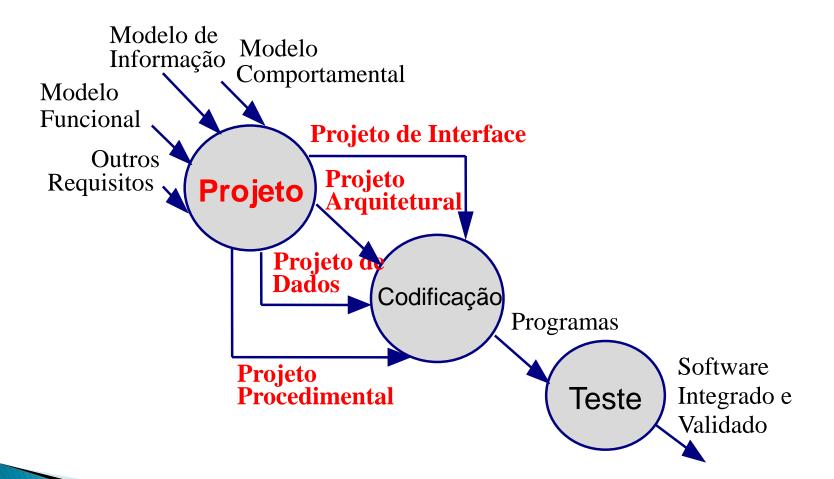

Projeto de Software

SSC - 5764 Engenharia de Software


Prof. Paulo C. Masiero

Processo de Software: Fases ou Subprocessos

Processo pelo qual os requisitos do software são traduzidos para uma representação do software que permite sua realização física.

Projeto de Software

Passos do Projeto de Software

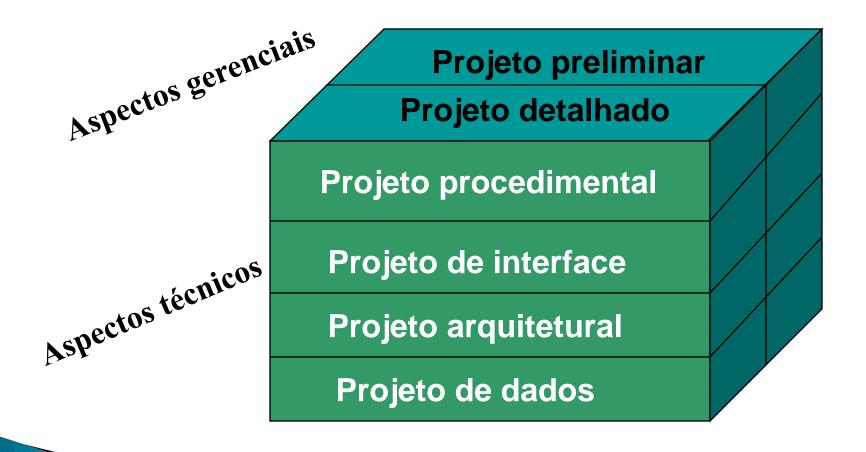
Ponto de Vista Técnico

DADOS: o modelo de domínio da informação é transformado nas estruturas de dados que serão exigidas para implementar o software.

ARQUITETURAL: o relacionamento entre os grandes componentes estruturais do programa é definido.

INTERFACE: os mecanismos de interação e layout para a interação homem-máquina são estabelecidos.

PROCEDIMENTAL: os componentes estruturais são transformados em uma descrição procedimental do software.

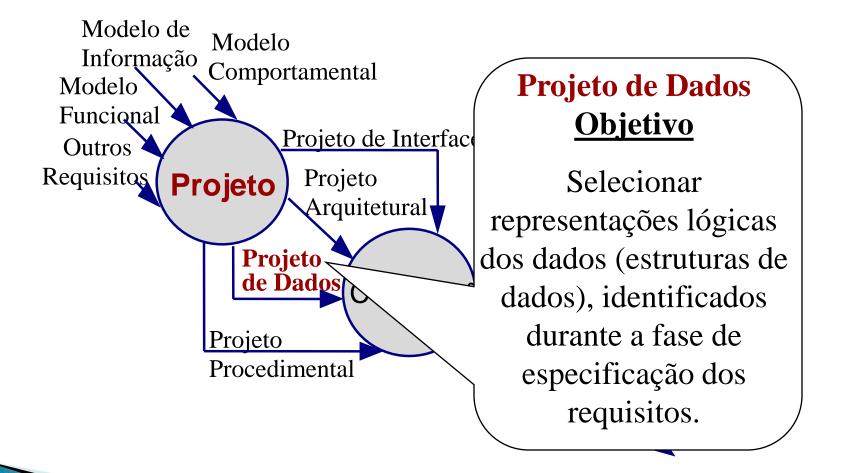

Passos do Projeto de Software

Ponto de Vista Gerencial

PROJETO PRELIMINAR: preocupa-se com a transformação dos requisitos do software em uma arquitetura de software e de dados.

PROJETO DETALHADO: concentra-se nos aprimoramentos da representação arquitetural que levam à estrutura de dados detalhada e às representações algorítmicas do software.


Relação entre Aspectos Técnicos e Gerenciais de Projeto


Importância do Projeto

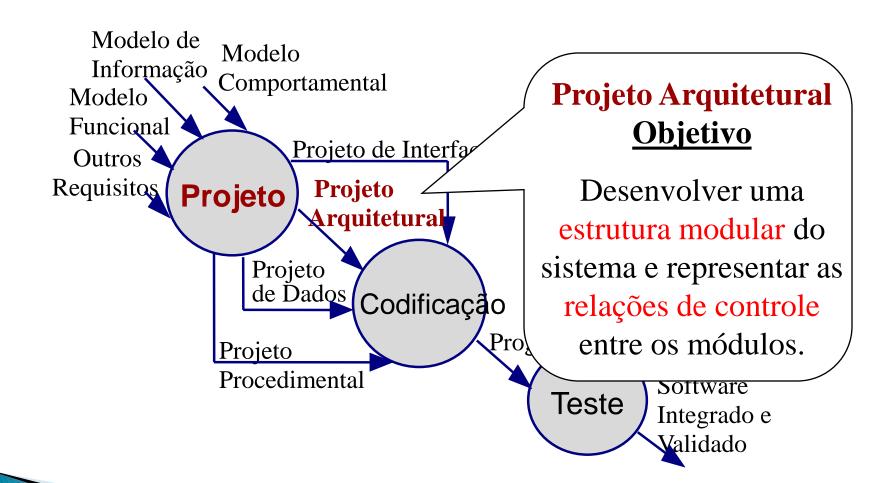
- Fomentar a qualidade durante o processo de desenvolvimento.
- Fornecer representações do software que podem ser avaliadas quanto à qualidade.
- Traduzir com precisão os requisitos de um cliente num produto de software finalizado.

Importância do Projeto

PROJETO DE SOFTWARE

PROJETO DE DADOS

ESTRUTURA DE DADOS: é uma representação do relacionamento lógico entre elementos de dados individuais.


Determina a organização, métodos de acesso, grau de associatividade e alternativas de processamento de informações.

PROJETO ARQUITETURAL

Você moraria em uma casa em que não há um projeto (planta)?

PROJETO DE SOFTWARE

PROJETO ARQUITETURAL

 O projeto arquitetural une a estrutura de programa e a estrutura de dados, definindo interfaces que possibilitam que os dados fluam pelo programa.

PROPRIEDADES

- Propriedades que devem ser especificadas como parte de um projeto arquitetural:
 - Propriedades estruturais: este aspecto da representação do projeto arquitetural define os componentes do sistema (como módulos, objetos) e a maneira pela qual esses componentes são empacotados e interagem entre si.

PROPRIEDADES

- Propriedades que devem ser especificadas como parte de um projeto arquitetural:
 - Propriedades extra-funcionais: a descrição do projeto arquitetural deve cuidar de como a arquitetura do projeto alcança os requisitos de desempenho, capacidade, confiabilidade, segurança, adaptabilidade, e outros requisitos não funcionais do sistema.

PROPRIEDADES

- Propriedades que devem ser especificadas como parte de um projeto arquitetural:
 - Famílias de sistemas relacionados: o projeto arquitetural deve ter a capacidade de reusar blocos de construção arquitetural.

MODELOS

- O projeto arquitetural pode ser representado usando-se um ou mais modelos:
 - Modelo estrutural: representa a arquitetura como uma coleção organizada de componentes de programa.
 - Modelo de arcabouço (framework): aumenta o nível de abstração de projeto por meio de tentativas de identificar padrões de projeto arquitetural repetidos, encontrados em tipos de aplicações similares.

MODELOS

- O projeto arquitetural pode ser representado usando-se um ou mais modelos:
 - Modelo dinâmico: cuida dos aspectos comportamentais da arquitetura do programa, indicando como a estrutura ou configuração do sistema pode mudar em reação a eventos externos.
 - Modelo de processo: focaliza o projeto de negócios ou processo técnico que o sistema precisa atender.

MODELOS

- O projeto arquitetural pode ser representado usando-se um ou mais modelos:
 - Modelo funcional: pode ser usado para representar a hierarquia funcional do sistema.

PROJETO ARQUITETURAL

CONCEITOS

- Abstração
- Refinamento
- Modularidade
- Ocultação da Informação
- Independência Funcional
- Arquitetura
- Particionamento Estrutural

ABSTRAÇÃO

ABSTRAÇÃO: possibilita que o projetista represente os procedimentos, os dados e o controle em vários níveis de detalhes.

Uma solução:

- é declarada em termos amplos usando-se a linguagem do ambiente do problema
- é estabelecida usando-se uma terminologia orientada à implementação
- é estabelecida de uma forma que possa ser diretamente implementada

alto

Nível de Abstração

baixo

ABSTRAÇÃO

Abstração Procedimental: uma sequência de instruções designadas que têm uma função específica e limitada.

Ex: a palavra 'entrar' numa porta Sequência de passos procedimentais: caminhe até a porta, aproxime-se e segure a maçaneta, gire a maçaneta e empurre a porta, etc...

ABSTRAÇÃO

Abstração de Dados: uma coleção designada de dados que descrevem um objeto de dados.

Ex: cheque de pagamento
Trata-se de uma coleção de muitas informações diferentes: nome da pessoa a quem se paga, quantia bruta paga, imposto retido, contribuição para a previdência, etc.

ABSTRAÇÃO

Abstração de Controle: implica um mecanismo de controle do programa sem especificar detalhes internos.

Ex: semáforo de sincronização
Utilizado para coordenar atividades de um
sistema operacional.

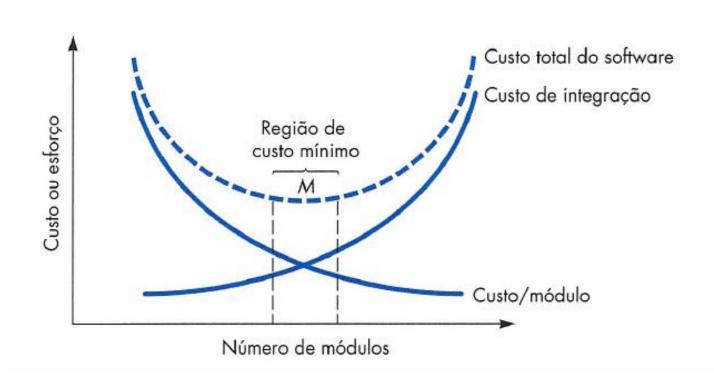
REFINAMENTO

REFINAMENTO passo a passo: é uma antiga estratégia de projeto top-down (1971)

 A arquitetura de um programa é desenvolvida refinando-se, sucessivamente, os níveis de detalhes procedimentais.

Projeto Arquitetural: MODULARIDADE

- MODULARIDADE: o software é dividido em componentes (módulos), que são integrados para atender aos requisitos do problema.
 - Dividir para conquistar.
- Um projeto modular reduz a complexidade, facilita a mudança e resulta numa implementação mais fácil ao estimular o desenvolvimento paralelo de diversas partes de um sistema.


MODULARIDADE

MODULARIDADE

É mais fácil resolver um problema complexo quando ele é dividido em partes.

Dividir indefinidamente torna o problema infinitamente pequeno? NÃO A submodularidade ou a supermodularidade devem ser evitadas.

COMO DEFINIR UM TAMANHO DE MÓDULO APROPRIADO?

Projeto Arquitetural: OCULTAÇÃO DE INFORMAÇÃO

OCULTAÇÃO DE INFORMAÇÕES: o conceito de modularidade leva o projetista de software a uma questão fundamental:

"Como decompor uma solução de software para obter o melhor conjunto de módulos?"

O princípio da "ocultação de informações" sugere que os módulos sejam "caracterizados pelas decisões de projeto que (cada módulo) esconde de todos os outros".

Projeto Arquitetural: OCULTAÇÃO DE INFORMAÇÃO

- Os módulos devem ser especificados e projetados de tal forma que as informações (procedimentos e dados) contidas num módulo sejam inacessíveis a outros módulos que não tenham necessidade de tais informações.
- A ocultação implica em uma modularidade tal que um conjunto de módulos independentes comunicam entre si somente aquelas informações que são necessárias para se obter a função do software.

INDEPENDÊNCIA

FUNCIONAL

INDEPENDÊNCIA FUNCIONAL: produto direto da modularidade e do conceito de ocultação da informação.

- Alcançada desenvolvendo-se módulos com função "com um só propósito" e "aversão" a interações excessivas com outros módulos;
- Um software com módulos independentes é mais fácil de ser desenvolvido e mais fácil de ser mantido => fundamental para um bom projeto.

INDEPENDÊNCIA

FUNCIONAL

A INDEPENDÊNCIA FUNCIONAL é medida usando-se dois critérios qualitativos:

COESÃO

ACOPLAMENTO

INDEPENDÊNCIA

FUNCIONAL

A INDEPENDÊNCIA FUNCIONAL é medida usando-se dois critérios qualitativos:

COESÃO

ACOPLAMENT

COESÃO

Medida da força
funcional relativa
de um módulo.
Pode ser vista como
a força que mantém unidos
os elementos de um módulo.

INDEPENDÊNCIA

FUNCIONAL

A INDEPENDÊNCIA FUNCIONAL é medida usando-se dois critérios qualitativos:

ACOPLAMENTO

É o grau de interdependência entre os módulos.

COESÃO

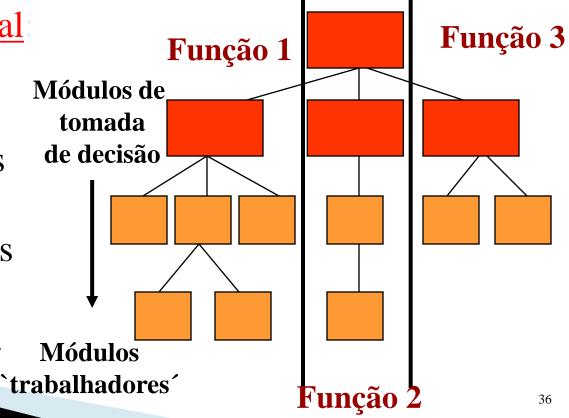
ACOPLAMENTO

PARTICIONAMENTO

ESTRUTURAL

PARTICIONAMENTO ESTRUTURAL: a estrutura do programa deve ser particionada horizontalmente e verticalmente

 particionamento horizontal: define três partições: entrada, transformação de dados (processamento) e saída.



PARTICIONAMENTO

ESTRUTURAL

PARTICIONAMENTO ESTRUTURAL: a estrutura do programa deve ser particionada horizontalmente e verticalmente

 particionamento vertical módulos de nível mais alto devem realizar funções de controle; os módulos de nível mais baixo devem realizar as tarefas de entrada,
 processamento e saída.

Projeto Arquitetural: ARQUITETURA DO

SOFTWARE

ARQUITETURA DE SOFTWARE é a estrutura hierárquica de componentes de programa (módulos), o modo pelo qual estes componentes interagem e as estruturas de dados que são usadas pelos componentes.

Princípios básicos de projeto para arquiteturas modulares:

- (1) unidades modulares;
- (2) poucas interfaces;
- (3) interfaces pequenas (fraco acoplamento);
- (4) interfaces explícitas;
- (5) ocultação de informações.

Princípios bás Correspondem aos módulos do sistema. modulares:

(1) unidades modulares;

- (2) poucas interfaces;
- (3) interfaces pequenas (fraco acoplamento);
- (4) interfaces explícitas;
- (5) ocultação de informações.

Projeto Arquitetural: ARQUITETURA DO

SOFTWARE

Princípios bás modulares:

Para conseguir baixo acoplamento:
o número de interfaces entre os
módulos e a quantidade de informações
que se movimentam por uma interface
devem ser minimizados.

- (1) unidades mor __res;
- (2) poucas interfaces;
- (3) interfaces pequenas (fraco acoplamento);
- (4) interfaces explícitas;
- (5) ocultação de informações.

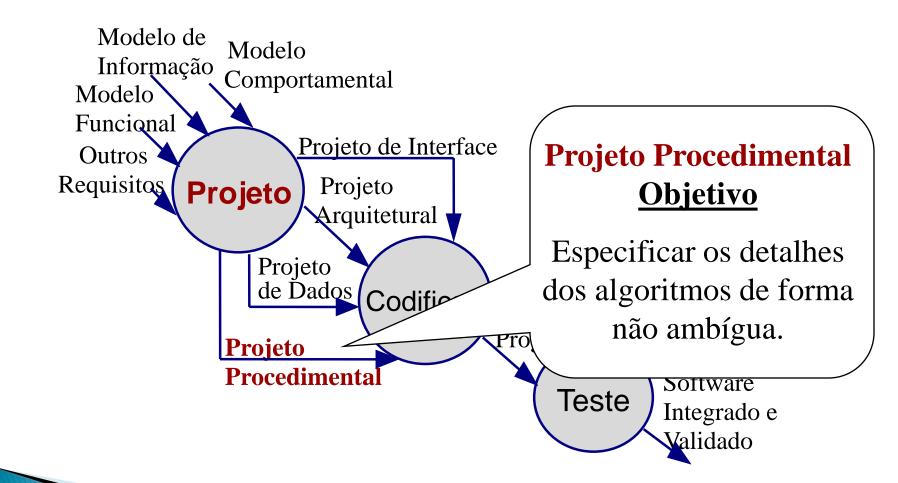
Princípios básicos de projeto para arquiteturas

modulares:

(1) unidade

Quando os módulos precisam se comunicar, eles devem fazê-lo de uma maneira óbvia e direta.

- (2) poucas imena
- (3) interfaces p quenas (fraco acoplamento);
- (4) interfaces explícitas;
- (5) ocultação de informações.


Princípios básicos de projeto para arquiteturas modulares:

- (1) unidades modulares;
- (2) pouca

(3) interfa

- Todas as informações sobre um módulo são escondidas do acesso externo.
- (4) interfaces example.
- (5) ocultação de informações.

PROJETO DE SOFTWARE

PROJETO PROCEDIMENTAL

PROCEDIMENTO DE SOFTWARE: focaliza os detalhes de processamento de cada módulo individualmente.

O **Procedimento** deve oferecer uma especificação precisa do **processamento** (sequência de eventos, pontos de decisão, operações repetitivas e até mesmo estrutura e organização de dados).

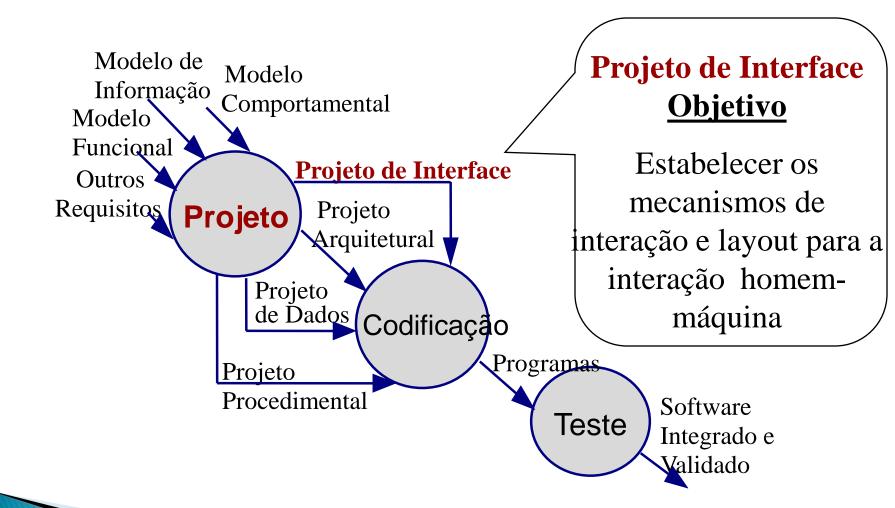
PROJETO PROCEDIMENTAL

PDL (Linguagem de Projeto de Programa)

- Linguagem de projeto de programa (inglês estruturado ou pseudocódigo)
- É uma linguagem híbrida no sentido de que ela usa o vocabulário de uma linguagem (isto é, inglês) e a sintaxe global de outra (isto é, uma linguagem de programação estruturada).

PROJETO PROCEDIMENTAL

PDL (Linguagem de Projeto de Programa)


Características:

- 1- uma sintaxe fixa de palavras-chave que forneçam todas as construções estruturadas, declarações de dados e características de modularidade.
- 2- uma sintaxe livre de linguagem natural que descreva as características de processamento.
- 3- facilidades de declaração de dados que incluam tanto as estruturas de dados simples como as complexas.
- 4- a definição de subprogramas ou técnicas de chamada que apóiem vários modos de descrição de interfaces.

Projeto Procedimental

- Nas fases iniciais, costuma-se usar declarações que informam
 - Pré-condições
 - Pós-condições
- É uma linguagem baseada em lógica matemática
- Usado por exemplo em casos de uso e contratos.

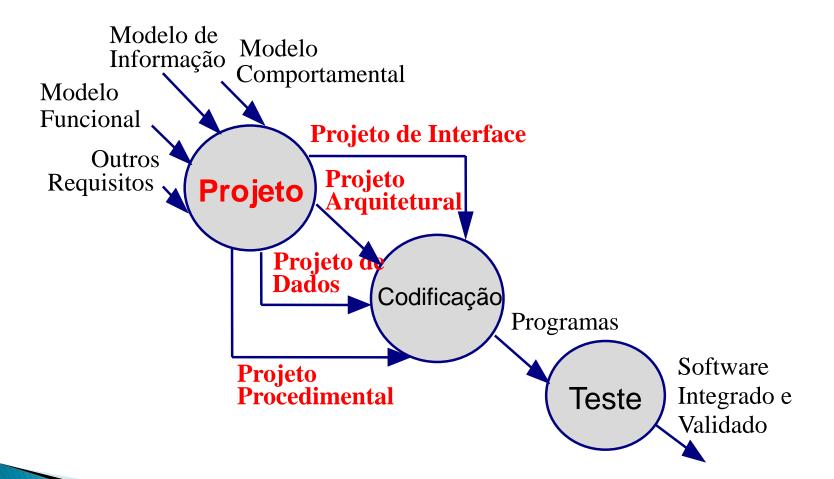
PROJETO DE SOFTWARE

PROJETO DE INTERFACE

- Processo iterativo, abrangendo as atividades:
 - · Análise e modelagem do usuário, tarefa, ambiente.
 - Projeto da interface.
 - · Tempo de resposta do sistema.
 - Facilidades de ajuda ao usuário.
 - · Manipulação de informações de erro.
 - · Rotulação de comandos.

PROJETO DE INTERFACE

- Construção da interface.
 - Ferramentas de projeto de interface e prototipagem.
 - Fornecem componentes de software "préempacotados" para criar uma interface com o usuário.
- Validação da interface.
 - Determinar se o protótipo operacional da interface satisfaz as necessidades do usuário.
 - Dados qualitativos.
 - Dados quantitativos.
 - Experimentos de usabilidade
 - Acessibilidade


PROJETO DE INTERFACE

Regras de Ouro.

- Coloque o usuário no controle.
- Reduza a sobrecarga cognitiva do usuário.
- Faça a interface consistente.

0

Projeto de Software

Projeto de Software E Profa. **en** ai