FCM0502 - Física II
 $1^{\text {a }}$ Lista de exercícios - Rotação
 11/8/2016

(i) Problemas do Capítulo 9 Tipler/Mosca 4^{a} edição: 7, 22, 23, 25, 30, 29, 33, 37 e 38.
7. Um disco, com raio de 12 cm , em repouso, principia a girar em torno do próprio eixo, com aceleração angular constante de $8 \mathrm{rad} / \mathrm{s}^{2}$. Determinar, no instante $t=5 \mathrm{~s}$,
i. A velocidade angular do disco;
ii. A aceleração tangencial a_{t} e a aceleração centrípeta a_{c} de um ponto na borda do disco.
22. A roda de um rebolo tem 1.7 kg , raio de 8 cm e gira a $730 \mathrm{rev} / \mathrm{min}$. Depois de desligada a energia, uma mulher continua a afiar o gume de uma ferramenta, comprimindo-a contra o rebolo, que gira durante 9 s até parar.
i. Qual a aceleração angular do rebolo?
ii. Qual o torque provocado pela ferramenta comprimida contra o rebolo? (Admita que a aceleração angular seja constante e que não estejam presentes outros torques de atrito.)
23. Um cilindro de 2.5 kg e raio 11 cm está inicialmente em repouso. Uma corda de massa desprezível está enrolada no cilindro e é puxada com força constante de 17 N . Calcular
i. O torque exercido pela corda;
ii. A aceleração angular do cilindro;
iii. A velocidade angular do cilindro em $t=5 \mathrm{~s}$.
25. Um pêndulo, constituído por um fio de comprimento L e um peso de massa m, oscila no plano vertical. Quando o ângulo entre o fio e a vertical for θ
i. Qual é a componente tangencial da aceleração do peso?
ii. Qual o torque exercido sobre o eixo de oscilação?
iii. Mostre que $\tau=I \alpha, \operatorname{com} a_{t}=L \alpha$ leva à mesma aceleração tangencial que foi calculada no item (a).
30. Quatro corpos estão localizados nos vértices de um quadrado com lado $L=2 \mathrm{~m}$ e ligados por hastes de massa desprezível (Fig. 9-38 do texto, reproduzida
abaixo). As massas dos corpos são $m_{1}=m_{3}=3 \mathrm{~kg}$ e $m_{2}=m_{4}=4 \mathrm{~kg}$. Calcular o momento de inércia do sistema, em torno do eixo z.

29. Uma bola de tênis tem massa de 57 g e diâmetro de 7 cm . Calcule o momento de inércia da bola em torno de um diâmetro. Admita que a bola é uma casca esférica delgada.
33. Com o teorema dos eixos paralelos, determine o momento de inércia de uma esfera maciça de massa M e raio R em relação a um eixo tangente à sua superfície (Figura 9-39 do texto, reproduzida abaixo).

37. Duas esferas homogêneas, cada qual com massa de 500 g e raio de 5 cm estão
montadas nas pontas de uma haste uniforme de 30 cm e massa de 60 g (Fig. 940 do texto, reproduzida abaixo). Para calcular o momento de inércia da montagem em relação a um eixo perpendicular à haste que passa pelo seu centro, uma pessoa admite que as esferas sejam puntiformes, a 20 cm do eixo, e que a massa da haste seja desprezível. Uma outra pessoa faz o cálculo sem aproximações.
i. Compare os dois resultados
ii. Se as esferas tivessem a mesma massa mas fossem ocas, a inércia rotacional seria maior ou menor? Justifique a resposta em uma ou duas frases. Não é preciso calcular o novo momento de inércia I.

38. A molécula de metano $\left(\mathrm{CH}_{4}\right)$ tem quatro átomos de hidrogênio localizados nos vértices de um tetraedro regular de aresta 1.4 nm , com o átomo de carbono no centro do tetraedro (Fig. 9-41, reproduzida abaixo). Calcular o momento de inércia da molécula em relação a um eixo que passa pelo átomo de carbono e um dos átomos de hidrogênio.

(ii) Uma barra não homogênea de comprimento L tem densidade linear (massa por unidade de comprimento) dada pela função

$$
\lambda(x)=\frac{M}{L}\left(1+\frac{x}{L}\right),
$$

onde M é uma grandeza com dimensão de massa e x é a distância medida ao longo da barra a partir de uma de suas extremidades. Calcule o momento de inércia para
rotações em torno de um eixo perpendicular à barra que passa pela extremidade $x=0$.
(iii) Problemas do Capítulo 10 Tipler/Mosca 4^{a} edição: 3, 4, 13, 16 e 17 .
3. Uma força de módulo F é aplicada horizontalmente na direção dos x negativos à borda de um disco de raio R como mostra a Fig. 10-29 do texto, reproduzida abaixo. Encontrar a expressão dos vetores \vec{F} e \vec{r} em termos dos vetores unitários $\hat{\imath}, \hat{\jmath}$ e \hat{k} e calcular o torque da força em relação à origem, no centro do disco.

4. Determine o torque em relação à origem da força $\vec{F}=-m g \hat{\jmath}$ sobre a partícula em $\vec{r}=x \hat{\imath}+y \hat{\jmath}$ e mostre que o torque é independente da coordenada y.
13. Uma partícula descreve uma reta a velocidade constante. Como varia com o tempo o momento angular da partícula em relação a um ponto qualquer?
16. Uma partícula de 2 kg descreve uma reta à velocidade constante de $4.5 \mathrm{~m} / \mathrm{s}$.
i. Qual o módulo do seu momento angular em relação a um ponto a 6 m da reta?
ii. Descreva qualitativamente como varia com o tempo a velocidade angular em relação ao ponto.
17. Uma partícula percorre, com velocidade constante \vec{v}, uma reta que está à distância b da origem O (Figura 10-30 do texto, reproduzida abaixo). Seja $d A$ a área varrida pelo vetor posição traçado de O até a partícula no intervalo de tempo $d t$. Mostre que $d A / d t$ é constante no tempo e igual a $L / 2 m$, onde L é o momento angular da partícula em relação à origem.

