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Here’s the general approach of this lecture:




Economic
model

(e.g. utility
maximization)


 ⇒




Decision
rule

(e.g. FOC)




︸ ︷︷ ︸
Sec. 1 Motivation: Index function and random utility models

⇒




Underlying
regression

(e.g. solve the FOC
for a dependent

variable)



⇒




Econometric
model

(e.g. depending on
observed data,

discrete or limited
dependent variable

model)




︸ ︷︷ ︸
Sec. 2 Setup

⇒ [Estimation]︸ ︷︷ ︸ ⇒ [Interpretation]︸ ︷︷ ︸
Sec. 4 Estimation Sec. 3 Marginal Effects

We assume that we have an economic model and have derived implications

of the model, e.g. FOCs, which we can test. Converting these conditions into

an underlying regression usually involves little more than rearranging terms

to isolate a dependent variable. Often this dependent variable is not directly
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observed, in a way that we’ll make clear later. In such cases, we cannot

simply estimate the underlying regression. Instead, we need to formulate

an econometric model that allows us to estimate the parameters of interest

in the decision rule/underlying regression using what little information we

have on the dependent variable. We will present two models in part A which

will help us bridge the gap between inestimable underlying regressions and

an estimable econometric model. In part B, we will further develop the

econometric model introduced in part A so that it is ready for estimation.

In part C, we jump ahead to interpreting our results. In particular we will

explain why, unlike in the linear regression models, the estimated β̂ does

not give us the marginal effect of a change in the independent variables on

the dependent variable. We jump ahead to this topic because it will give us

some information we need when we estimate the model. Finally, part D will

describe how to estimate the model.

1 Motivation

Discrete dependent variable models are often cast in the form of index func-

tion models or random utility models. Both models view the outcome of

a discrete choice as a reflection of an underlying regression. The desire to

inform econometric models with economic models suggests that the underly-

ing regression be a marginal cost-benefit analysis calculation. The difference

between the two models is that the structure of the cost-benefit calculation

in index function models is simpler than that in random utility models.
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1.1 Index function models

Since marginal benefit calculations are not observable, we model the differ-

ence between benefit and cost as an unobserved variable y∗ such that:

y∗ = β′x + ε

where ε ∼ f(0, 1), with f symmetric. While we do not observe y∗, we do

observe y, which is related to y∗ in the sense that:

y = 0 if y∗ ≤ 0

and y = 1 if y∗ > 0.

In this formulation β′x is called the index function. Note two things. First,

our assumption that var(ε) = 1 could be changed to var(ε) = σ2 instead,

by multiplying our coefficients by σ2. Our observed data will be unchanged;

y = 0 or 1, depending only on the sign of y∗, not its scale. Second, setting

the threshold for y given y∗at 0 is likewise innocent if the model contains a

constant term. (In general, unless there is some compelling reason, binomial

probability models should not be estimated without constant terms.) Now

the probability that y = 1 is observed is:

Pr{y = 1} = Pr{Y ∗ > 0}
= Pr{β′x + ε > 0}
= Pr{ε > −β′x}.

Then under the assumption that the distribution f of ε is symmetric, we can

write:

Pr{y = 1} = Pr{ε < β′x} = F (β′x).

where F is the cdf of ε. This provides the underlying structural model for

estimation by MLE or NLLS estimation.
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1.2 Random utility models

Suppose the marginal cost benefit calculation was slightly more complex. Let

y0 and y1 be the net benefit or utility derived from taking actions 0 and 1,

respectively. We can model this utility calculus as the unobserved variables

y0 and y1 such that:

y0 = β′x0 + ε0,

y1 = γ′x1 + ε1.

Now assume that (ε1− ε0) ∼ f(0, 1), where f is symmetric. Again, although

we don’t observe y0 and y1, we do observe y where:

y = 0 if y0 > y1,

y = 1 if y0 ≤ y1.

In other words, if the utility from action 0 is greater than action 1, i.e.

y0 > y1, then y = 0. y = 1 when the converse is true. Here the probability of

observing action 1 is:

Pr{y = 1} = Pr{y0 ≤ y1} = Pr{β′x0 + ε0 ≤ γ′x1 + ε1}
= Pr{ε1 − ε0 ≥ β′x0 − γ′x1}
= F (γ′x1 − β′x0).

2 Setup

The index function and random utility models provide the link between an

underlying regression and an econometric model. Now we’ll begin the process

of flushing out the econometric model. First we’ll consider different specifi-

cations for the distribution of ε and later, in part C, examine how marginal

effects are derived from our probability model. This will pave the way for
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our discussion of how to estimate the model.

2.1 Why Pr{y = 1}?

In both index function and random utility models, the probability of observ-

ing y = 1 has the structure: Pr{y = 1} = F (β′x). Why are we so interested

in the probability that y = 1? Because the expected value of y given x is

just that probability:

E[y] = 0 · (1− F ) + 1 · F = F (β′x).

2.2 Common specifications for F(β′x)

How do we specify F (β′x)? There are four basic specifications that dominate

the literature.

(a) Linear probability model (LPM):

F (β′x) = β′x

(b) Probit:

F (x) = Φ(β′x) =
∫ β′x
−∞ φ(t)dt =

∫ β′x
−∞

1√
2π

e−
t2

2 dt

(c) Logit:

F (β′x) = Λ(β′x) =
eβ′x

1 + eβ′x

(d) Extreme Value Type I:

F (β′x) = W (β′x) = 1− e−eβ′x

2.3 Deciding which specification to use

Each specification has its advantages and disadvantages.
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(1) LPM. The linear probability model is popular because it is extremely

simple to estimate. This simplicity, however, comes at a cost. To see

what we mean, set up the NLLS regression model.

y = E[y|x] + (y − E[y|x]) = F (β′x) + ε

= β′x + ε.

Because F is linear, this just collapses down to the CR model. Notice

that the error term:

ε = 1− β′x with probability F = β′x and

−β′x with probability 1− F = 1− β′x

This implies that:

var[ε|x] = E[ε2|x]− E2[ε|x] = E[ε2] = F · (1− β′x)2 + (1− F ) · (−β′x)2

= F − 2Fβ′x + F [β′x]2 + [β′x]2 − F [β′x]2 = F − 2Fβ′x + [β′x]2

= β′x− 2[β′x]2 + [β′x]2 = β′x(1− β′x).

So our first problem is that ε is heteroscedastic in a way that depends

on β. Of course, absent any other problems, we could manage this with

an FGLS estimator. A second more serious problem, however, is that

since β′x is not confined to the [0, 1] interval, the LPM leaves open the

possibility of predicted probabilities that lie outside the [0, 1] interval,

which is nonsensical, and of negative variances:

β′x > 1 ⇒ E[y] = F = β′x > 1, var[ε] = β′x(1− β′x) < 0

β′x < 0 ⇒ E[y] < 0, var[ε] < 0.

This is a problem that is harder to correct. We could define F = 1 if

F (β′x) = β′x > 1 and F = 0 if F (β′x) = β′x < 0, but this procedure

creates unrealistic kinks at the truncation points for (y, x | β′x = 0 or
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1).

(2) Probit vs. Logit. The probit model, which uses the normal distribu-

tion, may be justified by appealing to a central limit theorem,while the

logit model can be justified by the fact that it is similar to a normal

distribution but has a much simpler form. The difference between the

logit and normal distribution is that the logit has slightly heavier tails.

The standard normal has mean zero and variance 1 while the logit has

mean zero and variance equal to π2/3.

(3) Extreme Value Type I. The extreme value type I distribution is the

least common of the four models. It is important to note that this is an

asymmetric pdf.

3 Marginal effects

Unlike in linear models such as the CR or Neo-CR models, the marginal

effect of a change in x on E[y] is not simply β. To see why, differentiate E[y]

by x:
∂E[y]

∂x
=

∂F (β′x)

∂(β′x)

∂(β′x)

∂x
= f(β′x)β.

These marginal effects look different in each of the four basic probability

models.

1. LPM. Note that f(β′x) = 1, so f(β′x)β = β, which is the same as in

the CR-type models, as expected.

2. Probit. Now, f(β′x) = φ(β′x) =
1√
2π

e
−
(β′x)2

2 , so f(β′x)β = φβ.
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3. Logit. In this case:

f(β′x) =
∂Λ(β′x)

∂(β′x)
=

eβ′x

1 + eβ′x −
eβ′x

(1 + eβ′x)2e
β′x

=
eβ′x

1 + eβ′x

(
1− eβ′x

1 + eβ′x

)

= Λ(β′x) (1− Λ(β′x))

Giving us the marginal effect f(β′x)β = Λ(1− Λ)β.

3.1 Converting probit marginal effects to logit marginal effects

To convert a probit coefficient estimate to a logit coefficient estimate, from

the discussion above comparing the variances of probit and logit random

variable, it would make sense to multiply the probit coefficient estimate by

π√
3
∼= 1.8 (since variance of logit is π2/3 whereas variance of the normal is

1) . But Amemiya suggests a different conversion factor. Through trial and

error he found that 1.6 works better at the center of the distribution, which

demarcates the mean value of the regressors. At the center of the distribution,

F = 0.5 and β′x = 0. Well Φ(0) = 0.3989 while Λ(0) = 0.25. So we want to

solve the equation, 0.3989βprobit = 0.25βlogit this gives us βlogit = 1.6βprofit.

4 Estimation and hypothesis testing

There are two basic methods of estimation, MLE and NLLS estimation. Since

the former is far more popular, we’ll spend most of our time on it.

4.1 MLE

Given our assumption that the ε are iid, by the definition of independence,

we can write the joint probability of observing {yi}i=1,...,n as

Pr{y1, y2, . . . , yn} = Πyi=0[1− F (β′xi)] · Πyi=1[F (β′xi)].
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Using the notational simplification F (β′xi) = Fi, f(β′xi) = fi, f
′(β′xi) = f ′i

we can write the likelihood function as:

L = Πi(1− Fi)
1−yi(Fi)

yi.

Since we are searching for a value of β that maximizes the probability of

observing what we have, monotonically increasing transformations will not

affect our maximization result. Hence we can take logs of the likelihood

function; and since maximizing a sum is easier than maximizing a product,

we take the log of the likelihood function:

ln L =
∑

i {(1− yi) ln[1− Fi] + yi ln Fi} .

Now estimate β̂ by:

β̂ = arg max
β

ln L.

Within the MLE framework, we shall now examine the following six (esti-

mation and testing) procedures:

A. Estimating β̂;

B. Estimating asymptotic variance of β̂;

C. Estimating asymptotic variance of the predicted probabilities;

D. Estimating asymptotic variance of the marginal effects;

E. Hypothesis testing; and

F. Measuring goodness of fit

A. Estimating β̂

To solve max
β

ln L we need to examine the first and second order conditions.
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First Order Conditions (FOCs): A necessary condition for maximization

is that the first derivative equal zero:

∂ ln L

∂β
=

∂ ln L

∂(β′x)

∂(β′x)

∂β
=

∂ ln L

∂(β′x)
x = 0.

If we write:
∂F (β′x)

∂(β′x)
= f(β′x),

and we plug in:

ln L =
∑

i{(1− yi) ln[1− Fi] + yi ln Fi},

then we just need to solve:

∑
i

[
(1− yi)

−fi

1− Fi
+ yi

fi

Fi

]
xi =

∑
i

[
(yi − 1)fiFi + yifi(1− Fi)

(1− Fi)Fi

]
xi = 0

⇐⇒
∑

i

(yi − Fi)fixi

(1− Fi)Fi
= 0 {FOCs}

Now we look at the specific FOCs in three main models:

(1) LPM. Since Fi = β′xi and fi = 1∀i, our FOC becomes:

∑
i

(yi − Fi)fixi

(1− Fi)Fi
=

∑
i

(yi − β′xi)xi

(1− β′xi)β′xi
= 0.

This is just a set of linear equations in x and y which we can solve

explicitly for β in two ways.

(i) Least squares. The first solution gives us a result that is reminiscent

of familiar least squares predictors.

(a) GLS. Solving for the β in the numerator, we get something re-

sembling the generalized least squares estimator, where each xi is
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weighted by the variance of εi.

∑

i

β′x2
i

(1− β′xi)β′xi
=

∑

i

yixi

(1− β′xi)β′xi

⇒ β =

∑
i

yixi

(1− β′xi)β′xi

∑
i

x2
i

(1− β′xi)β′xi

=

∑
i

yixi

var(εi)

∑
i

x2
i

var(εi)
.

(b) OLS. If we assume homoscedasticity, i.e:

(1− β′xi)β
′xi = var(εi) = var(ε) = σ2 ∀ i

Then the equation above collapses into the standard OLS estimator

of β :

β =

1
var(ε)

∑
i

yixi

1
var(ε)

∑
i

x2
i

=

∑
i

yixi

∑
i

x2
i

.

(ii) GMM. If we rewrite yi − β′xi = εi then the FOC conditions re-

semble the generalized method of moments condition for solving the

heteroscedastic linear LS model:

∑
i

εixi

(1− β′xi)β′xi
= 0 ⇒

∑
i

εixi

var(εi)
= 0.

Again, if we assume homoskedasticity, we get the moment condition

for solving the CR model:

1

var(ε)

∑
i

εixi =
∑

i

εixi = 0.

Note that each of these estimators is identical. Some may be more ef-

ficient than others in the presence of heteroscedasticity, but, in general,

they are just different ways of motivating the LS estimator.
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(2) Probit. Noting that Fi = Φi, fi = φi, the FOC is just:

∑
i

(yi − Fi)fixi

(1− Fi)Fi
=

∑
i

(yi − Φi)φixi

(1− Φi)Φi

=
∑

i

yiφixi

(1− Φi)Φi
−

∑
i

φixi

(1− Φi)

If we define (refer the results in the Roy Model handout):

λ0i = −E(z | z > β′xi) =
−φi

(1− Φi)

λ1i = E(z | z < β′xi) =
φi

Φi

Then we can rewrite the FOC as:

∑

i

λixi = 0

where:

λi = λ0i if yi = 0, and

λ1i if yi = 1.

Note that, unlike in the LPM, these FOC are a set of nonlinear equa-

tions in β. They cannot be easily solved explicitly for β. So β has to

be estimated using the numerical methods outlined in the Asymptotic

Theory Notes.

(3) Logit. Here Fi = Λi and fi = Λi(1− Λi), so the FOC becomes:

∑
i

(yi − Fi)fixi

(1− Fi)Fi
=

∑
i

(yi − Λi)Λi(1− Λi)xi

(1− Λi)Λi
= 0

⇐⇒
∑

i

(yi − Λi)xi = 0.

Interestingly, note that we can write yi − Λi = εi so that the FOC can

be written
∑

i(yi − Λi)xi =
∑

i εixi = 0, which is similar to the moment
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conditions for the LPM. Like the probit model, however, the FOC for

the logit model are nonlinear in β and must therefore be solved using

numerical methods.

Second Order Condition (SOC): Together, the FOCs and the SOC that

the second derivative or Hessian be negative definite are necessary and suf-

ficient conditions for maximization. To verify the second order condition,

let:
∂f(β′x)

∂(β′x)
= f ′(β′x),

So that we need to check:

∂2 ln L

∂β∂β′
=

∂

∂(β′x)

[
∂ ln L

∂(β′x)
x

]
∂(β′x)

∂β

=
∂2 ln L

∂(β′x)∂(β′x)′
xx′

=
∑

i

∂

∂(β′xi)

[
(yi − Fi)fixi

(1− Fi)Fi

]
x′i < 0.

(1) LPM. We can prove that the LPM satisfies the SOC ∀β ∈ B:

∑
i

∂

∂(β′xi)

[
(yi − β′xi)xi

(1− β′xi)β′xi

]
x′i

=
∑

i

[ −xi

(1− β′xi)β′xi
− (yi − β′xi)xi

(1− β′xi)2(β′xi)2 (1− 2β′xi)

]
x′i

=
∑

i

[−ββ′x3
i − yixi + 2yiβ

′x2
i

(1− β′xi)2(β′xi)2

]
x′i

=
∑

i

[ −(yi − β′xi)
2

(1− β′xi)2(β′xi)2

]
xix

′
i < 0

(Using fact yi ∈ {0, 1} ⇒ y2
i = yi)

(2) Probit. The same can be said about the probit model, and the proof

follows from the results in the Roy model. First, note that φ′(β′x) =
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−β′xφ(β′x). Taking the derivative of the first derivative we need to show:
∑

i

∂

∂(β′xi)
[λixi]x

′
i =

∑

i

∂

∂(β′xi)
[λi]xix

′
i < 0.

We can simplify this expression using results for the truncated normal

(see results on truncated normal in Roy Model handout):

∂λ0i

∂(β′xi)
=

∂

∂(β′x)

[ −φi

1− Φi

]

=
−β′xiφi

1− Φi
− φ2

i

(1− Φi)2 = β′xiλ0i − λ2
0i

= −λ0i(β
′xi + λ0i) < 0

∂λ1i

∂(β′xi)
=

∂

∂(β′xi)

[
φi

Φi

]
=
−β′xiφi

Φi
− φ2

i

Φ2
i

= −β′xiλ1i − λ2
1i = −λ1i(β

′xi + λ1i) < 0

So that we can write the SOC as:

−∑
i

λi(β
′xi + λi)xix

′
i < 0,

Where:

λi = λ0i =
−φi

(1− Φi)
, if yi = 0, and

λ1i =
φi

Φi
, if yi = 1

(3) Logit. Taking the derivative of the FOC for logit, we get the SOC :

∑
i

∂[yi − Λi)xi]

∂(β′xi)
x′i = −∑

i

Λi(1− Λi)xix
′
i < 0

which clearly holds ∀ β ∈ B. Note that since the Hessian does not include

yi, the Newton-Raphson method of numerical optimization, which uses

H in its iterative algorithm, and the method of scoring, which uses E[H],

are identical in the case of the logit model. Why? Because E[H] is taken

with respect to the distribution of y.
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We’ve shown that the LPM, probit and logit models are globally concave.

So the Newton-Raphson method of optimization will converge in just a few

iterations for these three models unless the data is very badly conditioned.

B. Estimating the Asy Cov matrix for β̂

Recall the following two results from the MLE notes:

(a)
√

T (β̂ − β0) → N(0,−I(β0)
−1)

where I(β0) = plim

(
1

T

∂2 ln L

∂β∂β′

∣∣∣∣
β0

)

(b) lim
T→∞

− 1

T

∂ ln L

∂β

∂ ln L′

∂β

∣∣∣∣
β̂

= −E

(
1

T

∂ ln L

∂β

∂ ln L′

∂β

)

= E

[
∂2 ln L

∂β∂β′

]
= plim

(
1

T

∂2 ln L

∂β∂β′

∣∣∣∣
β0

)
= lim

T→∞
1

T

∂2 ln L

∂β∂β′

∣∣∣∣
β̂

.

We have three possible estimators for Asy.Var[β̂] based on these two facts.

(1) Asy.Var[β̂] = −Ĥ−1 where Ĥ =
∑
i

∂

∂(β′xi)

[
(yi − Fi)fi

(1− Fi)Fi

]
xix

′
i

∣∣∣∣
β

.

(2) Asy. Var[β̂] = −E[H]−1 where E[H] = E

[
∂2 ln L

∂β∂β′

]
.

– In any model where H does not depend on yi,E[H] = Ĥ since the

expectation has taken over the distribution of y. So in models such

as logit the first and second estimators are identical. In the probit

model, Ĥ depends on yi so Ĥ 6= E[H]. Amemiya (“Qualitative Re-

sponse Models: A Survey,” Journal of Economic Literature, 19, 4,

1981, pp. 481-536) showed that:

E[H]|probit =
∑

i

λ0iλ1ixix
′
i =

∑
i

−φ2
i

(1− Φi)
xix

′
i.
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(3) The Berndt, Hall, Hall and Hausman took the following estimator from

T.W. Anderson (1959) which we call the TWA estimator:

Asy.Var[β̂] = Ĥ−1 where Ĥ =
∑

i

(
(yi − Fi)fi

(1− Fi)Fi

)′
xix

′
i

(
(yi − Fi)fi

(1− Fi)Fi

)

Notice there is no negative sign before the Ĥ−1, as the two negative signs

multiply out.

Note that the three estimators listed here are the basic three variants on

the gradient method of iterative numerical optimization explained in the

numerical optimization notes.

C. Estimating the Asy Cov matrix for predicted probabilities, F (β̂′x).

For simplicity, let F (β̂′x) = F̂ . Recall the delta method: if g is twice contin-

uously differentiable and
√

T (θT − θ0)
d→ N(0, σ2), then:

√
T (g(θT )− g(θ0))

d→ N(0, [g′(θ0)]
2σ2).

Applying this to F̂ we get
√

T
(
F (β̂)− F (β0)

)
d→ N(0, [F̂ ′(β0)]

2V ar[β̂]),

where β0 is the true parameter value. So a natural estimator for the asymp-

totic covariance matrix for the predicted probabilities is:

Asy.Var[F̂ ] =
(

∂F̂

∂β̂

)′
V

(
∂F̂

∂β̂

)
where V =Asy.Var[β̂].

Since:
∂F̂

∂β̂
=

∂F̂

∂(β̂′x)

∂(β̂′x)

∂β̂
= (f̂)x, we can write the estimator as:

Asy.Var[F̂ ] = (f̂)2x′V x.

D. Estimating the Asy Cov matrix for marginal effects, f(β̂′x)β.
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To recap, the marginal effects are given by:

∂E[y]

∂x
=

∂F

∂x
=

∂F

∂(β′x)

∂(β′x)

∂x
= fβ.

To simplify notation, let f(β̂′x)β̂ = f̂ β̂ = γ̂. Again, using the delta method

as motivation, a sensible estimator for the asymptotic variance of γ(β̂) would

be:

Asy. Var[γ̂] =

(
∂γ̂

∂β̂

)
V

(
∂γ̂

∂β̂

)′
,

where V is as above. We can be more explicit in defining our estimator by

noting that:

∂γ̂

∂β̂
=

∂f̂ β̂

∂β̂
= f̂

∂β̂

∂β̂
+

∂f̂

∂(β′x)

∂(β̂′x)

∂β̂
β̂

= f̂ I +
∂f̂

∂(β̂′x)
β̂′x,

This gives us:

Asy.Var[f̂ β̂] =

(
f̂ I +

∂f̂

∂(β̂′x)
β̂′x

)
V

(
f̂ I +

∂f̂

∂(β̂′x)
β̂′x

)′

.

This equation still does not tell us much. It may be more interesting to look

at what the estimator looks like under different specifications of F.

(1) LPM. Recall F = β′x, f = 1, and f ′ = 0, so:

Asy.Var[f̂ β̂]LPM = V =Asy.Var[β̂]

(2) Probit. Here F = Φ, f = φ and f ′ = −β′xφ, leaving us with:

Asy.Var[f̂ β̂]probit = φ̂2
(
I −

(
β̂′x

)
β̂′x

)
V

(
I −

(
β̂′x

)
β̂′x

)′

(1) Logit. Now F = Λ, f = Λ(1− Λ), and f ′ = Λ(1− Λ)[1− 2Λ], so:

Asy. Var[f̂ β̂]logit =
[
Λ̂(1− Λ̂)

]2 (
I + (1− 2Λ̂)β̂′x

)
V

(
I + (1− 2Λ̂)β̂′x

)′
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E. Hypothesis testing

Suppose we want to test the following set of restrictions, H0 : Rβ = q. If we

let p be the number of restrictions in R, i.e. rank (R), then MLE provides

us with three test statistics (refer also the Asymptotic Theory notes).

(1) Wald test

W =
(
Rβ̂ − q

)′
[R Est.Asy.Var(β̂)R′](Rβ̂ − q) ∼ χ2(p).

– Example. Suppose H0: the last L coefficients or elements of β are 0.

Define R = [0, IL] and q = 0; and let β̂L be the last L elements of β̂.

Then we get W = β̂′LV −1
L β̂L.

(2) Likelihood ratio test

LR = −2[ln LR(β̂)− ln L(β̂)] ∼ χ2(p)

where ln LR(β̂) and ln L(β̂) are the log likelihood function evaluated with

and without the restrictions on β̂, respectively.

– Example. To test H0: all slope coefficients except that on the con-

stant term are 0, let

ln LR(β̂) =
∑

i

{yi ln Fi + (1− yi) ln(1− Fi)}

= n
∑

i

{yi/n) ln Fi + ([1− yi]/n) ln(1− Fi)}

= n{P ln P + (1− P ) ln(1− P )}

where P is the proportion of observations with y = 1.

(3) Score or Lagrange multiplier test

Write out the Lagrangian for the MLE problem given the restriction

β = βR : L = ln L − λ(β − βR). The first order condition is
∂ ln L

∂β
= λ.
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So the test statistic is LM = λ′RV λR, where λR is just λ evaluated at

βR.

– Example. In the logit model, suppose we want to test H0: all slopes

are 0. Then LM = nR2, where R2 is the uncentered coefficient of

determination in the regression of (yi − P ) on xi, where P is the

proportion of y = 1 observations in the sample. (Don’t worry about

how this is derived.)

F. Measuring goodness of fit

There are three basic ways to describe how well a limited dependent variable

model fits the data.

(1) Log likelihood function, ln L. The most basic way to describe how suc-

cessful the model is at fitting the data is to report the value of ln L at

β̂. Since the hypothesis that all other slopes in the model are zero is

also interesting, ln L computed with only a constant term (ln L0), which

should also be reported. Comparing ln L0 to ln L gives us an idea of how

much the likelihood improves on adding the explanatory variables.

(2) Likelihood ratio index, LRI. An analog to the R2 in the CR model is

the likelihood ratio index, LRI = 1 − (ln L/ ln L0). This measure has

an intuitive appeal in that it is bounded by 0 and 1 since ln L is a

small negative number while ln L0 is a large negative number, making

ln L/ ln L0 < 1. If LRI = 1, Fi = 1 whenever yi = 1 and Fi = 0 whenever

yi = 0, giving us a perfect fit. LRI = 0 when the fit is miserable, i.e.

ln L = ln L0. Unfortunately, values between 0 and 1 have no natural

interpretation like they do in the R2 measure.

19



(3) Hit and miss table. A useful summary of the predictive ability of the

model is a 2× 2 table of the hits and misses of a prediction rule: ŷi = 1

if F (β̂)′x) > F ∗, and 0 otherwise.

yi = 0 yi = 1

Hits # of obs. where ŷi = 0 # of obs. where ŷi = 1

Misses # of obs. where ŷi = 1 # of obs. where ŷi = 0

The usual value for F ∗ = 0.5. Note, however, that 0.5 may seem reason-

able but is arbitrary. For more on this measure, see Greene, p. 652.
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