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Cancer control and toxicity outcomes are the mainstay of evidence-based medicine in radiation
oncology. However, radiotherapy is an intricate therapy involving numerous processes that
need to be executed appropriately in order for the therapy to be delivered successfully. The use
of image-guided radiation therapy (IGRT), referring to imaging occurring in the radiation therapy
room with per-patient adjustments, can increase the agreement between the planned and the
actual dose delivered. However, the absence of direct evidence regarding the clinical benefit of
IGRT has been a criticism. Here, we dissect the role of IGRT in the radiotherapy (RT) process
and emphasize its role in improving the quality of the intervention. The literature is reviewed to
collect evidence that supports that higher-quality dose delivery enabled by IGRT results in
higher clinical control rates, reduced toxicity, and new treatment options for patients that
previously were without viable options.
Semin Radiat Oncol 22:50-61 Crown Copyright © 2012 Published by Elsevier Inc. All rights

reserved.
Radiotherapy (RT) is a proven means to improve survival,
control tumor progression, address symptoms, and im-

prove the quality of life of cancer patients across the globe. This
is achieved through the delivery of high-quality treatment that
includes geometrically accurate conformal deposition of ioniz-
ing radiation and best efforts to spare the neighboring radiosen-
sitive healthy tissues. The path to high-quality RT is complex but
can be decomposed into steps, from timely diagnosis, then ac-
curate staging and clinical assessment, appropriate choice of
radiation dose and volume to be irradiated, and radiation deliv-
ery to the intended target volume with reliable quality (ie, min-
imal difference in prescribed treatment vs delivered). Finally, a
thorough evaluation of many clinical endpoints is required to
evaluate the benefit of radiation therapy in an individual patient
and in a population of patients so that an action can be taken for
a specific diagnosis (Fig 1A). As in any complex process, uncer-
tainties exist in each of these steps, and the field has been trans-
formed as new technologies allow greater conformality of dose
to the target, increasing the concern of failures at other, weaker
components of the process. A major factor affecting the quality
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of treatment arises from geometric uncertainties in the place-
ment of dose within the body over the course of RT. Image-
guided radiation therapy (IGRT), defined as imaging in the treat-
ment room, with positional adjustments for geometric
deviations, represents an advanced quality assurance tool for
successful radiation therapy. Given the capital and manpower
costs of this technology, it is reasonable to examine the evidence
that supports this quality assurance activity.

Although it may be difficult to directly evaluate the limited
evidence for IGRT, it is possible to examine improved clinical
outcomes that have been enabled by IGRT. For example, in
the absence of a direct impact on clinical outcomes, can IGRT
eliminate variance and reduce the chance of a large geometric
miss? In other words, what is the consequence of not per-
forming it? Success rates in general vary widely (Fig 1B). To
be able to reduce one source of uncertainty (ie, less geometric
and dosimetric variance with IGRT) may help increase the
chance of successful patient outcomes.

Therefore, we have identified 3 questions to be examined in
this review: (1) Is there evidence to support the hypothesis that
the quality improvements associated with IGRT improve clinical
control rates? (2) Is there evidence to support the hypothesis
that the appropriate use of IGRT can reduce toxicity? and (3) Are
there new RT treatments being enabled because of the higher
quality of RT that can be delivered with IGRT technology? There
is no prospective randomized trial on IGRT technologies, nor is
there ever likely to be one given the role that technology plays as
a critical component of quality assurance. The consenting of

patients to 2 arms of an intervention in which 2 different levels of
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quality assurance are used would be challenging. However, the
evidence may accumulate through different practices in differ-
ent populations that use different methods of varying quality
because of other factors, such as cost, availability, training, and
so on. Given the lack of prospective data, the questions de-
scribed earlier have been examined through a retrospective re-
view of the literature. Before describing the analysis, an overview
of IGRT, its role in ensuring the quality of radiation delivery, and
the challenges associated with isolating IGRT as a treatment
technique within the framework of RT are presented.

Quality and IGRT
IGRT Implementation
and the Tools of Quality
There is a notable increase in the number of radiation oncol-
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Figure 1 Cancer treatment and outcomes measurement inv
outcomes, interventions are in fact required to go from 1 step
example of a hypothetical outcome associated with a given ca
is known. It is the consequence of the multiplication of errors
large and every attempt at reducing it is worthwhile and the i
ogy publications referencing or using quality management
and statistical process control tools.1-14 Interest in these tools
has been motivated by the desire to improve the safety of
radiation therapy as well as recognition that they may allow
improvements in efficiency, standardization, and precision.
Although there are many guidelines for the quality assurance
of IGRT equipment,15-17 there are few that specifically high-
ight the role of “IGRT as quality assurance”18 or the potential
of IGRT to reduce patient treatment incidents.19

As an example, patient positioning can be considered as a
process, representing a series of tasks, with daily patient po-
sition as an output produced with variations in quality and
daily online imaging as a quality control tool intended to
reduce this variation. IGRT and the serial measurements of
patient positioning that it produces are well matched to the
quality tools of statistical process control. IGRT concepts,
such as offline correction protocols20,21 or adaptive RT pro-
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52 A. Bujold et al
tion shown on a process control chart. In the example in
Figure 2, a shrinking action level off-line correction protocol
can improve the treatment quality by efficiently reducing
systematic error (note systematic error is corrected on the
third fraction in this example). However, the off-line ap-
proach is not a daily quality control activity, and the result is
a small systematic error with large residual daily random
uncertainty shown by daily positions that are outside the
control limits (“out of control”). A daily online correction
protocol (eg, daily corrections for any deviation exceeding 1
mm before treatment in the Fig 2 example) results in a pro-
cess with small systematic and random uncertainties and is
“in control.”

Impact of IGRT on Radiotherapy Quality
There are numerous publications that show that IGRT is
an effective quality control process that reduces the vari-
ation (systematic and random uncertainties) in the output
(patient position) of the process.25-34 Computer simula-
tions of these uncertainties suggest that their reduction
could impact clinical endpoints.35-39 IGRT also facilitates
he detection and management of exceptional deviations,
ncluding emergent or spurious changes, such as gross
ositioning errors, weight loss, substantial organ deforma-
ions, systematic changes in internal organs, changes in
espiratory motion, and so on.

Although a sense of equipoise does not appear to motivate
linical trials of IGRT, these technologies clearly allow im-
rovements in the quality of clinical trials pursuing other
uestions in radiation therapy. Notably, many new high-
uality radiation therapy clinical trials require the credential-

ng and routine use of IGRT. For example, almost all new
adiation Therapy Oncology Group trials for lung, head and
eck, paraspinal, liver, sarcoma, and brain cancers require
GRT credentialing. By reducing geometric variability, vari-
bility in delivered dose is reduced, and, presumably, varia-
ion in clinical response can be expected to be decreased as
ell. This can be seen as “shrinking the cone” in Figure 1B.

Figure 2 “Runtime” charts for the position of a single p
line), and control limits (dashed lines). (A) The daily
error (10 mm) and large random uncertainty. (B) The
systematic error but does not reduce large random un
of control.” (C) Using daily online corrections results
a process that is “in control.”
his reduced variance in a study endpoint increases the
ower of the study to detect statistically significant differ-
nces (eg, from a radiation sensitizer).

How IGRT May
Impact Patient Outcomes
Correction of
Systematic and Random Errors
IGRT increases the chance of RT being applied as planned so
the intended doses are delivered to the targets. This process
has been embedded in RT for many decades, and, as such,
inferential arguments in favor of IGRT are numerous. Unfore-
seen differences between what is planned and what is deliv-
ered, in terms of radiation dose and volume, are to be
avoided. These differences encompass small systematic er-
rors up to frank misadministrations. In such an intricate
treatment as RT, it is often not clear what the weakest link in
the process is; patient selection, target identification, con-
touring variability, planning details, patient positioning, and
motion management may all have a significant impact on
dose deposition accuracy. In a treatment spanning a large
number of fractions, the impact of execution variation, or
random error, is usually less important than systematic er-
rors.40-42 However, if the number of fractions is reduced, then
random error can also have a larger negative impact.41 Other
aspects to consider in the RT process are the immobilization
of the patient and target and the accuracy of the registration
surrogate used for IGRT (eg, larynx for early laryngeal cancer
and whole liver for liver cancer). Planning target volume
(PTV) margin recipes have been developed to take into ac-
count uncertainty related to these geometric uncertainties for
a population, and IGRT is a tool that can measure geometric
uncertainties that then can be fed into PTV margin recipes at
each institution (ie, IGRT provides the means to measure
geometrical offsets and develop more accurate PTV margins).
Reduced PTV margins may reduce the risk of toxicity,
whereas increased margins based on evidence may increase
the chance of tumor control. In general, PTV margins will be

showing daily position (circles), running mean (solid
on without image guidance shows a large systematic
tion of an off-line correction protocol results in small
ties, which manifests as daily positions that are “out

all systematic and random uncertainties, apparent as
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reduced as more IGRT is used in clinics for the same chance
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of tumor control compared with a non-IGRT era. A subse-
quent step is to examine how the change in PTV relates to
differences in doses to both tumor targets and normal tissues
to improve the therapeutic ratio.

IGRT is also used to detect individuals who may fall out of
the predicted population-based margins. For example, pa-
tients with more variation in positioning who may have been
inappropriately treated in the absence of IGRT may be de-
tected in the era of IGRT.

Situations in Which
IGRT May Not Be Recommended
As with any medical intervention, one must weigh the risk
over the benefit. One of the potentially negative facets of
IGRT is the extra radiation dose it involves.43-45 Table 1 pro-
vides a list of the dose per fraction associated with a list of
IGRT modalities. There is at least 1 report in which that dose
was associated with more toxicity if not computed in the total
dose delivered.46 As low as reasonably achievable principles
enerally apply, and the technique and frequency of IGRT
maging should be adjusted based on the clinical goals. Soft-
issue targeting requires a higher-dose imaging technique,
ut high-contrast targets, such as bone or metallic fiducial
arkers, can be accurately visualized at imaging doses as

ow as 0.1 to 0.5 cGy. Careful selection of the extent of
mage acquisition can lower the dose even further. Also in
able 1 is the average extra time by IGRT technique for
erforming and assessing the images. Of note, there is
dditional time required for image interpretation and ac-
ion on the results, which can be reduced with automatic
valuation tools and more experience. The overall time
nvolved is a factor affecting whether to reduce or discard
he use of IGRT in certain clinical situations. For example,
patient in acute pain being treated palliatively with a large

afety margin may have his/her position verified with a rela-
ively fast electronic portal image rather than a cone-beam
omputed tomography (CBCT) scan. Alternatively, an effi-
ient process using fast, low-dose CBCT scanning to register
o bone may be appropriate. Other boundaries in the appro-

Table 1 Added Dose and Time per Modality per Fraction in P

Modality Dose at Midbody (cGy)

Ultrasound 0
Plain kV† 0.1-0.6
Plain MV† 1-10
kV CBCT‡ 2-3
MV CBCT 5-15
kV FBCT§ 0.8-2.8

V FBCT 1.5-3

FBCT, fan-beam computed tomography scanning.
*Excludes image interpretation and action on observations.
&BATCAM™, Best nomos, Pittsburgh, PA; Clarity™ and XVI, Elekta

vale, CA; EXaCT™, ExacTrac™ and OBI™, Varian Medical Syste
AG, Erlangen, Germany.

For 2 incidences.
Full soft-tissue scan, 360°.

§Involves couch rotation and CT translation because CT scanning i
riate use of IGRT are described in more detail below. i
Clinical Examples
Showing Benefit to IGRT
Radiosurgery and
Hypofractionated Regimens
Central Nervous System
Radiosurgery for brain metastases improves local control and
survival in appropriately selected patients.47,48 Radiosurgery
is also effective in a variety of other malignant and benign
neurologic conditions. The landscape of brain radiosurgery
has changed since the advent of IGRT, which has facilitated
frameless radiosurgery. Frame elimination is less invasive,
more comfortable for the patient, and potentially simpler for
the care team, with regards to both resources and time. How-
ever, most clinical outcomes are based on historical non-
IGRT series of patients treated with invasive rigid stereotactic
frames. PTV margins of 0 to 3 mm are used in most centers
with conflicting retrospective evidence of impact on local
control or toxicity. Nataf et al49 described a 12% increase in
parenchymal toxicity by adding a 2-mm margin on the GTV,
without improvement on local control. Conversely, Noël et
al50 found, after adding a 1-mm margin, an increase in the
minimum dose to GTV, yielding a 39% absolute increase in
local control without added toxicity. RTOG 90-05 escalated
the dose to intracranial lesions and found an association be-
tween tumor size and neurotoxicity but not in lesion control.
It is hypothesized that a larger spread of intermediate dose, a
consequence of plans for larger tumors, could be responsi-
ble.51 In summary, increased PTV margins can increase the
neurologic tissues irradiated and increase the risk of neuro-
toxicity (which may range from subclinical to clinical neuro-
logical deficit); this motivates for the use of IGRT in this
setting.

The impact of less rigid immobilization and potential dose
blurring because of intrafraction motion is less clear. No di-
rect clinical comparison exists, but 1 study by Ramakrishna
et al52 compared the geometric accuracy of a head frame to
hat of a thermoplastic mask with stereoscopic planar kV

GRT44,158-161

Time (min)* Available Examples&

2-3 BATCAM, Clarity
0.1-3 Cyberknife, ExacTrac
0.1-3 Various EPID and portal devices

2-4 ARTISTE, OBI, XVI
2-3 MVision
15 CTVision, EXaCT
2-3 Tomotherapy

holm, Sweden; Cyberknife™ and Tomotherapy™, Accuray, Sunny-
c., Palo Alto, CA; ARTISTE™, CTVision™ and MVision™, Siemens

n linac gantry.
elvis I

, Stock
ms, In
mage guidance.52 A reliable setup was used in both modali-
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ties, but there was a concern over intrafraction motion for
lesions smaller than 5 mm if no margin was added, given a
22% likelihood of a 1- to 2-mm shift without invasive immo-
bilization. Given the other sources of uncertainty, larger tu-
mors could then be treated with similar accuracy using both
methods, and adding a margin of 1 to 2 mm could be con-
sidered otherwise. In support of this, retrospective series of
frameless radiosurgery without a control group have shown
control for brain metastases of 80% to 90%, which is similar
to historical frame-based techniques.53 However, toxicity has in
general not yet been well described. Margins advocated vary
between 0 and 3 mm with a variety of imaging modalities.54-56

Another advantage of IGRT comes from data for meningi-
oma or benign neurologic disease patients. Fractionated, im-
age-guided stereotactic radiotherapy did not compromise
toxicity nor local control while treating patients with larger
average target volumes and targets closer to critical structures
compared with radiosurgery series with rigid invasive immo-
bilization.57,58 The different IGRT modalities have not been
ompared between themselves so far.

The evolution of spine radiosurgery parallels that of cranial
reatments but with close to complete migration to noninva-
ive techniques along with reliable immobilization and imag-
ng to ensure submillimeter accuracy and adequate dose dis-
ributions.55,59-63 The gain for IGRT to avoid invasive
mmobilization is more obvious than in cranial radiosurgery
o avoid the extensive surgical procedure required for the
nvasive fixation. Again, the nature of the evidence, variable
ractionation schemes, and techniques confound the com-
arisons of outcomes. Most patients treated with spine ste-
eotactic body radiotherapy (SBRT) are not curable, and
voidance of acute toxicity, especially to aerodigestive tract,
s a goal in standard palliative fractionated RT as well as
BRT. Current SBRT outcomes, at least with regards to tox-
city, are reassuring, and the ability to spare surrounding
ormal tissues is appealing, but the quality of life data is still
ending.64-66 Of interest, reirradiation to a significant dose

allowed with SBRT has consistently yielded local and/or pain
control above 90%. The figures expected with conventional
reirradiation are in the the 35% to 85% range, but no direct
comparison exists.67 In summary, IGRT has facilitated the
use of radiosurgery and spinal SBRT. Reduced PTVs with
IGRT should reduce the risk of toxicity and improve the
quality of life in these patients.

Lung and Liver SBRT
Respiration-induced motion and daily changes in the base-
line tumor position of thoracic and upper abdomen targets
have required the implementation of IGRT to make hypofrac-
tionated stereotactic treatments to those sites possible. The
positive impact, although nonrandomized, of lung SBRT on
local control and survival has put it forth, at least for stage I
tumors, as a challenger of surgery.68 However, even with a

ear-rigid fixation, such as a body frame or abdominal com-
ression, a supplementary margin of up to 1.5 cm may be
eeded without further imaging to take into account differ-
nces between planned thoracic tumor position and real po-

ition at the time of treatment.69,70 Even with breathing mo-
tion control techniques, setup uncertainties remain because
substantial shifts in tumor position relative to the chest wall
or vertebral bodies can be seen. With less intense immobili-
zation (eg, arm cradles or vacuum cushions), some patients
have an even larger systematic error in excess of 3 cm.71,72

Combined with intrafraction breathing motion, this can lead
to underdosage of the tumor of 15% or more.73-75 The dose
response of primary lung cancer, although with variable
thresholds, has been established,68 and a dose response for

oth primary and metastatic liver disease has been de-
cribed.76 Large PTV margins have the potential to increase

toxicity, especially in patients with limited liver or lung pa-
renchymal reserve. Thresholds of mean lung and mean liver
doses have been associated with worse toxicity in SBRT.77-79

With lung SBRT, bronchial toxicity, almost never seen in
conventionally fractionated regimens, has been observed.78

Luminal gastrointestinal toxicity is also important to consider
in liver and other upper abdomen SBRT.80 A reduction in PTV

argins, facilitated with IGRT, can reduce the doses to such
erial functioning normal tissues. Volumetric IGRT can be ex-
loited by overlying isodoses from the treatment planning sys-
em on the daily patient images to help exclude sensitive struc-
ures from undue dose, especially if anatomy changes rapidly as
s the case with gastrointestinal filling (Fig 3).

With lung and liver SBRT, data support an improvement
in the required PTV margin and dose distribution from a
variety of IGRT techniques.25,29,34,81-91 Because IGRT allows a
better understanding of the uncertainty involved at the outset
if IGRT were not used, it is highly unlikely that protocols
without in-treatment/online imaging and registration will be
used in the future. To the contrary, the trend is rather toward
an intensification of imaging to further reduce treatment
margins (eg, with tracking techniques).

Summary
IGRT has enabled new treatment options, including frame-
less central nervous system radiosurgery or fractionated ste-
reotactic RT and spine, lung, and liver SBRT. Cerebral radio-
necrosis, bronchial necrosis, and liver dysfunction are
serious potential toxicities that need to be considered in these
ablative therapies, and smaller PTV margins can reduce their
risk. Although there are no randomized trials, SBRT for pri-
mary lung cancer is associated with local control and survival
rates that rival surgery. Randomized trials of lung and liver
SBRT are planned.

Conventional Fractionated RT
Conventionally fractionated regimens are more forgiving
than hypofractionated approaches because a single gross geo-
metric miss may only result in a change of a few percent in the
overall delivered dose. Further compounded by the hetero-
geneous radiosensitivity of individual cancers or tissues, in-
ferior outcomes may thus escape our detection thresholds.92

Systematic errors remain, however, and should be avoided in
most clinical scenarios as shown later.

Prostate
As dose escalation for prostate cancer is pushed forward by

evidence, the risk of systematic error has increased as the PTV
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margins have decreased, especially with new techniques,
such as IMRT and hypofractionation.93-95 This has been
shown in a retrospective analysis by de Crevoisier et al96 and

secondary analysis of the Dutch dose escalation random-
zed trial by Heemsbergen et al.97 They both found an abso-
ute loss of close to 30% in biochemical control at 5 years if
he rectum distention was above median at the time of plan-
ing. PTV margin was reduced, and IGRT consisted of bone
atching using weekly electronic portal imaging device

EPID), with no prostate or fiducial based IGRT. It is postu-
ated that the distended rectums at planning were not repre-
entative of the patient anatomy over the course of treatment
ecause during therapy the rectum would likely empty and
he prostate would move posteriorly outside of the high-dose
egion. In contrast, in a retrospective series of prostate pa-
ients treated with daily ultrasound-based prostate IGRT, dif-
erent rectal fillings at planning were not related to outcomes
ven with a 4-mm PTV margin.98 Another study by Engels et

al99 showed a significant difference of rectal cross-sectional
area at planning on 5-year biochemical control, but this is
overshadowed by the finding that the use of fiducial markers
for prostate IGRT was negatively correlated with biochemical
control. Of note, a smaller PTV and lower prescription dose
was correlated with the use of fiducials, emphasizing how
other sources of error are more likely to impact clinical out-
comes as PTV margins are further reduced.

Margin size and dosimetric improvements from more
stringent IGRT procedures are well documented.37,100-111 Re-

Figure 3 SBRT for metastases in left and right liver lobes. (
(green) is covering the PTVs (pink shadows) and avo
Third-fraction CBCT scans: a random change in gastri
pushed the left lobe medially, whereas the right lobe a
account for the change, the dose to the stomach would h
potentially have been underdosed.
uctions in toxicity are also an important endpoint for a s
hange in technique to be justified. An improvement in uri-
ary and rectal toxicity has been described after a PTV reduc-
ion. This was corresponding to bladder and rectal DVH im-
rovements and allowed by kV CBCT or fiducial markers for

ocalization versus bone-matched EPID.112,113

Based on these facts, it is not surprising to find that skin
tattoos and EPID with bone-matching perform equally
poorly in predicting prostate localization.114-116 In obese pa-
ients, because skin-based geometric uncertainties and mo-
ion are even larger, a 20% decrease in biochemical control
as been described in the absence of prostate- or fiducial-
ased IGRT; of note, obesity itself may impact oncologic
utcomes.111,117 Overall, clinical comparisons of IGRT mo-
alities or action level are still lacking.118

Head and Neck
The proximity of targets to critical structures in head and
neck require high-dose gradients. Head and neck radiation
techniques have then mandated more accuracy and reliabil-
ity.119-122 Again, it is a matter of “how much” rather than “if”
GRT is needed. Thermoplastic mask immobilization and
eekly 2-dimensional imaging with bone matching was used
ith PTV margins of 5 mm for decades.123 No direct impact

of more intense IGRT has been shown, but a 50% reduction
of PTV margins has been obtained when using daily CBCT
scanning.124,125 A note of caution is necessary in areas of the
neck that are less well immobilized like the tongue, larynx,
and lower neck.126-128 A PTV reduction approach has been

B) Planning CT scans: 33 Gy (in 6 fractions) isodose line
he stomach (orange) on the planning CT. (C and D)

(arrows), along with a small liver volume reduction,
nt was acceptable. Without replanning the patient to
n higher than acceptable, and the left lobe tumor would
A and
iding t
c filling
lignme

ave bee
hown to be at least as safe with regards to local control in a
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retrospective series comparing a margin of 5 mm versus 3
mm using daily volumetric IGRT.129 A large dosimetric im-

act on parotid dose of daily volumetric imaging versus no
orrection was found by some130 but not by others.131 This
ontradiction is probably in part attributable to the good
mmobilization used in head and neck to reduce errors, and,
n parallel with radiosurgery, a change in immobilization
ould help improve the patient’s experience if the error is
ept small by reliable IGRT.132

The ability of volumetric imaging to detect soft-tissue and
tumor changes brings us to the brink of adaptive RT, which
has the potential to improve outcomes, particularly in pa-
tients with bulky base of skull or paranasal sinus malignan-
cies that abut critical normal tissues. So far, no clinical data
have shown how much improvement adaptive RT may give
or what the most appropriate action levels for replanning
are.133-135

Other Sites
One of the first reports on the pertinence of in-treatment
quality assessment comes from Hodgkin disease portal veri-
fication. Kinzie et al136 attributed the higher relapse rate and
marginal misses to failure to comply with the designed fields
after the analysis of plain films. No direct clinical data are
available for other sites, but an impact on margins and DVHs
can be found for numerous anatomic sites.137-139 In the case
of conventional fractionation for lung tumors, individual pa-
tients with locally advanced lung cancer may benefit from the
detection of significant tumor shrinkage, especially if it is
associated with atelectasis at the time of planning (Fig 4).
Although this affects a small proportion of patients, IGRT can
be used to avoid a large systematic error in such patients.

Summary
An improvement in relapse rate in prostate cancer, Hodgkin
disease, and head and neck cancers using IGRT has been
consistently reported. IGRT is also used to identify anatomic
modifications during treatment as part of a quality assurance
program benefiting all cancer sites. There is a suggestion that

Figure 4 Man with squamous cell carcinoma and extens
tumor is in pink, and PTV is in red. (B) A bone-matche
hilar tumor (arrow) is now likely partly outside the PT
density has changed, all of which can lead to substantia
Dr B. Fortin, Montreal, Canada.)
prostate and head and neck cancer patients might have lower f
toxicity with IGRT, especially when combined with other
technical advances like IMRT.

Brachytherapy
Image guidance has replaced geometric model–based brachy-
therapy prescription in most circumstances over the last 4
decades. Computed planning and 3D capability in the
brachytherapy suite have recently been deemed essential to a
state-of-the-art gynecology practice.140

Prostate
Initial brachytherapy techniques with permanent implants
required direct visualization of the prostate at the time of
surgery. Transrectal ultrasound was then introduced in pre-
planning and intraoperatively. The latter allowed direct visu-
alization of needle placement inside the prostate and appro-
priate corrections if needed. It has improved not only the
biochemical failure and the urinary toxicity rates but also
seems to have allowed the elimination of the learning curve
effect on dosimetric parameters usually observed with less
experienced teams.141-144 It has been shown that further ac-
uracy, for example, with dynamic interactive dosimetry or
mmediate implant correction after seed position imaging can
urther improve the final dose distribution, but a true clinical
mpact is still uncertain.145,146 Finally, these techniques have
made possible prostate reirradiation with brachytherapy after
primary external-beam failure as described in many contem-
porary series. Thus, IGRT has expanded the therapeutic op-
tions for these patients.147

Gynecologic
Orthogonal plain films for dose calculation and live ultra-
sound for optimal tandem positioning are accepted tech-
niques,140,148 but the use of 3D imaging from CT- or magnetic
esonance–based gynecology brachytherapy planning ad-
resses the dual purpose of volume delineation and assess-
ent of the implant quality. The use of 3D imaging has

hown that the dose to critical structures is significantly dif-

lectasis of the left lung. (A) Planning: PET-based gross
scan after 18 fractions: the lung has re-expanded, the

athing motion is increased, and the surrounding lung
dosage in the absence of soft tissue IGRT. (Courtesy of
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representation of the observed toxicity and imaging can help
to reduce these toxicities.149-151 The historical comparison of
local control rates has yielded impressive results as well.152-

54 Guidelines now exist to contour the rectum, bladder, and
igmoid as well as target volumes and prospective evaluation
f the efficacy of 3D planning is under way.155,156

Summary
Brachytherapy local control and toxicity rates have both been
improved through more extensive use of IGRT in prostate
and gynecologic implants alike. The impact on the patient of
the additional time required for imaging, contouring, and
optimizing the treatment should also be evaluated in future
studies that should also describe potential benefits in local
control and toxicity.

Conclusions
In clinical practice, IGRT is currently a solid tool to tackle the
problem of radiotherapy accuracy. State-of-the-art IGRT can
reduce positioning uncertainty to the extent that a 1- to
2-mm PTV margin would often be sufficient to account for
this uncertainty, especially if adequate immobilization and
motion management are available. However, because of the
other sources of error (including target delineation), the PTV
margin for most RT treatments should be larger than 2
mm.157 A rational mindset in implementing IGRT is to follow

“do no harm” approach. IGRT can be used as a quality
ssurance tool itself. IGRT has been shown to facilitate im-
lementation of new RT techniques (eg, liver and lung SBRT)
nd in selected sites reduce toxicity and improve local con-
rol. An analysis of the geometric precision associated with a
articular dosimetric advantage should be investigated.
hen, the whole chain of interventions in the RT process
hould be prospectively assessed. This is particularly impor-
ant because other steps in the RT process (eg, contouring or
alid measurements of toxicity) are at least as important as
igh geometric precision.
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