premium is paid. The agent’s incentive
income “at time (" has variance ¢'(u(£)) Zc'(1(¢)) dt which, multiplied by r/2,
gives the instantaneous risk premium.

Thearem 6 is stated as an “only if" result. For the special case where pu is
constant over time, Theorem 4.1 of Fleming and Rishel (1975} implies that the
“if"" direction holds as well. We conjecture that Theorem 6 holds as an “if and
only if” result for all instructions {g(t); 0=t =<1} such that p(t) always lies in
M, but we shall not need that result ta solve the principal’s prablem for this madel.

The Principal’s Brownian Problem is defined as follows. The principal chooses
instructions {(¢); 0= ¢=1} and a sharing rule s to maximize E{o(} Z,(1) — )}
subject to the constraint that s implements the instructions with certain equivalent
not less than zero. We now show that the solution to the Principal’s Brownian
Prablem corresponds to the solution of a static problem in which the principal
is constrained to choose a linear function of the Z,{1)’s and the agent is constrained
to choose a constant p once and for all at time zero. In such a problem, the
principal would choose an instruction p and agent’s certain equivalent w to
maximize his certain equivalent, given the two constraints that w =0 and that
the gradient of the sharing rule must be ¢'(u). The principal’s certain equivalent
for the static problem is then:

(24) g wi~{w+e+(r/ e T} —(R/D(e— ') Z(e—¢")
=1
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where the functions ¢ and ¢ are to be evaluated at w and where ¢ is a vector of
ones. The certain equivalent {24) has the same general form as (21). It consists
of the expected return minus the expected compensation paid to the agent minus
a premium for the risk born by the principal.

THEOREM 7: Suppose that a u* € M exists that maximizes (24}. Then an optimal
solution to the Principal’s Brownian Problem is to instruct the agent to set u{t) = p*
and to set:

(25) S(Z'y = e(p*)+ (*)(ZQA) = p*) + (r/2)e (p*) 2 (1),

Proor SKeTCH: Let the horizon of the principal’s problem vary, and denote
it by 7. Let 8*(r) be the principal’s optimal value. By Theorem 3, if {u(¢); 0=
1/n} is an optimal instruction when 7=1/n, then n repetitions of it form an
optimal instruction when = L. Writing dt = 1/n and using Theorem 6 and Ito’s
lemma:*

(26} v*(dt) = Max E#[—exp{—R[erZ

o=l

—(w+cdr+c’T(dZ—,u.dr}—k%c’TEc’dt)]}]
T F rTy R n T t
=-1+Rde Max{e ,u.—(c+§c Ec)—;(e—c) E(e—c)}
1

where the optimal value of w is zero. It follows that the instructions specified in
the Thearem attain the optimum for the 7 =1/ n problem, and hence for the 7=1
prablem. Then, {25) follows from Theorem 6. Q.ED.

The close parallel between the optimal incentive scheme in the Brownian model
and the one in the earlier discrete time model is evident by comparing (25) with
(16). In both we have a finite set of time-aggregated accounts (Z(1) in the
Brownian case, A" in the discrete case) and an optimal rule that is a linear
function of these accounts. Detailed informatian about the path of the stochastic
process is unnecessary for the construction of optimal incentives. On the other
hand, because the coefficients of the individual accounts will normally differ {as
a function of the agent's characteristics as well as the technology; of. footnote
2}, further aggregation across accounts is not generally possible. In particular,
there is no reason for the agent’s optimal incentive scheme in (25} to be a linear
function of total end-of-period profits ¥ Z;(1).

If the agent controls a one-dimensional Brownian process, then of course the
optimal scheme is linear in profits. But as our parallel development of the discrete
and the continuous time models should make clear, the one-dimensional
Brownian case only represents fairly a situation where the agent controls a

*This argument proceeds as if the aptimal {i(¢)} were known to be continuous, a restrictive
assumption that can be dropped for this case by standard arguments in continuous time dynamic
programming. See Fleming and Rishel (1975, Chapter 4.1).
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frequent Bernoulli process. For the multinomial case, a multi-dimensional
Brownian process is necessary in order to keep track of the frequency information
of individual profit outcomes, which is crucial for the optimal design in the
discrete model.

However, there is a way of expanding the applicability of the one-dimensional
Brownian moadel. Let the agent control a multi-dimensional Brownian process
as before, but assutne that the principal has less detailed information about the
path of the process. In particular, consider the Principal’s Aggregate Problem in
which the principal, rather than observing the vector Z(r) over time, is restricted
to observe only the path of some K-dimensional (K < N} accounting aggregate
Y{(1)=AZ(1), where A is a K x N matrix.

THEOREM 8: Let
(27) M(A)={ue M|c{u)=c(p’) for all u' such that A(u— 1"y =0}

An optimal solution to the Principal’s Aggregate Problem is to implement u(f) = u*,
where

(28) w* maximizes (24) in M(A).

The sharing rule s is determined from (23).

Remarik: Foreach p in M(A}, there exists a Lagrange multiplier A such that
¢'(i) = LA, because u is cost minimizing subject to the constraint that A takes
a given value. Hence the linear-in-Z{1) sharing rule with coefficients ¢’ obtained
from (25} is also expressible as linear-in- ¥(1) sharing rule with coefficient A.

ProoF SKETCH: Given any instructions {w(¢)}, the path of { ¥{¢)} that results
from the agent following instructions satisfies dY = Au dr + A dB. An agent who
deviates from the instructions to adopt some {u*{t)} which solves (for each
t) Min,, c(u) subject to A{p — u{f)) =0 generates the same path ¥ as he would
by following instructions, and therefore receives the same compensation S(Y),
but at a lower personal cost. Hence, {(¢)} is not implementable unless it is in
M(A).

Maximizing the principal’s abjective subject to this constraint as in the proof
of Theorem 7 and observing (see the preceding Remark) that the resulting sharing
rule depends only on Y completes the argument. Q.ED.

Theorem & concludes that an optimal sharing rule for the Principal’s Aggregate
Problem is a finear function of nonhomogeneous accounting aggregates, rather
than just of the pure enumeration aggregates used in Section 3. As a special case,
if the principal can only observe the path of total profits (i.e. A=(1,...,1)),
then the optimal rule is linear in profits even though the agent controls a
multi-dimensional Brownian process. A similar conclusion emerges if the agent
exercises some discretion over the accounting system. For example, suppose the
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agent can choose within broad limits how to record commaon revenue and expense
items. Then, the relevant cost function might be e{p)=c{u,+ -+t uyn), s0 a
direct application of (25) establishes that the optimal scheme is linear in profits.
On the other hand, if the agent could control the accounting for expenses, but
only within the expense categories, and the accounting for revenues, but only
within the revenue categories, then the optimal scheme would be a linear function
of revenues and expenses separately, but would not necessarily be a linear function
of profits. Thus, our model is consistent with the idea that it may be better to
use “cost centers” (and “‘revenue centers™) than “profit centers™ for evaluating
managerial performance,

Theorem 8 has no parallel in other continuous time models. For example, if
the agent controls the rates of jump in a vector Poisson process, where different
events generate jumps in profits of different sizes, one can recover the number
of jumps of each type from the corresponding Poisson profit process. The
Brownian model differs from the discrete models and other stationary continuous
time control madels in that linear aggregation across accounts in the Brawnian
model using an arbitrary K x N full rank matrix reduces the dimensian of the
implementable actions from N to K: In the Brownian model aggregation across
accounts destroys information in an intuitive way.

So far, we have been careful to treat our Brownian model as a limiting case
of the discrete time multinomial models described in the previous section. Other
processes which are “close” to Brownian motion in the traditional sense of weak
convergence or probability measures (Billingsley, 1968) may lead to results that
are far different from those we have obtained, because weak convergence of
distributions does not preserve the subtle informational properties of distributions
that are crucial far economic analysis (Milgrom and Weber, 1983). For example,
suppose that the agent controls a Brownian motion but can change the drift rate
w only at discrete dates 0 = £, < ¢, <+ - - < ¢, = 1, and that the principal can observe
Z(ty), ..., Z{t,). In that case, Mirrlees’ (1974) analysis applies to each time
segment of the path, and the first-best solution can be approached arbitrarily
closely. Here, the Braownian model fails as an approximation because the prin-
cipal’s infarmation is so very fine compared with the agent's action space that
the principal has many ways to induce any desired action. However, a slight
change in the timing of the agent’s information reverses that conclusion. Suppose
that the agent observes B(t,.,)— B{t.) before choosing p(f.); this enlarges the
agent’s strategy set. Then, one can show that the unique sharing rule (up to a
constant) that induces any particular sequence of pure action choices u(t,.) at
the times &, is one that pays 3., _, €' (0 (6)) 7 {Z(txsr) — Z{2)) and that the first-best
outcome cannot be approached.

From our analysis and these examples, we find that the Brownian model is
properly used ta represent thase situations in which (i) the principal’s information
is so meager relative to the agent's opportunities for action that there is at most
a single sharing rule to implement any given strategy for the agent, (ii) risk
tolerances are large compared to the range of single period profits and to marginal
caosts af control, and (iii} repetitions are frequent in time.



AGGREGATION AND LINEARITY 323

5. EXAMPLES

Computational ease gives our linearity results substantial methodological value.
One can solve the dynamic problem as a static one with the ad hoc restriction
that the sharing rule is linear. This is particularly convenient since we are pairing
normal distributions with exponential utility. Below we offer some examples to
ittustrate how simple the analysis becomes when the linearity restriction is
apprapriate. At the same time we wish to caution the reader against indiscriminate
application of the ad hoc principle. It requires some restrictive assumptions on
the information and production technologies; in particular, the agent cannot
controd privately the covariance of the process.

Sensitivity analysis: We begin by computing a closed form expression for the
linear rule when the cost of varying the drift rate g in the one-dimensional
Brownian model is quadratic: ¢(w)=(k/2)u* For simplicity, the principal is
assumed risk neutral (i.e., R =0).

As a point of reference, note that the first-best solution in this situation,
attainable if the agent's choice of u were costlessly observable, would entail
instructing the agent to choose w=4k""' and paying the agent a constant wage
equal to the cost of his action, (2k)™"' (assuming a zero certain equivalent). This
yields the profit tevel: 7 =2k}

When there is moral hazard, a constant payment is no longer optimal, but
some other linear rule, §{z) = az+ B, is. To determine a and B, note that the
agent’s certain equivalent given s(z) is

(29} eu+B-(k/Dp’~(r/a’’,

Maximizing (29) over u, gives the first-order condition a = uk. Substituting this
into (29} and setting the expression equal to zero determines B. The result is the
incentive scheme:

s(z)=kplz - p)+ (/K u’a”+ (k) p’.

Since s{- ) is linear, the principal’s expected payoff is i —s{u) which, maximizing
over u, gives the second best solution

(30) w* =1+ rka®) "k,
implying

(31) a¥=(1+rka®)™" - 2K,
{32) a*={(1+rka®)".

Comparing the first-best values of effort and profit with p* and #*, we see
that the moral hazard problem causes a reduction in the action as well as a
reduction in the principal’s net payoff. {In fact, this holds true for the one-
dimensional Brownian model regardless of the cost function; see (24).) Both

1*/u and 7%/ are equal to (1+ rko?)”'. Thus, a small degree of risk aversion
ar uncertainty, or a flat marginal cost of effort will allow a solution close to the
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first-best. All of this accords well with intuition. Nevertheless, the only related
result from the general theory is that additional information is valuable for the
agency problem (Holmstrom, 1979; Shavell, 1979), which in the case of a normal
distribution implies that a reduction in the variance will benefit the principal.
This is confirmed by the formulas above. Note though that unlike the general
informativeness results, which pertain to costless information acquisition, the
closed form formulas can be used to evaluate the net benefits of costly monitaring,.

Relative evaluations: Continuing on the previous example, assume that in
addition to z, the principal observes another signal y, which could be included
in the contract. We may think of y as a market index, the output of some other
agents or anvthing else that has bearing an the agency problem. We assume that
{z, y) are jointly normally distributed, that E[y] =0, Var (y) = a*, and Cav (z, y) =
pad.

In the underlying dynamic version of the madel, (z, ) follows a two-
dimensional Brownian process. According to Theorem 7, the optimal sharing
rule will therefore be linear in the two accounts: s(z, y}= e, 2+ ayy + 8. It is easy
to calculate the coefficients along the lines described above (or use (25)) and one
finds that:

ot = (Lt ka’(1-p%),
af=-af(a/8)p.

These induce the following action and profit level:
w*=(1+rke’(1 - p> ) kT, and
= (1+rka*(1 - p)) N 2k)™".

From these formulas we see that observing an additional signal y is equivalent
to a reduction in the variance of z from ¢” ta a’(1—p?). The reduced variance
is the conditional variance of z given y as one might have guessed directly. Notice
that .if y and z are perfectly correlated (g = +1 or —1), the first-best can be
attained; one can set o, = | and filter out all uncertainty using y.

In general, y is used to reduce risk in accardance with earlier results on relative
performance evaluation {see Holmstrom, 1982). In particular, we could form the
aggregate performance index x=z—{ag/8)py and then pay the agent: s(x)=
a¥x+ B. This index is a sufficient statistic for infarmation about the agent’s action.

This example could be extended to incorparate investment decisions. For
instance, assume that z= m- px + 8, where m is the mean of the project that the
agent is controlling. Praject choice corresponds to a point {m, a°, p). Since the
agent was assumed to control the drift, but not the covariance matrix of the
Brownian process, project selection must here be assumed undertaken jointly by
the principal and the agent; we cannot allow the agent discretion over project choice
without altering the linearity results. This is a key restriction of our model. On
the ather hand, assuming joint selection of projects, the optimal incentive scheme
is given as abave {(only the constant coefficient 8 is affected by the presence of
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m). Maximal profit from a project is then
(33) m*=m+(1+ rka®(1~p?}) " 2k) Y.

As we mentioned above, ¢*(1 - p?) measures the conditional variance of 2z, that
is, the idiesyncratic risk of the project. In contrast to standard portfolio models,
we see that idiosyncratic risk enters investment decisions; in fact, with a risk
neutral principal, only idiosyncratic risk matters. Equation (33} gives the precise
trade-off between mean and idiosynecratie risk.

Allocation of effort: As a final example, consider the case where the agent can
allocate his effort between two activities: z, = u,+ 6, and z, = u,+6,. Assume
the two activities are stochasticatty independent and that the cost function is
el ma) = wt/2+ u3/2 (reflecting decreasing returns to each activity). If the
principal can only observe z = z, + z,, then the solution will obviously be linear
in z and the agent will allocate his effort symmetrically, which is an efficient
allocation given the informational assumption.

Somewhat surprisingly, the situation is different if z, and z; can be observed
separately. We know that the optimal scheme will be linear, s{z,,z,)=
o,z + a2+ 83, but &, need not equal a, even though the marginal costs and
marginal products are identical in the two activities. In fact, the anly case for
which the two are set equal is if z, and z, have the same variance. In general,
@ > a, if o< a,, which can be seen by noting that the solution (30)-(32) applies
to each activity separately.

It follows that there is in general value in observing the agent’s activities
separately and also that the incentive weights among different projects (or
accounts) are not solely a function of their marginal costs and benefits, but also
their variances. As an example, if the agent can allocate time between reducing
costs or increasing revenues and is equally effective at both, but if the revenues
are subject to more exogenaus variance than the costs, then the incentive scheme
should not be based on profits alone; it should reward cost reductions more
highly than revenue increases (implying that more effort will be steered into cost
reduction}.

6. CONCLUSION

There are two main ideas that motivate the kind of analysis we have pursued.
The first is that one need not always use afl of the information available for an
optimal incentive contract. Accounting information which aggregates perform-
ance over time is sufficient for optimal compensation schemes in certain classes
of environments and it is sometimes possible to aggregate further over the various
accounts. The second idea is that optimal rules in a rich environment must work
well in a range of circumstances and will therefore not be complicated functions
of the outcome; indeed, in our model, linear functions are optimat.

Models that derive optimal rules in which small differences in outcomes lead
to large differences in compensation are invariably based on an assumption that
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the agent finds it impossible, or very expensive, to cause small changes in
individual outcomes. The optimal rule in such cases is usually inordinately
sensitive to the distributional assumptions of the model. For example, in the
model where the agent makes a one-shot choice that determines the mean of a
normal distribution, by changing the distribution of outcomes for each action on
a set of arbitrarily small positive probability £, some of the near-optimal rules
derived for that model can be made to perform worse than a flat compensation
scheme, which provides no incentives at all for the agent to incur costs to increase
production.

Linear rules, in contrast, are strikingly robust. For example, in the Brownian
model, the agent’s optimal response to a linear rule and the principal’s expected
payoff do not depend at all on the timing of the agent's information. Nor does
this conclusion depend on normality: an (exponential) agent’s optimal response
to a linear rule where he adds drift to any stochastic process is always the same.

[t is probably the great robustness of finear rules based on aggregates that
accounts for their poputarity. That point is not made as effectively as we would
like by our model; we suspect that it cannot be made effectively in any traditional
Bayesian model. But issues of robustness lie at the heart of explaining any
incentive scheme which is expected to work well in practical environments.

Yale School of Organization and Management, Box 1A, New Haven, CT 06520,
US A,

Manuscript received May, (285, revision received Jufy, 1986.

APPENDIX

ProOOF oFf THEOREM 6. Suppose the sharing rule s {a random variable measurable with respect
to %, the o-field generated by the path of Z(-) up to time 1) implements {p2(r)} with cenain
equivalent w. We refer to the paths of Z(-) as “outcomes.” Let E, | E_, ete. refer to expectations
using the distribution over outcomes determined by the agent's control strategy {m{t]}, {{t)}, ete.

Define.
T 1

{Al) F(r;p';m]=£‘,,‘|:u(s—nj‘ c(lu.'(f]}df—J’ c(m(r]]df) .‘?__:l
4] T

=F{r g, myClr, 1y,

where we define

Clrip') =cxp[r j‘ Le(u' (] —elp())] dr]
1]

F represents the agent’s conditional expected utility at time = if he has followed strategy {u'{f)} to
that time and then switches to strategy {m{r)}. Let V{r, un'} be the maximal value of the agent's
dynami¢ programming problem given the infermation at time + when the agent has followed strategy
{ et up to time . Then:

{A2) Vir, pw'y=max Fir u' m)
=max F{rge; m)Clr ')l = Vi, wiClry ')

Since {p(r)} is an optimal strategy,

r
{AY) Vi ul=Flr e, pl= E,‘[u(s—_l‘ r(g(:}}dr) ‘ 5,:},
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so that { V(r; ), %,} is a martingale under E,. Moreover, the o-fields { F.} generated by {Z(t)} are
identical to the or-fields generated by the process Z(¢) _fo ,u( ) dr. Under E,, this process is a driftless
Brownian motion. A thearem of Meyer (see Jacod, 1977) holds that ever}r martingale over the
Brownian fields is representable as an Ito stochastic integral with respect to the driftless Brownian
motion, as follows:

(A4) dvVir; w)=vy(r)7d [Z(f) - J‘f w(f) df] =yTdZ-yTudy,

where {¥{r); =0} is an N-dimensienal stochastic process such that ¥{¢} is %-measurable and
J ¥ Ey(1} dt is almost surely finite under the distribution induced by .. When the agent chooses
the contral strategy {g'(f)}, we have dZ =" di+ dB. 8o, for any control strategy {u'(f)} that the
agent might choose, we have that dV(¢; ) =47 (' — ) de++7 dB. Hence, using (A2):

{A5) V(e w'=d[ Vit p)Clmp')]
={¥ L0 — ]+ (e’ (1)) — e(w{ D V{r; w ) Clr; ') dt
+Cir; )47 dB.

By the Principle of Optimality, if {'} is an optimal strategy, for all ¢, '(f) must maximize the drift
rate of V{t; p") (the coefficient of dt in (AS5)). Then since {u} is by hypothesis an oplimal strategy,
each g (¢) must solve: max,, ¥(¢}7m + re{m) V{1; ). That leads to the first-order necessary candition:

{A6) —re{ule)) = ¥(t)/ Vit w).

Let wit)=u""(V(t; £}) = ~In{—V{t; )}/ r be the certain equivalent correspondmg to the vajue
function V(t; u). By Ito's Lemma (suppressing all the arguments), since Z{r)— I pmitidt is a
Brownian motion when the agent uses strategy {u}, —rdw ={y/ V) - (dZ — pdt} - ¥ v/ V]TE(yf V) dt.
Using (A6) to eliminate the v/ V terms, one has:

(AT) dw(t) = ()T dZ = [ ()T~ 7/ 21’} Ze ()] dt.
Integrating (A7) and letting w{0} = w leads to:
1

(A8) W(1]=w+J‘ C‘(#(f})TdZ—'J‘ () e (e) de
L1} q

+(r/2) I Sl TEC (i e)) dr.
q

But £ = w(l) +]’é e(p{t)) dt, by the construction of w(l). Then, substituting for w{1} from (A8), one
obtains the required form (23}. G.ED.
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