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1 Stata basics

This chapter provides some of the basic information about issuing commands in Stata.
geetions 1.1 1.3 enable a first-time user to begin using Stata interactively. In this book,
we instead emphasize storing these conunands in a text file, called a Stata do-file, that is
{hen executed. This is presented in section 1.4. Sections 1.5-1.7 present more-advanced
Sata material that might be skipped on a first réading.

The chapter concludes with a summary of some commonly used Stata commands and
with a template do-file that demonstrates many of the tools introduced in this chapter.
Chapters 2 and 3 then demonstrate many of the Stata commands and tools used in
applied microeconometrics. Additional features of Stata are introduced throughout the
book and in appendices A and B.

1.1 Interactive use

Interactive use means that Stata commands are initiated from within Stata.

A graphical user interface (GUI) for Stata is available. This enables almost all Stata
commands to be selected from drop-down menus. Interactive use is then especially easy,
as there is no need to know in advance the Stata command.

All implementations of Stata allow commands to be directly typed in; for exam-
ple, entering summarize yields summary statistics for the current dataset. This is the
primary way that Stata is used, as it is considerably faster than working through drop-
down menus. Furthermore, for most analyses, the standard procedure is to aggregate
the various commands needed into one file called a do-file (see section 1.4) that can be
run with or without interactive use. We therefore provide little detail on the Stata GUI.

For new Stata users, we suggest entering Stata, usually by clicking on the Stata icon,
opening one of the Stata example datasets, and doing some basic statistical analysis.
To obtain example data, select File > Example Datasets..., meaning from the File
menu, select the entry Example Datasets.... Then click on the link to Example
datasets installed with Stata. Work with the dataset auto.dta; this is used in
many of the introductory examples presented in the Stata documentation. First, select
describe to obtain descriptions of the variables in the dataset. Second, select use to
read the dataset into Stata. You can then obtain summary statistics either by typing
summarize in the Command window or by selecting Statistics > Summaries, tables,
and tests > Summary and descriptive statistics > Summary statistics. You
can run a simple regression by typing regress mpg weight or by selecting Statistics
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> Linear models and related > Linear regression and then using the drop-down
lists in the Model tab to choose mpg as the dependent variable and weight as the
independent variable.

The Stata manual [GS] Getting Started with Stata is very helpful, especially [GS] 1 In-
troducing Stata—sample session, which uses typed-in commands, and [GS] 2 The
Stata user interface.

The extent to which you use Stata in interactive mode is really a personal preference.
There are several reasons for at least occasionally using interactive mode. First, it can
be useful for learning how to use Stata. Second, it can be useful for exploratory analysis
of datasets because you can see in real time the effect of, for example, adding or dropping
regressors. If you do this, however, be sure to first start a session log file (see section 1.4)
that saves the commands and resulting output. Third, you can use help and related
commands to obtain online information about Stata commands. Fourth, one way to
implement the preferred method of running do-files is to use the Stata Do-file Editor in
interactive mode.

Finally, components of a given version of Stata, such as version 10, are periodically
updated. Entering update query determines the current update level and provides the
option to install official updates to Stata. You can also install user-written commands
in interactive mode once the relevant software is located using, for example, the findit
command.

1.2 Documentation

Stata documentation is extensive; you can find it in hard copy, in Stata (online), or on
the web.

1.2.1 Stata manuals

For first-time users, see [GS] Getting Started with Stata. The most useful manual
is [U] User’s Guide. Entries within manuals are referred to using shorthand such as
[U] 11.1.4 in range, which denotes section 11.1.4 of [U] User’s Guide on the topic in
range.

Many commands are described in [R] Base Reference Manual, which spans three
volumes. For version 11, these are A—H, I-P, and Q-Z. Not all Stata commands ap-
pear here, however, because some appear instead in the appropriate topical manual.
These topical manuals are [D] Data Management Reference Manual, [G] Graphics Ref-
erence Manual, [M] Mata Reference Manual (two volumes), [MI] Multiple-Imputation
Reference Manual, [MV] Multivariate Statistics Reference Manual, [P| Programming
Reference Manual, [ST] Survival Analysis and Epidemiological Tables Reference Man-
ual, [sVY] Survey Data Reference Manual, [TS] Time-Series Reference Manual, and [XT]
Longitudinal/Panel-Data Reference Manual. For example, the generate command ap-
pears in [D] generate rather than in [R].

123 T he help command N

For a complete list of documentation, see [U] 1 Read this—it will help and also
1] Quick Reference and Index.

1.2.2 Additional Stata resources

The Stata Journal (sJ) and its predecessor, the Stata Technical Bulletin (STB), present
examples and code that go beyond the current installation of Stata. SJ articles over
three years old and all STB articles are available online from the Stata web site at no
charge. You can find this material by using various Stata help commands given later in
this section, and you can often install code as a free user-written command.

The Stata web site has a lot of information. This includes a summary of what Stata
does. A good place to begin is http://www.stata.com/support/. In particular, see the
answers to frequently asked questions (FAQs). -

The University of California—Los Angeles web site
http://www.ats.ucla.edu/STAT /stata/ provides many Stata tutorials.

1.2.3 The help command

Stata has extensive help available once you are in the program.

The help command is most useful if you already know the name of the command
for which you need help. For example, for help on the regress command, type

. help regress

(output omitted)

Note that here and elsewhere the dot (.) is not typed in but is provided to enable
distinction between Stata commands (preceded by a dot) and subsequent Stata output,
which appears with no dot.

The help command is also useful if you know the class of commands for which you
need help. For example, for help on functions, type

. help function
(output omitted)

(Continued on next page)
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Often, however, you need to start with the basic help command, which will open
the Viewer window shown in figure 1.1.

. help

Vittwer (V1) [Help Cantents] 2 (=)

« » c \g IB lhelpcnnte?s }?,f

[|_Advice | [ Conterts | (Whal's New] [__News |

Top

Category listings
Basics X
Tanguage syntax, expressions and functions, ...

Data management .
inputting, editing, creating new variables, ,..

Statistics . i .
summary statistics, tables, estimation, ...

@raphics
scatterplots, bar charts, ...

Programwing and matrices
do-files, ado-files, mata, matrices

Help file Jistings

Language symtax
advice on what to type

| Manual datasets
| download datasets from the Reference manuals

cross—reference the documentation
learn how the online help system references Stata manuals

Copyrights

Figure 1.1. Basic help contents

For further details, click on a category and subsequent subcategories.

For help with the Stata matrix programming language, Mata, add the term mata
after help. Often, for Mata, it is necessary to start with the very broad command

. help mata
(output omitted)

and then narrow the results by selecting the appropriate categories and subcategories.

1.2.4 The search, findit, and hsearch commands

There are several search-related commands that do not require knowledge of command
names.

For example, the search command does a keyword search. Tt is especially useful if
you do not know the Stata command name or if you want to find the many places that

3.1 Basic command syntax -
1.3.

and or method might be used. The default for search is to obtain information
& COIn(l)l;ﬁcial help files, FAQs, examples, the 8J, and the STB but not from Internet
from

es. For example, for ordinary least squares (OLS) the command
sources:

. gearch ols
(output omitted )

. yeforences in the mannals [R], [MV], [sVY], and [XT]; in FAQs; in e.xamples; and
!m[fh . gy and the sTB. It also gives help commands that you can click on to get
b 1I|l “’ .}*]-1 formation without the need to consult the manuals. The net search command
l:l::l.({;lleq the Internet for installable packages, including code from the SJ and the STB.
senrehnes

The findit command provides the broadest possible keyword search for Stata-
lated information. You can obtain details on this command by typing help findit.
. _
il“o find information on weak instruments, for example, type

. findit weak instr

(output omitted )

This finds joint occurrences of keywords beginning with the letters “weak” and the

letters “instr”.

The search and findit commands lead to keyword searches only. A more detailed
search is not restricted to keywords. For example, the hsearch command searches fﬂl
words in the help files (extension .sthlp or .hlp) on your computer, for both official
Stata commands and user-written commands. Unlike the findit command, hsearch
uses a whole word search. For example,

. hsearch weak instrument

(output omitted )

actually leads to more results than hsearch weak instr.

The hsearch command is especially useful if you are unsure whether Stata can
perform a particular task. In that case, use hsearch first, and if the task is not found,
then use findit to see if someone else has developed Stata code for the task.

1.3 Command syntax and operators

Stata command syntax describes the rules of the Stata programming language.

1.3.1 Basic command syntax

The basic command syntax is almost always some subset of

[Pf’eﬁx:] command [varlist] [= exp| [f ] [in ] [weight]

[using filename ] [, options |

—
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The square brackets denote qualifiers that in most instances are optional. Words in
the typewriter font are to be typed into Stata like they appear on the page. Italicized
words are to be substituted by the user, where

e prefiz denotes a command that repeats execution of command or modifies the
input or output of command,

e command denotes a Stata command,

e warlist denotes a list of variable names,
e exp is a mathematical expression,

e weight denotes a weighting expression,
e filename is a filename, and

e options denotes one or more options that apply to command.

The greatest variation across commands is in the available options. Commands
can have many options, and these options can also have options, which are given in
parentheses.

Stata is case sensitive. We generally use lowercase throughout, though occasionally
we use uppercase for model names.

Commands and output are displayed following the style for Stata manuals. For
Stata commands given in the text, the typewriter font is used. For example, for OLS,
we use the regress command. For displayed commands and output, the commands have
the prefix . (a period followed by a space), whereas output has no prefix. For Mata
commands, the prefix is a colon (:) rather than a period. Output from commands that
span more than one line has the continuation prefix > (greater-than sign). For a Stata
or Mata program, the lines within the program do not have a prefix.

1.3.2 Example: The summarize command

The summarize command provides descriptive statistics (e.g., mean, standard deviation)
for one or more variables.

You can obtain the syntax of summarize by typing help summarize. This yields
output including

summarize [varlist] [zf] [m] [weight] [, options]

It follows that, at the minimum, we can give the command without any qualifiers. Unlike
some commands, summarize does not use [= exp] or [using ﬁlename].

As an example, we use a commonly used, illustrative dataset installed with Stata
called auto.dta, which has information on various attributes of 74 new automobiles.
You can read this dataset into memory by using the sysuse command, which accesses
Stata-installed datasets. To read in the data and obtain descriptive statistics, we type

kA

1.3.3 [Example: The regress command 7

. sysuse auto
(1978 Automobile Data)

, summarize

Variable Obs Mean Std. Dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 . 8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

The dataset comprises 12 variables for 74 automobiles. The average price of the au-
tomobiles is $6,165, and the standard deviation is $2,949. The column Obs gives the
number of observations for which data are available for each variable. The make vari-
able has zero observations because it is a string (or text) variable giving the malke of the
automobile, and summary statistics are not applicable to a nonnumeric variable. The
rep78 variable is available for only 69 of the 74 observations.

A more focused use of summarize restricts attention to selected variables and uses
one or more of the available options. For example,

., summarize mpg price weight, separator(1)

Variable Obs Mean Std. Dev. Min Max
mpg 74 21.2973 5.785503 12 41
price 74 6165.257 2949.496 3291 15906
weight 74 3019.459 777.1936 1760 4840

provides descriptive statistics for the mpg, price, and weight variables. The option
separator(1) inserts a line between the output for each variable.

1.3.3 Example: The regress command

The regress command implements OLS regression.

_ You can obtain the syntax of regress by typing help regress. This yields output
including

regress depvar [indepvars] [zf] [m] [weight] [, options]



8 Chapter 1 Stata basics

It follows that, at the minimum, we need to include the variable name for the dependent
variable (in that case, the regression is on an intercept only). Although not explicitly
stated, prefixes can be used. Many estimation commands have similar syntax.

Suppose that we want to run an OLS regression of the mpg variable (fuel economy in
miles per gallon) on price (auto price in dollars) and weight (weight in pounds). The
basic command is simply

. regress mpg price weight

Source SS df MS Number of obs = 74
F(C 2, 71) = 66.85

Model 15965.93249 2 797.966246 Prob > F = 0.0000
Residual 847 .526967 71 11.9369995 R-squared = 0.6531
Adj R-squared = 0.6434

Total 2443.45946 73 33.4720474 Root MSE = 3.455
mpg Coef.  Std. Err. t P>t [95% Conf. Intervall
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42  0.000 ~-.0070489  -.0045862
_cons 39.43966  1.621563 24.32  0.000 36.20635 42.67296

The coeflicient of -.00568175 for weight implies that fuel economy falls by 5.8 miles per
gallon when the car’s weight increases by 1,000 pounds.

A more complicated version of regress that demonstrates much of the command
syntax is the following:

- by foreign: regress mpg price weight if weight < 4000, vce(robust)
(output omitted )

For each value of the foreign variable, here either 0 or 1, this command fits distinct OLS
regressions of mpg on price and weight. The if qualifier limits the sample to cars with
weight less than 4,000 pounds. The vce(robust) option leads to heteroskedasticity-
robust standard errors being used.

Output from commands is not always desired. We can suppress output by using the
quietly prefix. For example,

- quietly regress mpg price weight

The quietly prefix does not require a colon, for historical reasons, even though it is
a command prefix. In this book, we use this prefix extensively to suppress extraneous
output.

The preceding examples used one of the available options for regress. From help
regress, we find that the regress command has the following options: noconstant,
hascons, tsscons, vce (vcelype) , level (#), beta, eform(string), depname (varname),
display_options, noheader, notable, plus, msel, and coeflegend.

1

1.34 Factor variables

3.4 Factor variables

Sctor variables. introduced in Stata 11, enable refe?ence t(.) a set of. indic-a.tor Var.iables
]]:_'lqlp(] on & (nonnegative and integer-valued) Categ;01'1cal variable b}.f ingerting the i. op-
[‘l"{‘l-l'-ﬂll it front of the name of the eategorical variable. Factor variables can be used in
(lie variable list of most Stata conumands.

As an example, consider the variable rep78. This takes five distinct values that are
1.2, 3, 4 and 5, though any other nonnegative integer values will do. Additionally,
‘,;ri;ble rep78 is missing for five observations. We have

1

% Factor variable for rep78 - base category is omitted
. summarize i.rep78

Variable | Obs Mean Std. Dev. Min Max
rep78

2 69 .115942 .3225009 o} 1

3 69 .4347826 .4993602 0 1

4 69 .2608696 .4423259 0 1

5 69 .15694203 .3687494 0 1

The default is to omit one category, that for the lowest value taken by the cate-
gorical variable. For variable rep78, this is the value 1. To see what category is the
base (or omitted) category, add the allbaselevels option after the command (here
summarize). To change the base category, use the ib. operator instead of the i. oper-
ator. For example, the summarize ib2.rep78 command will omit the second category
(here rep78 = 2), and the summarize ib(last).rep78 command will omit the highest-
valued category (here rep78 = 5).

A complete set of indicators, with no category omitted, is obtained using the ibn. op-

erator. For example,

. * Factor variable for rep78 - no category is omitted
. summarize ibn.rep78

Variable Obs Mean Std. Dev. Min Max
rep78

1 69 .0289855 .1689948 0 1

2 69 .1165942 .3225009 0 1

3 69 .4347826 4993602 0 1

4 69 .2608696 .4423259 0 1

5 69 .1594203 .3687494 0 1

A complete set of interactions between two (or more) categorical variables can be
created using the # operator. For example, consider an interaction between categorical
variable rep78 and categorical variable foreign (a binary indicator). We have
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. * Factor variables for interaction between two categorical variables
. summarize i.rep78#i.foreign, allbaselevels

Variable Obs Mean Std. Dev. Min Max
rep78#
foreign
10 69  (base)
11 69  (empty)
20 69 .115942 .3225009 0 1
21 69  (empty)
30 69 .3913043 .4916177 0 1
31 69 .0434783 ,2054251 0 1
40 69 .1304348 .3392485 0 1
41 69 .1304348 .3392485 0 1
50 69 .0289855 ,1689948 0 1
51 69 .1304348 .3392485 0 1

Here the base (omitted) category is rep78 = 1 and foreign = 0 (the lowest-valued joint
category). Additionally, there are zero observations falling into two of the categories:
rep78 = 1 and foreign =1, and rep78 = 2 and foreign = 1.

The ## operator creates a factorial interaction that includes sets of indicator variables
for each of the two categorical variables, in addition to the interactions given by the
# operator. For example, the command summarize i.rep78##i.foreign is equivalent
to the command summarize i.rep78 i.foreign i.rep78#i.foreign.

Factor variables can also be used to create interactions between indicator variables
and continuous regressors. In that case, the prefix ¢. needs to be used to signal that
the interaction is with a continuous variable. For example,

. * Factor variables for interaction between categorical and continuous variables
. summarize i.rep78#c.weight

Variable Obs Mean Std. Dev. Min Max
rep78#

c.weight
1 69 89.85507 527.7129 0 3470
2 69 388.84086 1091.012 [o] 3900
3 69 1434.348 1719.108 0 4840
4 69 748.6957 1348.094 0 4130
5 69 370.2899 870.8548 0 3170

In this continuous interaction example, there is no omitted category—all five possible
values of rep78 are interacted with the continuous variable weight.

Factor variables also permit interaction of continuous variables with continuous vari-
ables. For example, the following performs OLS regression of mpg on price and a
quadratic in weight.

)

1.3.5 Abbreviations, case sensitivity, and wildcards

. * Factor variables for interaction between two continuous variables
. regress mpg price c.weight c.weight#c.weight, noheader

mpg Coef.  Std. Err. t P>t [95% Conf. Interval]
price -.00025697 .0001696 -1.53  0.130 -.000598 .0000786
weight -.016047 .0040403 -3.97 0.000 -.024105 -.0079889
c.weight#
c.weight 1.72e-06 6.71e-07 2.56 0.013 3.79e-07 3.06e-06
_cons 54.66807 6.150716 8.89 0.000 42.40086 66.93529

For more on factor variables, type help factor variables or see [U] 11.4.3 Factor
variables and [U] 25 Working with categorical data and factor variables. To
check whether the regress command, for example, supports factor variables, type the
command help regress and the output below the syntax summary includes a note
that “indepvars may contain factor variables; see fvvarlist.” Some multinomial model
estimation commands do not support factor variables; see section 15.2.5.

1.3.5 Abbreviations, case sensitivity, and wildcards

Commands and parts of commands can be abbreviated to the shortest string of charac-
ters that uniquely identify them, often just two or three characters. For example, we can
shorten summarize to su. For expositional clarity, we do not use such abbreviations in
this book; a notable exception is that we may use abbreviations in the options to graph-
ics commands because these commands can get very lengthy. Not using abbreviations
makes it much easier to read your do-files.

Variable names can be up to 32 characters long, where the characters can be A-Z,
a-z, 0-9, and _ (underscore). Some names, such as in, are reserved. Stata is case
sensitive, and the norm is to use lowercase.

We can use the wildcard * (asterisk) for variable names in commands, provided
there is no ambiguity such as two potential variables for a one-variable command. For
example,

. summarize t*

Variable | Obs Mean Std. Dev. Min Max
trunk 74 13.75676 4,277404 5 23
turn 74 39.64865 4.399354 31 51

provides summary statistics for all variables with names beginning with the letter t.
Where ambiguity may arise, wildcards are not permitted.

(Continued on next page)
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1.3.6 Arithmetic, relational, and logical operators

The arithmetic operators in Stata are + (addition), - (subtraction), * (multiplication),
/ (division), ~ (raised to a power), and the prefix - (negation). For example, to compute
and display —2 x {9/(8 + 2 — 7)}2, which simplifies to —2 x 32, we type

. display -2%(9/(8+2-7))"2
-18

If the arithmetic operation is not possible, or data are not available to perform the
operation, then a missing value denote by . is displayed. For example,

. display 2/0

The relational operators are > (greater than), < (less than), >= (greater than or
equal), <= (less than or equal), == (equal), and != (not equal). These are the obvious
symbols, except that a pair of equal-signs is used for equality, and != denotes not equal.
Relational operators are often used in if qualifiers that define the sample for analysis.

Logical operators return 1 for true and 0 for false. The logical operators are & (and),
| (or), and ! (not). The operator ~ can be used in place of !. Logical operators are
also used to define the sample for analysis. For example, to restrict regression analysis
to smaller less expensive cars, type

+ Tegress mpg price weight if weight <= 4000 & price <= 10000
(output omitted)

The string operator + is used to concatenate two strings into a single, longer string.
The order of evaluation of all operators is ! (or ~), ~, - (negation), /, *, - (subtrac-

tion), +, 1= (or ~=), >, <, <= >= == & and |.

1.3.7 Error messages

Stata produces error messages when a command fails. These messages are brief, but a
fuller explanation can be obtained from the manual or directly from Stata.

For example, if we regress mpg on notthere but the notthere variable does not
exist, we get

. regress mpg notthere

variable notthere not found
r(111);

Here r(111) denotes return code 111. You can obtain further details by clicking on
r(111); if in interactive mode or by typing

. search rc 111

(output omitted )

1.4.1 Writing a do-file 13

1.4 Do-files and log files

For Stata analysis requiring many commands, or requiring lengthy commands, it is best
to collect all the commands into a program (or script) that is stored in a text file called

a do—ﬁle .

In this book, we perform data analysis using a do-file. We assume that the do-file
and, if relevant, any input and output files are in a common directory and that Stata
is executed from that directory. Then we only need to provide the filename rather than
the complete directory structure. For example, we can refer to a file as mus02data.dta
rather than C: \mus\chapter2\mus02data.dta.

1.4.1 Writing a do-file
A do-file is a text file with extension .do that contains a series of Stata commands.

As an example, we write a two-line program that reads in the Stata example dataset
auto.dta and then presents summary statistics for the mpg variable that we already
know is in the dataset. The commands are sysuse auto.dta, clear, where the clear
option is added to remove the current dataset from memory, and summarize mpg. The
two commands are to be collected into a command file called a do-file. The filename
should include no spaces, and the file extension is .do. In this example, we suppose this
file is given the name example.do and is stored in the current working directory.

To see the current directory, type cd without any arguments. To change to another
directory, cd is used with an argument. For example, in Windows, to change to the
directory C:\Program Files\Statall\, we type

. cd "c:\Program Files\Statall"
c:\Program Files\Statall

The directory name is given in double quotes because it includes spaces. Otherwise, the
double quotes are unnecessary.

One way to create the do-file is to start Stata and use the Do-file Editor. Within
Stata, we select Window > Do-file Editor > New Do-file, type in the commands,
and save the do-file.

Alternatively, type in the commands outside Stata by using a preferred text editor.
Ideally, this text editor supports multiple windows, reads large files (datasets or output),
and gives line numbers and column numbers.

The type command lists the contents of the file. We have

. type example.do
sysuse auto.dta, clear
summarize mpg
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1.4.2 Running do-files

You can run (or execute) an already-written do-file by using the Command window.
Start Stata and, in the Command window, change directory (cd) to the directory that
has the do-file, and then issue the do command. We obtain

. do example.do

. 8ysuse auto.dta, clear
(1978 Automobile Data)

. summarize mpg

Variable | Obs Mean Std. Dev. Min Max

mpg I 74 21.2973 5.785503 12 41

end of do-file

where we assume that example.do is in directory C:\Program Files\Statal1\.

An alternative method is to run the do-file from the Do-file Editor. Select Window
> Do-file Editor > New Do-file, and then select File > Open... and the appropriate
file, and finally select Tools > Do. An advantage to using the Do-file Editor is that

you can highlight or select just part of the do-file and then execute this part by selecting
Tools > Do Selection.

You can also run do-files noninteractively, using batch mode. This initiates Stata,
executes the commands in the do-file, and (optionally) exits Stata. The term batch
mode is a throwback to earlier times when each line of a program was entered on a
separate computer card, so that a program was a collection or “batch” of computer
cards. For example, to run example.do in batch mode, double-click on example.do in
Windows Explorer. This initiates Stata and executes the file's Stata commands. You

can also use the do command. (In Unix, you would use the stata -b example.do
command.)

It can be useful to include the set more off command at the start of a do-file so
that output scrolls continuously rather than pausing after each page of output.

1.4.3 Log files

By default, Stata output is sent to the screen. For reproducibility, you should save this
output in a separate file. Another advantage to saving output is that lengthy output
can be difficult to read on the screen; it can be easier to review results by viewing an
output file using a text editor.

A Stata output file is called a log file. Tt stores the commands in addition to the
output from these commands. The default Stata extension for the file is .1log, but you
can choose an alternative extension, such as .txt. An extension name change may be
worthwhile because several other programs, such as INTEX compilers, also create files
with the .log extension. Log files can be read as either standard text or in a special

~
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Grata code called smel (Stata Markup and Control Language). We use te).(t throughout
']'f\i book, because it is easier to read in a text editor. A useful convention can be to
ll-l‘:e the log the same filename as that for the do-file. For example, for example.do, we
S:;Iw:-* the oulput as example.txt.

A log file is created by using the log command.. In a typical analysis, the do-file willl
change over time, in which case the output file will also cbange. The Stata default is

rotect against an existing log being accidentally overwritten. To create a log file in
EZXIt), form named example.txt, the usual command is

. log using example.txt, text replace

The replace option permits the existing version of example.txt, if there is one, to be
overwritten. Without replace, Stata will refuse to open the log file if there is already
a file called example.txt.

In some cases, we may not want to overwrite the existing log, in whi.ch case we
would not specify the replace option. The most likely reason for preserving a log is
that it contains important results, such as those from final analysis. Then it can be
good practice to rename the log after analysis is complete. Thus example.txt might
be renamed example07052008.txt.

When a program is finished, you should close the log file by typing log close.

The log can be very lengthy. If you need a hard copy, you can edit the log to
include only essential results. The text editor you use should use a monospace font such
as Courier New, where each character takes up the same space, so that output table
columns will be properly aligned.

The log file includes the Stata commands, with a dot (.) prefix, and the output.
You can use a log file to create a do-file, if a do-file does not already exist, by deleting
the dot and all lines that are command results (no dot). By this means, you can do
initial work using the Stata GUI and generate a do-file from the session, provided that
you created a log file at the beginning of the session.

1.4.4 A three-step process

Data analysis using Stata can repeatedly use the following three-step process:

1. Create or change the do-file.
2. Execute the do-file in Stata.
3. Read the resulting log with a text editor.

The initial do-file can be written by editing a previously written do-file that is a useful
template or starting point, especially if it uses the same dataset or the same commands
as the current analysis. The resulting log may include Stata errors or estimation results
that lead to changes in the original do-file and so on.

—
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Suppose we have fit several models and now want to fit an additional model. In
Interactive mode, we would type in the new command, execute it, and see the results.

file, and read the new output. Because many Stata programs execute in seconds, this
adds little extra time compared with using interactive mode, and it has the benefit of
having a do-file that can be modified for later use.

1.45 Comments and long lines

Stata do-files can include comments. Thig can greatly increase understanding of
program, which is especially useful if you return to a program and its output a year or
two later. Lengthy single-line comiments can be allowed to span several lines, ensuring

e [or single-line comments, begin the line with an asterisk (*); Stata ignores such
lines.

e For a comment on the same line as a Stata command, use two slaghes (//) after
the Stata command.

e For multiple-line comments, place the commented text between slash-star (/%)
and star-slash (*/).

The Stata default is to view each line as a separate Stata command, where a line
continues until a carriage return (end-of-line or Enter key) is encountered. Some com-
mands, such as those for nicely formatted graphs, can be very long. For readability,
these commands need to Span more than one line. The easiest way to break a line at,

say, the 70th column is by using three slashes (//7) and then continuing the command
on the next line.

* Demonstrate use of comments

* This program reads in System file auto.dta and gets summary statistics
clear // Remove data from memory

* The next code shows how to allow a single command to Span two lines
sysuse ///

auto.dta

summarize

For long eominancds, you can alternatively use the command #delimit command.
This changes the delimiter from the Stata, default, which is a carriage return (i.e., end-
of-line), to a semicolon. This also permits more than one command on a single line.

The following code changes the delimiter from the default to a semicolon and back to
the defanlt:

1.4.6

) .

1.5.1 Scalars

hange delimiter from cr to semicolon and back to cr
* C g

imit ; line;
#dellmlzh;n one command per line and command spans more than one ’
* More

clear; sysuse )
auto.dta; summarilze;

#delimit cr
i imi omment
mmend using /// instead of changing the delimiter because the c
We recor

thod produces more readable code.
me

Different implementations of Stata

; ommands
e the same command syntax; however, ¢
ifferent platforms for Stata share ' s
fhe dlﬁelz acpross versions of Stata. For this book, we use Stz.mta 11. tio ereliSion o
- Chan%ons of Stata will continue to work with our code, we include the v
T vers gat
lecl)flmand near the beginning of the do-file. -
C - . . . . nCOun_
i t limits. A common limit e
i implementations of Stata have dlffereg ' .
Dlﬁefcfr:}tr;rgriory allocated to Stata, which restricts the size of date(lfet that‘f (()::élu p;
. 1 0
teledllil by Stata. The default is small, e.g., 1 megab'yte, SO t}.lat St(z;uta:A Oishgr s
— h {nemory permitting other tasks to run while Stz?,ta is use h dnot o
1600.‘21 l'ucthe size of7matrix which limits the number of variables in the dataset.
imit 18 )

imi i . For example,
You can increase or decrease the limits with the set command

. set matsize 300

C t i 1 i i d tO 300
S he maXill]um numbel Of Varlables 11 an eStlmathn comrinarln
S

i : 1C,
The maximum possible values vary with the version of S.tata. Sm.all Stat}zi,, ?tii?s/ -
Stat /gg or Stata/MP. The help limits command provides details on the (1118 b o
3 * ; »
t}tz ?urrent implementation of Stata. The query and creturn list comma:

the current settings.

1.5 Scalars and matrices

i i rices can store several
Scalars can store a single number or a single string, z.md mat oos can store severnl
numbers or strings as an array. We provide a very brief introduction here,

use of the scalars and matrices in section 1.6.

1.5.1 Scalars

i scalar
A scalar can store a single number or string. You can display the contents of a
by using the display command. | ) .
For example, to store the number 2 x 3 as the scalar a and then display the scalar,
)

we type

A _
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. ¥ Scalars: Example
. scalar a = 2#*3

., scalar b = "2 times 3 = "

. display b a
2 times 3 = 6

One common use of scalars, detailed in section 1.6, is to store the scalar results
of estimation commands that can then be accessed for use in subsequent analysis. In
section 1.7, we discuss the relative merits of using a scalar or a macro to store a scalar
quantity.

1.5.2 Matrices

Stata provides two distinct ways to use matrices, both of which store several numbers or
strings as an array. One way is through Stata commands that have the matrix prefix.
More recently, beginning with version 9, Stata includes a matrix programming language,
Mata. These two methods are presented in, respectively, appendices A and B.

The following Stata code illustrates the definition of a specific 2 x 3 matrix, the
listing of the matrix, and the extraction and display of a specific element of the matrix.

. % Matrix commands: Example
. matrix define A = (1,2,3 \ 4,5,6)

. matrix list A

A[2,3]

cl ¢2 c3
rl i 2 3
r2 4 5 6

. scalar ¢ = A[2,3]

. display c
6

1.6 Using results from Stata commands

One goal of this book is to enable analysis that uses more than just Stata built-in com-
mands and printed output. Much of this additional analysis entails further computations
after using Stata commands.

1.6.1 Using results from the r-class command summarize

The Stata commands that analyze the data but do not estimate parameters are r-class
commands. All r-class commands save their results in r(). The contents of r() vary
with the command and are listed by typing return list.

~

1.6.2 Using results from the e-class command regress

As an example, we list the results stored after using summarize:

% Tllustrate use of return list for r-class command summarize
. summarize mpg

Variable l Obs Mean Std. Dev. Min Max
mpg \ 74 21.2973 5.785503 12 41
. return list
scalars:
r(N) = 74
r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141
r(min) = 12
r(max) = 41
r(sum) = 1576

There are eight separate results stored as Stata scalars with the names r (), r (sum-w),
..., r(sum). These are fairly obvious aside from r(sumw), which gives the sum of the
weights. Several additional results are returned if the detail option to summarize is
used; see [R] summarize.

The following code calculates and displays the range of the data:

. * Illustrate use of r()
. quietly summarize mpg

. scalar range = r(max) - r(min)

. display "Sample range = " range
Sample range = 29

The results in r() disappear when a subsequent r-class or e-class command is exe-
cuted. We can always save the value as a scalar. It can be particularly useful to save
the sample mean.

. * Save a result in r() as a scalar
. scalar mpgmean = r(mean)

1.6.2 Using results from the e-class command regress

Estimation commands are e-class commands (or estimation-class commands), such as
regress. The results are stored in e(), the contents of which you can view by typing
ereturn list.

(Continued on next page)
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A leading example is regress for OLS regression. For example, after typing

. regress mpg price weight

Source S8 af MS Number of obs = 74
F( 2, 71) = 66.85

Model 1695.93249 2 797.966246 Prob > F = 0.0000
Residual 847 .526967 71 11.9369995 R-squared = 0.6531
Adj R-squared = 0.6434

Total 2443.45946 73 33.4720474 Root MSE =  3.455
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
price -.0000935  .0001627 -0.57 0.567 -.000418 .0002309
weight -.00681756  .0006175 -9.42  0.000 -.0070489  -.0045862
_cons 39.43966  1.621563 24.32 0.000 36.20635 42.67296

ereturn list yields

. * ereturn list after e-class command regress
. ereturn list

scalars:
e(N) = 74
e(df_m) = 2
e(df_r) = 71
e(F) = 66.84814256414501
e(r2) = .6531446579233134
e(rmse) = 3.454996314099513
e(mss) = 1595.932492798133
e(rss) = 847.5269666613265
e(r2_a) = .6433740849070687
e(11l) = -195.2169813478502
e(11_0) = -234.3943376482347
e(rank) = 3
macros:
e(cmdline) : "regress mpg price weight"
e(title) : "Linear regression"
e(marginsok) : "XB default"
e(vce) : "ols"
e(depvar) : "mpg"
e(cmd) : “"regress"
e(properties) : "b V"
e(predict) "regres_p"
e(model) "ols"
e(estat_cmd) : "regress_estat"
matrices:
e(b) 1x3
e(V) 3x3
functions:
e(sample)

The key numeric output in the analysis-of-variance table is stored as scalars. As
an example of using scalar results, consider the calculation of R2. The model sum of
squares is stored in e (mss), and the residual sum of squares is stored in e (rss), so that
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1.7.

+ Use of e() where scalar
" gcalar r2 = e(mss)/(e(mss)+e(rss))

display "r-squared = " r2
r-squared = .65314466

The result is the same as the 0.6531 given in the original regression output.

The remaining numeric output is stored as matrices. Here we present methods to
extract sealars from these matrices and manipulate them. Specifically, we obta‘min th.e OLS
coefticient of price from the 1 %3 matrix e(b), the estimated variance of this estimate
[rom the 3 x 3 matrix e(V), and then we form the ¢ statistic for testing whether the

coeflicient of price is zerot

. % Use of e() where matrix
. matrix best = e(b)

. scalar bprice = best[1,1]

. matrix Vest = e(V)

Vest[1,1]

. scalar tprice = bprice/sqrt(Vprice)

. display "t statistic for HO: b_price = 0 is " tprice
t statistic for HO: b_price = 0 is -.57468079

. scalar Vprice

The result is the same as the —0.57 given in the original regression output.

The results in e() disappear when a subsequent e-class command is executed. How-
ever, you can save the results by using estimates store, detailed in section 3.4.4.

1.7 Global and local macros

A macro is a string of characters that stands for another string of characters. For
example, you can use the macro x1ist in place of "price weight". This substitution
can lead to code that is shorter, easier to read, and that can be easily adapted to similar
problems.

Macros can be global or local. A global macro is accessible across Stata do-files or
throughout a Stata session. A local macro can be accessed only within a given do-file
or in the interactive session.

1.7.1 Global macros

Global macros are the simplest macro and are adequate for many purposes. We use
global macros extensively throughout this book.

Global macros are defined with the global command. To access what was stored in
a global macro, put the character $ immediately before the macro name. For example,
consider a regression of the dependent variable mpg on several regressors, where the
global macro x1ist is used to store the regressor list.

J..Ili--____ S
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. % Global macro definition and use
. global xlist price weight

. regress mpg $xlist, noheader // $ prefix is mecessary
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]
price -.0000935 .0001627 -0.57 0.567 -.000418 .0002309
weight -.00568175 .0006175 -9.42 0.000 -.0070489 -.00456862
_cons 39.43966 1.621563 24.32 0.000 36.20635 42.67296

Global macros are frequently used when fitting several different models with the same
regressor list because they ensure that the regressor list is the same in all instances and
they make it easy to change the regressor list. A single change to the global macro
changes the regressor list in all instances.

A second example might be where several different models are fit, but we want to
hold a key parameter constant throughout. For example, suppose we obtain standard
errors by using the bootstrap. Then we might define the global macro nbreps for the
number of bootstrap replications. Exploratory data analysis might set nbreps to a
small value such as 50 to save computational time, whereas final results set nbreps to
an appropriately higher value such as 400.

A third example is to highlight key program parameters, such as the variable used
to define the cluster if cluster—robust standard errors are obtained. By gathering all
such global macros at the start of the program, it can be clear what the settings are for
key program parameters.

1.7.2 Local macros

Local macros are defined with the local command. To access what was stored in the
local macro, enclose the macro name in single quotes. These quotes differ from how
they appear on this printed page. On most keyboards, the left quote is located at the
upper left, under the tilde, and the right quote is located at the middle right, under the
double quote.

As an example of a local macro, consider a regression of the mpg variable on several
regressors. We define the local macro xlist and subsequently access its contents by
enclosing the name in single quotes as “xlist".

. * Local macro definition and use
. local xlist "price weight"

. regress mpg “xlist”, noheader // single quotes are necessary
mpg Coef.  Std. Err. t P>|t] [95% Conf. Intervall
price -.0000935 .0001627 -0.57  0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0,000 -.0070489  -.0045862
_cons 39.43966  1.621563 24.32  0.000 36.20635 42.67296

1.7.3 Sealar or macro? N

The donble quotes used in defining the local macro as a string are unnecessary, which
l:\l' we did not use them in the earlier global macro example. Using the double quotes
- why we dic s X )
I? s enuphasize that a text substitntion has been made. The single quotes in subsequent
iloes &

JSerences 10 ¥1ist are necessary.
jelerence

We could also use a macro to define the dependent variable. For example,

% Local macro definition without double quotes
. local y mpg
regress 'y~ "xlist”, noheader

mpg Coef.  Std. Err. t P>1t] [95% Conf. Interval]
price -.0000935 .0001627 -0.57  0.567 -.000418 .0002309
weight -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862
_cons 39.43966 1.621563 24,32 0.000 36.20635 42.67296

Note that here “y~ is not a variable with N observations. Instead, it is the string mpg.
The regress command simply replaces “y~ with the text mpg, which in turn denotes a
variable that has N observations.

We can also define a local macro through evaluation of a function. For example,

. % Local macro definition through function evaluation
, local z = 2+2

. display "z~
4

leads to ‘z’ being the string 4. Using the equality sign when defining a macro causes the
macro to be evaluated as an expression. For numerical expressions, using the equality
sign stores the result of the expression and not the characters in the expression itself
in the macro. For string assignments, it is best not to use the equality sign. This is
especially true when storing lists of variables in macros. Strings in Stata expressions
can contain only 244 characters, fewer characters than many variable lists. Macros
assigned without an equality sign can hold 165,200 characters in Stata/IC and 1,081,511
characters in Stata/MP and Stata/SE.

Local macros are especially useful for programming in Stata; see appendix A. Then,
for example, you can use "y~ and “x~ as generic notation for the dependent variable
and regressors, making the code easier to read.

Local macros apply only to the current program and have the advantage of no
potential conflict with other programs. They are preferred to global macros, unless
there is a compelling reason to use global macros.

1.7.3  Scalar or macro?

A macro can be used in place of a scalar, but a scalar is simpler. Furthermore, [P] scalar
points out that using a scalar will usually be faster than using a macro, because a macro

j—
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requires conversion into and out of internal binary representation. This reference also
gives an example where macros lead to a loss of accuracy because of these conversions.

One drawback of a scalar, however, is that the scalar is dropped whenever clear
all is used. By contrast, a macro is still retained. Consider the following example:

. * Scalars disappear after clear all but macro does not
. global b 3

- local c 4
. scalar d = 5
. clear

. display $b _skip(3) "¢~ // display macros
3 4

display d // display the scalar

. clear all

. display $b _skip(3) "¢~ // display macros
3 4

. display d // display the scalar
d not found
r(111);

Here the scalar d has been dropped after clear all, though not after clear.

We use global macros in this text because there are cases in which we want the
contents of our macros to be accessible across do-files. A second reason for using global
macros is that the required $ prefix makes it clear that a global parameter is being used.

1.8 Looping commands

Loops provide a way to repeat the same command many times. We use loops in a
variety of contexts throughout the book.

Stata has three looping constructs: foreach, forvalues, and while. The foreach
construct loops over items in a list, where the list can be a list of variable names (possibly
given in a macro) or a list of numbers. The forvalues construct loops over consecutive
values of numbers. A while loop continues until a user-specified condition is not met.

We illustrate how to use these three looping constructs in creating the sum of four
variables, where each variable is created from the uniform distribution. There are many
variations in the way you can use these loop commands; see [P] foreach, [P] forvalues,
and [P] while.

The generate command is used to create a new variable. The runiform() function
provides a draw from the uniform distribution. Whenever random numbers are gener-
ated, we set the seed to a specific value with the set seed command so that subsequent
runs of the same program lead to the same random numbers being drawn. We have, for
example,

1.8.1 The foreach loop

. * Make artificial dataset of 100 observations on 4 uniform variables
, clear

. set obs 100
obs was 0, now 100

. set seed 10101

. generate xlvar = runiform()
. generate x2var = runiform()
. gemnerate x3var = runiform()

. generate xd4var = runiform()

We want to sum the four variables. The obvious way to do this is

. % Manually obtain the sum of four variables
. generate sum = xlvar + x2var + x3var + x4var

. summarize sum
Variable | Obs Mean Std. Dev. Min Max

sum } 100 2.093172 .594672 .6337163  3.204005

We now present several ways to use loops to progressively sum these variables.
Although only four variables are considered here, the same methods can potentially be
applied to hundreds of variables.

1.8.1 The foreach loop

We begin by using foreach to loop over items in a list of variable names. Here the list
is x1var, x2var, x3var, and x4var.

The variable ultimately created will be called sum. Because sum already exists, we
need to first drop sum and then generate sum=0. The replace sum=0 command collapses
these two steps into one step, and the quietly prefix suppresses output stating that
100 observations have been replaced. Following this initial line, we use a foreach loop
and additionally use quietly within the loop to suppress output following replace.
The program is

. % foreach loop with a variable list
. quietly replace sum = 0O

. foreach var of varlist xlvar x2var x3var x4var {

2. quietly replace sum = sum + ~var~
3.}
. summarize sum
Variable | Obs Mean Std. Dev, Min Max
sum | 100 2.093172 594672 .5337163  3.204005

The result is the same as that obtained manually.

The preceding code is an example of a program (see appendix A) with the { brace
appearing at the end of the first line and the } brace appearing on its own at the last

-
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line of the program. The numbers 2. and 3. do not actually appear in the program but

are produced as output. In the foreach loop, we refer to each variable in the variable . summarize sum

list varlist by the local macro named var, so that ~var~ with single quotes is needed Variable | Obs Mean Std. Dev. Min Max

in subsequent uses of var. The choice of var as the local macro name is arbitrary and |

other names can be used. The word varlist is necessary, though types of lists other == 100 2.093172 jOPAGH2 " JBSSHES 19205005

than variable lists are possible, in which case we use numlist, newlist, global, or

local; see [P] foreach. 184 The continue command

An attraction of using a variable list is that the method can be applied when
variable names are not sequential. For example, the variable names could have been
incomehusband, incomewife, incomechildl, and incomechild?2.

The continue command provides a way to prematurely cease execution of the current
loop iteration. This may be useful if, for example, the loop includes taking the log of
4 mumber and we want o skip this iteration if the number is negative. Execution then

pesuimes at the start of the next loop iteration, unless the break option is used. For
1.8.2 The forvalues loop Jetails, see help continue.

A forvalues loop iterates over consecutive values. In the following code, we let the
index be the local macro i, and i~ with single quotes is needed in subsequent uses of 19 Some useful commands

i. The program ) ‘
We have mentioned only a few Stata commands. See [U] 27.1 43 commands for a list
. * forvalues loop to create a sum of variables of 43 commands that everyone will find useful.
. quietly replace sum = 0
. forvalues i = 1/4 {

2. quietly replace sum = sum + x i var 1_10 Template dO-fIle
3.}
. summarize sum The following do-file provides a template. It captures most of the features of Stata
Variable | Obs Mean  Std. Dev. Min Max presented in this chapter, aside from looping commands.
sum I 100 2.093172 ,694672  .5337163  3.204005 % 1. Program name
* musOlp2template.do written 2/15/2008 is a template do-file
produces the same result. % 2. Write output to a log file
. . . log using musOlp2template.txt, text replace
The choice of the name i for the local macro was arbitrary. In this example, the * 3. Stata version
increment is one, but you can use other increments. For example, if we use forvalues version 11 // so will still run in a later version of Stata

* 4. Program explanation
* This illustrative program creates 100 uniform variates
* 5. Change Stata default settings - two examples are given

i = 1(2)11, then the index goes from 1 to 11 in increments of 2.

H set more off // scroll screen output by at full speed
1.8.3 The while |00p set mem 20m // set aside 20 mb for memory space
. . . . . * 6. Set program parameters using global macros
A while loop continues until a condition is no longer met. This method is used when global numobs 100
foreach and forvalues cannot be used. For completeness, we apply it to the summing local seed 10101
example local xlist xvar
. * 7. Generate data and summarize

set obs $numobs

In the following code, the local macro i is initialized to 1 and then incremented by 8 e ———

1 in each loop; looping continues, provided that i < 4. generate xvar = runiform()
generate yvar = xvar~2
. * While loop and local macros to create a sum of variables summarize
. quietly replace sum = 0 * 8. Demonstrate use of results stored in r()
local i 1 S?mmarize xvar
a display "Sample range = " r(max)-r{(min)
. while "i~ <= 4 { regress yvar ~xlist~
2. quietly replace sum = sum + X i’var scalar r2 = e(mss)/(e(mss)+e(rss))
3. S local i = "i” + 1 display "r-squared = " r2
4.
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* 9. Close output file and exit Stata
log close
exit, clear

1.11 User-written commands

We make extensive use of user-written commands. These are freely available ado-files
(see section A.2.8) that are easy to install, provided you are connected to the Internet
and, for computer lab users, that the computer lab places no restriction on adding
components to Stata. They are then executed in the same way as Stata commands.

As an example, consider instrumental-variables (IV) estimation. In some cases, we
know which user-written commands we want. For example, a leading user-written
command for TV is ivreg2, and we type findit ivreg2 to get it. More generally, we
can type the broader command

. findit instrumental variables
(output omitted)

This gives information on IV commands available both within Stata and packages avail-
able on the web, provided you are connected to the Internet.

Many entries are provided, often with several potential user-written commands and
several versions of a given user-written command. The best place to begin can be a
recent Stata Journal article because this code is more likely to have been closely vetted
for accuracy and written in a way suited to a range of applications. The listing from
the findit command includes

8J-7-4 st0030_3 . . . . Enhanced routines for IV/GMM estimation and testing
............. C. F. Baum, M. E. Schaffer, and S. Stillman
(help ivactest, ivendog, ivhettest, ivreg2, ivreset,

overid, ranktest if installed)

Q4/07  8J 7(4):465--506

extension of IV and GMM estimation addressing hetero-

skedasticity- and autocorrelation-consistent standard

errors, weak instruments, LIML and k-class estimation,

tests for endogeneity and Ramsey’s regression

specification-error test, and autocorrelation tests

for IV estimates and panel-data IV estimates

The entry means that it is the third revision of the package (st0030_3), and the package
is discussed in detail in Stata Journal, volume 7, number 4 (SJ-7-4).

By left-clicking on the highlighted text st0030_3 on the first line of the entry, you will
see a new window with title, description/author(s), and installation files for the package.
By left-clicking on the help files, you can obtain information on the commands. By left-
clicking on the (click here to install), you will install the files into an ado-directory.

| 0

1.12 Stata resources

1.13 Exercises

For first- time users. [GS] Getting Started with Stata is very helpful, along with analyzing
an example dataset such as auto.dta interactively in Stata. The next source is [U] Users

Chiiele, especially the early chapters.

1.13 Exercises

1. Find information on the estimation method clogit using help, search, findit,
and hsearch. Comment on the relative usefulness of these search commands.

9. Download the Stata example dataset auto.dta. Obtain summary statistics for
mpg and weight according to whether the car type is foreign (use the by foreign:
prefix). Comment on any differences between foreign and domestic cars. Then
regress mpg on weight and foreign. Comment on any difference for foreign
cars.

3. Write a do-file to repeat the previous question. This do-file should include a log
file. Run the do-file and then use a text editor to view the log file.

4. Using auto.dta, obtain summary statistics for the price variable. Then use the
results stored in r () to compute a scalar, cv, equal to the coeflicient of variation
(the standard deviation divided by the mean) of price.

5. Using auto.dta, regress mpg on price and weight. Then use the results stored

in e() to compute a scalar, r2adj, equal to R2. The adjusted R? equals R? — (1 —
R?*)(k—1)/(N — k), where N is the number of observations and k is the number of
regressors including the intercept. Also use the results stored in e() to calculate
a scalar, tweight, equal to the ¢ statistic to test that the coefficient of weight is
Zero.

6. Using auto.dta, define a global macro named varlist for a variable list with mpg,
price, and weight, and then obtain summary statistics for varlist. Repeat this
exercise for a local macro named varlist.

7. Using auto.dta, use a foreach loop to create a variable, total, equal to the sum
of headroom and length. Confirm by using summarize that total has a mean
equal to the sum of the means of headroom and length.

8. Create a simulated dataset with 100 observations on two random variables that
are each drawn from the uniform distribution. Use a seed of 12345. In theory,
these random variables have a mean of 0.5 and a variance of 1/12. Does this
appear to be the case here?
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2 Data management and graphics

2.1 Introduction

The starting point of an empirical investigation based on microeconomic data is the col-
jection and preparation of a relevant dataset. The primary sources are often government,
gurveys and administrative data. We assume the Tesearcher has such a primary dataset
and do not address issues of survey design and data collection. Even given primary
data, it is rare that it will be in a form that is exactly what is required for ultimate

analysis.

The process of transforming original data to a form that is suitable for econometric
analysis is referred to as data management. This is typically a time-intensive task that
has important implications for the quality and reliability of modeling carried out at the
next stage.

This process usually begins with a data file or files containing basic information
extracted from a census or a survey. They are often organized by data record for a
sampled entity such as an individual, a household, or a firm. Each record or observation
is a vector of data on the qualitative and quantitative attributes of each individual.
Typically, the data need to be cleaned up and recoded, and data from multiple sources
may need to be combined. The focus of the investigation might be a particular group
or subpopulation, e.g., employed women, so that a series of criteria need to be used
to determine whether a particular observation in the dataset is to be included in the
analysis sample.

In this chapter, we present the tasks involved in data preparation and management.
These include reading in and modifying data, transforming data, merging data, checking
data, and selecting an analysis sample. The rest of the book focuses on analyzing a given
sample, though special features of handling panel data and multinomial data are given
in the relevant chapters.

2.2 Types of data

All data are ultimately stored in a computer as a sequence of Os and 1s because comput-
ers operate on binary digits, or bits, that are either 0 or 1. There are several different
ways to do this, with potential to cause confusion.

31
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2.2.1 Text or ASCII data

A standard text format is ASCII, an acronym for American Standard Code for Infor-
mation Interchange. Regular ASCII represents 27 = 128 and extended ASCII represents
28 — 256 different digits, letters (uppercase and lowercase), and common symbols and
punctuation marks. In either case, eight bits (called a byte) are used. As examples, 1
is stored as 00110001, 2 is stored as 00110010, 3 is stored as 00110011, A is stored as
01010001, and a is stored as 00110001. A text file that is readable on a computer screen
is stored in ASCII.

A leading text-file example is a spreadsheet file that has been stored as a “comma-
separated values” file, usually a file with the .csv extension. Here a comma is used to
separate each data value; however, more generally, other separators can be used.

Text-file data can also be stored as fixed-width data. Then no separator is needed
provided we use the knowledge that, say, columns 1-7 have the first data entry, columns
8-9 have the second data entry, and so on.

Text data can be numeric or nonnumeric. The letter a is clearly nonnumeric, but
depending on the context, the number 3 might be numeric or nonnumeric. For example,
the number 3 might represent the number of doctor visits (numeric) or be part of a street
address, such as 3 Main Street (nonnumeric).

2.2.2 Internal numeric data

When data are numeric, the computer stores them internally using a format different
from text to enable application of arithmetic operations and to reduce storage. The
two main types of numeric data are integer and floating point. Because computers work
with 0s and 1s (a binary digit or bit), data are stored in base-2 approximations to their
base-10 counterparts.

For integer data, the exact integer can be stored. The size of the integer stored
depends on the number of bytes used, where a byte is eight bits. For example, if one
byte is used, then in theory 28 = 256 different integers could be stored, such as —127,
—126, ..., 127, 128.

Noninteger data, or often even integer data, are stored as floating-point data. Stan-
dard floating-point data are stored in four bytes, where the first bit may represent the
sign, the next 8 bits may represent the exponent, and the remaining 23 bits may rep-
resent the digits. Although all integers have an exact base-2 representation, not all
base-10 numbers do. For example, the base-10 number 0.1 is 0.00011 in base 2. For this
reason, the more bytes in the base-2 approximation, the more precisely it approximates
the base-10 number. Double-precision floating-point data use eight bytes, have about
16 digits precision (in base 10), and are sufficiently accurate for statistical calculations.
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Stata has the numeric storage types listed in table 2.1: three are integer and two
are floating point.

Table 2.1. Stata’s numeric storage types

Storage type Bytes Minimum Maximum
byte 1 —127 100
int 2 —32,767 32,740
long 4 —2,147, 483, 647 2,147,483,620
float 4 —1.70141173319 x 103  1.70141173319 x 103
double 8 —8.9984656743 x 10307 8.9984656743 x 1037

These internal data types have the advantage of taking fewer bytes to store the
same amount of data. For example, the integer 123456789 takes up 9 bytes if stored
as text but only 4 bytes if stored as an integer (long) or floating point (float). For
large or long numbers, the savings can clearly be much greater. The Stata default is for
floating-point data to be stored as float and for computations to be stored as double.

Data read into Stata are stored using these various formats, and Stata data files
(.dta) use these formats. One disadvantage is that numbers in internal-storage form
cannot be read in the same way that text can; we need to first reconvert them to a text
format. A second disadvantage is that it is not easy to transfer data in internal format
across packages, such as transferring Excel’s .x1s to Stata’s .dta, though commercial
software is available that transfers data across leading packages.

It is much easier to transfer data that is stored as text data. Downsides, however,
are an increase in the size of the dataset compared with the same dataset stored in
internal numeric form, and possible loss of precision in converting floating-point data.
to text format.

2.2.3 String data

Nonnumeric data in Stata are recorded as strings, typically enclosed in double quotes,
such as “3 Main Street”. The format command str20, for example, states that the data
should be stored as a string of length 20 characters.

In this book, we focus on numeric data and seldom use strings. Stata has many com-
mands for working with strings. Two useful commands are destring, which converts
string data to integer data, and tostring, which does the reverse.

2.2.4  Formats for displaying numeric data

Stata output and text files written by Stata format data for readability. The format is
automatically chosen by Stata but can be overridden.

y—




34 Chapter 2 Data management and graphics

The most commonly used format is the £ format, or the fixed format. An example
is %7 .2f, which means the number will be right-justified and fill 7 columns with 2 digits
after the decimal point. For example, 123.321 is represented as 123.32.

The format type always begins with %. The default of right-justification is replaced
by left-justification if an optional - follows. Then follows an integer for the width
(number of columns), a period (.), an integer for the number of digits following the
decimal point, and an e or £ or g for the format used. An optional ¢ at the end leads
to comma format.

The usual format is the f format, or fixed format, e.g., 123.32. The e, or exponential,
format (scientific notation) is used for very large or small numbers, e.g., 1.23321e+02.
The g, or general format, leads to e or f being chosen by Stata in a way that will
work well regardless of whether the data are very large or very small. In particular, the
format %#. (#-1)g will vary the number of columns after the decimal point optimally.
For example, %8.7g will present a space followed by the first six digits of the number
and the appropriately placed decimal point.

2.3 Inputting data

The starting point is the computer-readable file that contains the raw data. Where
large datasets are involved, this is typically either a text file or the output of another
computer program, such as Excel, SAS, or even Stata.

2.3.1 General principles

For a discussion of initial use of Stata, see chapter 1. We generally assume that Stata
is used in batch mode.

To replace any existing dataset in memory, you need to first clear the current dataset.

. % Remove current dataset from memory
. clear

This removes data and any associated value labels from memory. If you are reading in
data from a Stata dataset, you can instead use the clear option with the use command.
Various arguments of clear lead to additional removal of Mata functions, saved results,
and programs. The clear all command removes all these.

Some datasets are large. In that case, we need to assign more memory than the
Stata default by using the set memory command. For example, if 100 megabytes are
needed, then we type

. * Set memory to 100 mb
. set memory 100m

r
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Various commands are used to read in data, depending on the format of the file
being read. These commands, discussed in detail in the rest of this section, include the

following:

o use to read a Stata dataset (with extension .dta)
e edit and input to enter data from the keyboard or the Data Editor

e insheet to read comma-separated or tab-separated text data created by a spread-
sheet

e infile to read unformatted or fixed-format text data

e infix to read formatted data

As soon as data are inputted into Stata, you should save the data as a Stata dataset.
For example,

. * Save data as a Stata dataset
. save mydata.dta, replace

(output omitted )

The replace option will replace any existing dataset with the same name. If you do
not want this to happen, then do not use the option.

To check that data are read in correctly, list the first few observations, use describe,
and obtain the summary statistics.

. % Quick check that data are read in correctly
. list in 1/5 // list the first five observations
(output omitted )

. describe // describe the variables
(output omitted)

. summarize // descriptive statistics for the variables
(output omitted)

Examples illustrating the output from describe and summarize are given in sec-
tions 2.4.1 and 3.2.

2.3.2 Inputting data already in Stata format

Data in the Stata format are stored with the .dta extension, e.g., mydata.dta. Then
the data can be read in with the use command. For example,

. * Read in existing Stata dataset
. use c:\research\mydata.dta, clear

The clear option removes any data currently in memory, even if the current data have
not been saved, enabling the new file to be read in to memory.

j—
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If Stata is initiated from the current directory, then we can more simply type

. * Read in dataset in current directory
. use mydata.dta, clear

The use command also works over the Internet, provided that your computer is con-
nected. For example, you can obtain an extract from the 1980 U.S. Census by typing

- * Read in dataset from an Internet web site
. use http://www.stata—press.com/data/ril/census.dta, clear
(1980 Census data by state)

. clear

2.3.3 Inputting data from the keyboard

The input command enables data to be typed in from the keyboard. It assumes that
data are numeric. If instead data are character, then input should additionally define
the data as a string and give the string length. For example,

- * Data input from keyboard
- input str20 name age female income

name age female income
"Barry" 25 0 40.990
"Carrie" 30 1 37.000
"Gary" 31 0 48.000
end

B wWN

The quotes here are not necessary; we could use Barry rather than "Barry". If the
name includes a space, such as "Barry Jr", then double quotes are needed; otherwise,

Barry would be read as a string, and then Jr would be read as a number, leading to a
program error.

To check that the data are read in correctly, we use the list command. Here we
add the clean option, which lists the data without divider and separator lines.

. list, clean

name age female income

1.  Barry 25 0 40.99
2. Carrie 30 1 37
3, Gary 31 0 48

In interactive mode, you can instead use the Data Editor to type in data (and to
edit existing data).

2.3.4 Inputting nontext data

By nontext data, we mean data that are stored in the internal code of a software package
other than Stata. It is easy to establish whether a file is a nontext file by viewing the

file using a text editor. If strange characters appear, then the file is a nontext file. An
example is an Excel .x1s file.
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Stata supports several special formats. The fdause command reads SAS XPORT

isport format files; the haver command reads Haver Analytics database files; the
I;:,L command reads Open Database Connectivity (ODBC) data files; and the xmluse
o :

y(ll'l”““'“d reads XML files.

Other formats such as an Excel .x1s file cannot be read .by Stata. One solution is to

. thie software that created the data to write the data out into one of the readable text

- al files diseussed below, such as a comma-separated values text file. For example,

!m‘:"l—l we an Excel worksheet as a .esv file. A second solution is to purchase software

.“lljhi:‘; (;|'}'l.l.f'[.l'8.lI:-I[.t'-'.l' that will change data from one format to another. For conversion
5 s St

prOZrams, o http://www.ats.ucla.edu/stat /Stata/faq/convert_pkg.htm.
OIS,

2.3.5 Inputting text data from a spreadsheet

The insheet command reads data that are saved by a spreadsheet or database program
as comma-separated or tab-separated text data. For example, mus02filel.csv, a file
with comma-separated values, has the following data:

name,age,female, income
Barry,25,0,40.990
Carrie,30,1,37.000
Gary,31,0,48.000

To read these data, we use insheet. Thus

. * Read data from a csv file that includes variable names using insheet
. clear

. insheet using mus02filel.csv
(4 vars, 3 obs)

. list, clean

name age female  income

1, Barry 25 0 40.99
2. Carrie 30 i 37
3. Gary 31 ] 48

Stata automatically recognized the name variable to be a string variable, the age and
female variables to be integer, and the income variable to be floating point.

A major advantage ol insheet is that it can read in a text file that includes variable
names as well as data, making mistakes less likely. There are some limitations, however.
The insheet command is restricted to files with a single observation per line. And the
data must be comma-separated or tab-separated, but not both. It cannot be space-
separated, but other delimiters can be specified by using the delimiter option.

The first line with variable names is optional. Let mus02file2.csv be the same as
the original file, except without the header line:

Barry,25,0,40.990
Carrie,30,1,37.000
Gary,31,0,48.000

-
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The insheet command still works. By default, the variables read in are given the names
vl, v2, v3, and v4. Alternatively, you can assign more meaningful names in insheet.
For example,

. * Read data from a csv file without variable names and assign names
. clear

. insheet name age female income using mus02file2.csv
(4 vars, 3 obs)

2.3.6 Inputting text data in free format

The infile command reads free-format text data that are space-separated, tab-
separated, or comma-separated.

We again consider mus02file2.csv, which has no header line. Then

. * Read data from free-format text file using infile
. clear

. infile str20 name age female income using mus02file2.csv
(3 observations read)

. list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

By default, infile reads in all data as numbers that are stored as floating point. This
causes obvious problems if the original data are string. By inserting str20 before name,
the first variable is instead a string that is stored as a string of at most 20 characters.

For infile, a single observation is allowed to span more than one line, or there can
be more than one observation per line. Essentially every fourth entry after Barry will
be read as a string entry for name, every fourth entry after 25 will be read as a numeric
entry for age, and so on.

The infile command is the most flexible command to read in data and will also
read in fixed-format data.

2.3.7 Inputting text data in fixed format

The infix command reads fixed-format text data that are in fixed-column format. For
example, suppose mus02file3.txt contains the same data as before, except without
the header line and with the following fixed format:

Barry 250 40.990
Carrie 301 37.000
Gary 310 48.000

Here columns 1-10 store the name variable, columns 11-12 store the age variable,
column 13 stores the female variable, and columns 1420 store the income variable.
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Note that a special feature of fixed-format data is that there need be no separator
petween data entries, For example, for the first observation, the sequence 250 is not
age of 250 but is instead two variables: age = 25 and female = 0. It is easy to make
crrors when reading fixed-lormat data,

To use infix, we need to define the columns in which each entry appears. There
are number of ways to do this. For example,

. * Read data from fixed-format text file using infix
. clear

. infix str20 name 1-10 age 11-12 female 13 income 14-20 using mus02file3.txt
(3 observations read)

. list, clean

name age female income

1. Barry 25 0 40.99
2. Carrie 30 1 37
3. Gary 31 0 48

Gimilarly to infile, we include str20 to indicate that name is a string rather than a
number.

A single observation can appear on more than one line. Then we use the symbol
/ to skip a line or use the entry 2:, for example, to switch to line 2. For example,
suppose mus02filed.txt is the same as mus02file3. txt, except that income appears
on a separate second line for each observation in columns 1-7. Then

. * Read data using infix where an observation spans more than one line
. clear

. infix str20 name 1-10 age 11-12 female 13 2: income 1-7 using mus02file4.txt
(3 observations read)

2.3.8 Dictionary files

For more complicated text datasets, the format for the data being read in can be stored
in a dictionary file, a text file created by a word processor, or editor. Details are provided
in [D] infile (fixed format). Suppose this file is called mus02dict.dct. Then we simply
type

. * Read in data with dictionary file
. infile using musO2dict

where the dictionary file mus02dict.dct provides variable names and formats as well
as the name of the file containing the data.

2.3.9 Common pitfalls

It can be surprisingly difficult to read in data. With fixed-format data, wrong column
alignment leads to errors. Data can unexpectedly include string data, perhaps with
embedded blanks. Missing values might be coded as NA, causing problems if a nu-
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meric value is expected. An observation can span several lines when a single line was
erroneously assumed.

It is possible to read a dataset into Stata without Stata issuing an error message;
no error message does not mean that the dataset has been successfully read in. For
example, transferring data {rom one computer type to another, such as a file transfer
using File Transfer Protocol (FTP), can lead to an additional carriage return, or Enter,
being typed at the end of each line. Then infix reads the dataset as containing one
line of data, followed by a blank line, then another line of data, and so on. The blank
lines generate extraneous observations with missing values.

You should always perform checks, such as using list and summarize. Always view
the data before beginning analysis.

2.4 Data management

Once the data are read in, there can be considerable work in cleaning up the data, trans-
forming variables, and selecting the final sample. All data-management tasks should
be recorded, dated, and saved. The existence of such a record makes it easier to track
changes in definitions and eases the task of replication. By far, the easiest way to do
this is to have the data-management manipulations stored in a do-file rather than to
use commands interactively. We assume that a do-file is used.

2.4.1 PSID example

Data management is best illustrated using a real-data example. Typically, one needs
to download the entire original dataset and an accompanying document describing the
dataset. For some major commonly used datasets, however, there may be cleaned-up
versions of the dataset, simple data extraction tools, or both.

Here we obtain a very small extract from the 1992 Individual-Level data from the
Panel Study of Income Dynamics (PSID), a U.S. longitudinal survey conducted by the
University of Michigan. The extract was downloaded from the Data Center at the
web site http://psidonline.isr.umich.edu/, using interactive tools to select just a few
variables. The extracted sample was restricted to men aged 30-50 years. The output
conveniently included a Stata do-file in addition to the text data file. Additionally, a
codebook describing the variables selected was provided. The data download included
several additional variables that enable unique identifiers and provide sample weights.
These should also be included in the final dataset but, for brevity, have been omitted
below.

Reading the text dataset mus02psid92m. txt using a text editor reveals that the first
two observations are

47 37 17 27 17 24827 17 10~ 40" 9~ 22000~ 2340
4" 170" 17 27 17 6974° 1~ 10~ 37" 12~ 31468~ 2008

The data are text data delimited by the symbol ",
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Geveral methods could be used to read the data, but the simplest is to use insheet.

s is especially simple here given the provided do-file. The mus02psid92m.do file

T he following information:

contains b

+ Commands to read in data from PSID extract
. type mus02psid92m.do
« mus02psid92m.do

clear
#delimit ;
& PSID DATA CENTER s#kssokkiokssokkkitdrmmakionoriorbdokbook ook dok ook
JOBID : 10654
DATA_DOMAIN : PSID
USER_WHERE : ER32000=1 and ER30736 ge 30 and ER
FILE_TYPE : All Individuals Data
QUTPUT_DATA_TYPE : ASCII Data File
STATEMENTS : STATA Statements
CODEBOOK_TYPE : PDF
N_OF_VARIABLES : 12
N_OF_OBSERVATIDNS: 4290
MAX_REC_LENGTH : b6
DATE & TIME : November 3, 2003 @ 0:28:35

¢ sk sk ok sk ok sk ok oKk ok ok K ok sk ko ok ke ok sk sk ok ok sk ok ok ok ook ok oo sk ko ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk sk kool ke skok skokokok dokokock ok ok

insheet

’ ER30001 ER30002 ER32000 ER32022 ER32049 ER30733 ER30734 ER30735 ER30736
ER30748 ER30750 ER30754

using mus02psid92m.txt, delim(""") clear

destring, replace ;

label variable er30001 "1968 INTERVIEW NUMBER"

label variable er30002 "PERSON NUMBER 68"

label variable er32000 "SEX OF INDIVIDUAL" ;

label variable er32022 "# LIVE BIRTHS TO THIS INDIVIDUAL" ;

label variable er32049 "LAST KNOWN MARITAL STATUS" ;

label variable er30733 "1992 INTERVIEW NUMBER"

label variable er30734 "SEQUENCE NUMBER 92"
label variable er30735 "RELATION TO HEAD 92"
label variable er30736 "AGE OF INDIVIDUAL 92"
label variable er30748 "COMPLETED EDUCATION 92"
label variable er30750 "TOT LABOR INCOME 92"
label variable er30754 "ANN WORK HRS 92"
#delimit cr; // Change delimiter to default cr

To read the data, only insheet is essential. The code separates commands using
the delimiter ; rather than the default cr (the Enter key or carriage return) to enable
comments and commands that span several lines. The destring command, unnecessary
here, converts any string data into numeric data. For example, $1,234 would become
1234. The label variable command provides a longer description of the data that will
be reproduced by using describe.

Executing this code yields output that includes the following:

(12 vars, 4290 obs)

R destring, replace ;

er30001 already numeric; no replace
(output omitted)

er30754 already numeric; no replace
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The statement already numeric is output for all variables because all the data in

mus02psid92m. txt are numeric.
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The describe command provides a description of the data:

. * Data description

. describe

94.2 Naming and labeling variables

2.4 2 Naming and labeling variables

43

Just as the Data Editor can be used to input and manage data, the Variables Manager

¢an be

nse !
the Variables Manager.

Contains data

obs: 4,290

vars: 12

size: 98,670 (99.1Y% of memory free)

storage display value

variable name type format label variable label
er30001 int %8.0g 1968 INTERVIEW NUMBER
er30002 int %8.0g PERSON NUMBER 68
er32000 byte  %8.0g SEX OF INDIVIDUAL
er32022 byte %8.0g # LIVE BIRTHS TO THIS INDIVIDUAL
er32049 byte %8.0g LAST KNOWN MARITAL STATUS
er30733 int %8.0g 1992 INTERVIEW NUMBER
er30734 byte %8.0g SEQUENCE NUMBER 92
er30735 byte %8.0g RELATION TO HEAD 92
er30736 byte  %8.0g AGE OF INDIVIDUAL 92
er30748 byte %8.0g COMPLETED EDUCATION 92
er30750 long %12.0g TOT LABOR INCOME 92
er30754 int %8.0g ANN WORK HRS 92
Sorted by:

Note: dataset has changed since last saved

The summarize command provides descriptive statistics:

used to manage the properties of variables, such as their names and labels. We
Gata cominands below to rename and label variables, but we could also have used

The first step is to give more meaningful names to variables by using the rename

. * Rename variables
. rename er32000 sex

. rename er30736 age
. rename er30748 education
. rename er30750 earnings

. rename er30754 hours

command. We do so just for the variables used in subsequent analysis.

The renamed variables retain the descriptions that they were originally given. Some

., * Relabel some of the variables

. label variable age "AGE OF INDIVIDUAL"

. label variable education "COMPLETED EDUCATION"
. label variable earnings "TOT LABOR INCOME"

. label variable hours "ANN WORK HRS"

of these descriptions are unnecessarily long, so we use label variable to shorten output
from commands, such as describe, that give the variable labels.

For categorical variables, it can be useful to explain the meanings of the variables.

. * Data summary

For example, from the codebook discussed in section 2.4.4, the er32000 variable takes
on the value 1 if male and 2 if female. We may prefer that the output of variable values
uses a label in place of the number. These labels are provided by using label define
together with label values.

. summarize
Variable Obs Mean Std. Dev. Min Max
er30001 4290 4559.2 2850.509 4 9308
er30002 4290 60.66247 79.93979 1 227
er32000 4290 1 0 1 1
er32022 4290 21.356385 38.20765 1 99
er32049 4290 1.699534 1.391921 1 9
er30733 4290 4911.015 2804.8 1 9829
er30734 4290 3.179487 11.4933 1 81
er30735 4290 13.33147 12,44482 10 98
er30736 4290 38.37995 5.650311 30 50
er30748 4290 14.87249 15.07546 0 99
er30750 4290 27832.68 31927.35 0 999999
er30754 4290 1929.477 899.5496 0 5840

Satisfied that the original data have been read in carefully, we proceed with cleaning
the data.

. * Define the label gender for the values taken by variable sex

. label define gender 1 male 2 female
. label values sex gender

. list sex in 1/2, clean

sex
1. male
2. male

After renaming, we obtain

- * Data summary of key variables after renaming
- summarize sex age education earnings hours

Variable | Obs Mean Std. Dev. Min Max
sex 4290 1 0 1 1

age 4290 38.37995 5.650311 30 50
education 4290 14.87249 15.07546 0 99
earnings 4290 27832.68 31927.35 0 999999
hours 4290 1929.477 899.5496 0 5840

y—
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# Tabulate all values taken by a single variable

Data exist for these variables for all 4,290 sample observations. The data have 30 < - )
, tabulate education

age < 50 and sex = 1 (male) for all observations, as expected. The maximum value

. . .. ! MPLETED
for earnings is $999,999, an unusual value that most likely indicates top-coding. The ggucATIUN Freq. Percent Cunm.
maximum value of hours is quite high and may also indicate top-coding (365 x 16 =
5840). The maximum value of 99 for education is clearly erroneous; the most likely (; 8_2/ é:?é ;g}/
explanation is that this is a missing-value code, because numbers such as 99 or —99 are 2 20 0.47 2.54
often used to denote a missing value. 3 32 0.75 3.29
4 26 0.61 3.89
.. 5 30 0.70 4.59
2.4.3 Viewing data 6 123 2.87 7.46
7 35 0.82 8.28
The standard commands for viewing data are summarize, list, and tabulate. 8 78 1.82 10.09
9 117 2.73 12.82
We have already illustrated the summarize command. Additional statistics, includ- 10 167 3.89 16.71
ing key percentiles and the five largest and smallest observations, can be obtained by 1; . Eig sg.gg gé;;
using the detail option; see section 3.2.4. 13 '263 6:13 53:10
) . . . . 14 432 10.07 73.17
The 1ist command can list every observation, too many in practice. But you could 15 172 4.01 77.18
list just a few observations: 16 535 12.47 89.65
17 317 7.39 97.04
. * List first 2 observations of two of the variables 99 127 2.96 100.00
. list age hours in 1/2, clean
Total 4,290 100.00
age  hours
1. 40 2340 . . :
2. 37 2008 Note that the variable label rather than the variable name is used as a header. The
values are generally plausible, with 35% of the sample having a highest grade completed
The list command with no variable list provided will list all the variables. The clean of exactly 12 years (high school graduate). The 7% of observations with 17 years most
option eliminates dividers and separators. likely indicates a postgraduate degree (a college degree is only 16 years). The value 99

for 3% of the sample most likely is a missing-data code. Surprisingly, 2% appear to
have completed no years of schooling. As we explain next, these are also observations
with missing data.

The tabulate command lists each distinct value of the data and the number of
times it occurs. It is useful for data that do not have too many distinctive values. For
education, we have

2.4.4 Using original documentation

At this stage, it is really necessary to go to the original documentation.

The mus02psid92mcb.pdf file, generated as part of the data extraction from the
PSID web site, states that for the er30748 variable a value of 0 means “inappropriate”
for various reasons given in the codebook; the values 1-16 are the highest grade or year
of school completed; 17 is at least some graduate work; and 99 denotes not applicable
(NA) or did not know (DK).

Clearly, the education values of both 0 and 99 denote missing values. Without
using the codebook, we may have misinterpreted the value of 0 as meaning zero years
of schooling.

245 Missing values

It is best at this stage to flag missing values and to keep all observations rather than
to immediately drop observations with missing data. In later analysis, only those ob-

y— :
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servations with data missing on variables essential to the analysis need to be dropped.
The characteristics of individuals with missing data can be compared with those having
complete data. Data with a missing value are recoded with a missing-value code.

For education, the missing-data values 0 or 99 are replaced by . (a period), which
is the default Stata missing-value code. Rather than create a new variable, we modify
the current variable by using replace, as follows:

. * Replace missing values with missing-data code
. replace education = . if education == 0 | education == 99
(209 real changes made, 209 to missing)

Using the double equality and the symbol | for the logical operator or is detailed in
section 1.3.6. As an example of the results, we list observations 46—48:

. * Listing of variable including missing value
. list education in 46/48, clean

educat-n
46. 12
47 . .
48. 16

Evidently, the original data on education for the 47th observation equaled 0 or 99.
This has been changed to missing.

Subsequent commands using the education variable will drop observations with
missing values. For example,

. * Example of data analysis with some missing values
. summarize education age

Variable | Obs Mean Std. Dev, Min Max
education 4081 12.5533 2.963696 1 17
age 4290 38.37995 5.650311 30 50

For education, only the 4,081 nonmissing values are used, whereas for age, all 4,290 of
the original observations are available.

If desired, you can use more than one missing-value code. This can be useful if you
want to keep track of reasons why a variable is missing. The extended missing codes
are .a, .b, ..., .z. For example, we could instead have typed

. * Assign more than one missing code
. replace education = .a if education == 0
. replace education = .b if education == 99

When we want to apply multiple missing codes to a variable, it is more convenient
to use the mvdecode command, which is similar to the recode command (discussed
in section 2.4.7), which changes variable values or ranges of values into missing-value
codes. The reverse command, mvencode, changes missing values to numeric values.

2.4.6 Imputing missing data -

(Care is needed once missing values are used. In particular, missing values are treated
a5 large numbers, higher than any other number. The ordering is that all numbers are
Jess than -, which is less than .a, and so on. The command

. * This command will include missing values
, list education in 40/60 if education > 16, clean

educat~n
45, 17
47, .
60, 17

lists the missing value for observation 47 in addition to the two values of 17. If this is
not desired, we should instead use

. * This command will not include missing values

. 1ist education in 40/60 if education > 16 & education < . , clean
educat~n

45. 17

60. 17

Now observation 47 with the missing observation has been excluded.

The issue of missing values also arises for earnings and hours: From the codebook,
we see that a zero value may mean missing for various reasons, or it may be a true zero
if the person did not work. True zeros are indicated by er30749=0 or 2, but we did
not extract this variable. For such reasons, it is not unusual to have to extract data
geveral times. Rather than extract this additional variable, as a shortcut we note that
earnings and hours are missing for the same reasons that education is missing. Thus

. * Replace missing values with missing-data code
. replace earnings = . if education >= .
(209 real changes made, 209 to missing)

. replace hours = . if educatiom >= .
(209 real changes made, 209 to missing)

2.4.6 Imputing missing data

The standard approach in microeconometrics is to drop observations with missing val-
ues, called listwise deletion. The loss of observations generally leads to less precise
estimation and inference. More importantly, it may lead to sample-selection bias in
regression if the retained observations have unrepresentative values of the dependent
variable conditional on regressors.

An alternative to dropping observations is to impute missing values. The impute
command uses predictions from regression to impute. The ipolate command uses
interpolation methods. We do not cover these commands because these imputation
methods have limitations, and the norm in microeconometrics studies is to use only the
original data.
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A more promising approach, though one more advanced, is multiple imputation.
This produces M different imputed datasets (e.g., M = 20), fits the model M times,
and performs inference that allows for the uncertainty in both estimation and data
imputation. For implementation, see the mi command, introduced in Stata 11, and
see the user-written ice and hotdeck commands. You can find more information in
Cameron and Trivedi (2005) and from findit nultiple imputation.

2.4.7 Transforming data (generate, replace, egen, recode)

After handling missing values, we have the following for the key variables:

. * Summarize cleaned up data
- summarize sex age education earnings

Variable Obs Mean Std. Dev. Min Max
sex 4290 1 0 1 1
age 4290 38.37995 5.650311 30 50
education 4081 12.5533 2.963696 1 17
earnings 4081 28706.65 32279.12 0 999999

We now turn to recoding existing variables and creating new variables. The basic
commands are generate and replace. It can be more convenient, however, to use the
additional commands recode, egen, and tabulate. These are often used in conjunction

with the if qualifier and the by: prefix. We present many examples throughout the
book.

The generate and replace commands

The generate command is used to create new variables, often using standard mathe-
matical functions. The syntax of the command is

generate [type] newvar = erp [zf] [m]

where for numeric data the default type is float, but this can be changed, for example,
to double.

It is good practice to assign a unique identifier to each observation if one does not
already exist. A natural choice is to use the current observation number stored as the
system variable _n.

- * Create identifier using generate command
» generate id = _n

We use this identifier for simplicity, though for these data the er30001 and er30002
variables when combined provide a unique PSID identifier.

AT Transforming data (generate, replace, egen, recode) 49
2.4.

The following command creates a new variable for the natural logarithm of earnings:

+ Create new variable using generate command
) enerate lnearms = 1n(earnings)
(498 missing values generated)

issing values for In(earnings) are generated whenever earnings data are missing.
AAI(lisclitionally, missing values arise when earnings < 0 because it is then not possible to

take on the logarithm.

The replace command is used to replace some or all values of an existing variable.
We already illustrated this when we created missing-values codes.

The egen command

The egen command is an extension to generate that enables creation of variables that
would be difficult to create using generate. For example, suppose we .want to create a,
variable that for each observation equals sample average earnings provided that sample
earnings are nonmissing. The command

. * Create new variable using egen command
. egen aveearnings = mean(earnings) if earnings < .
(209 missing values generated)

creates a variable equal to the average of earnings for those observations not missing
data on earnings.

The recode command

The recode command is an extension to replace that recodes categorical variables and
generates a new variable if the generate () option is used. The command

. * Replace existing data using the recode command
. recode education (1/11=1) (12=2) (13/15=3) (16/17=4), generate(edcat)
(4074 differences between education and edcat)

creates a new variable, edcat, that takes on a value of 1, 2, 3, or 4 corresponding to,
respectively, less than high school graduate, high school graduate, some college, and
college graduate or higher. The edcat variable is set to missing if education does not
lie in any of the ranges given in the recode command.

The by prefix

The by varlist: prefix repeats a command for each group of observations for which the
variables in varlist are the same. The data must first be sorted by warlist. This can
be done by using the sort command, which orders the observations in ascending order
according to the variable(s) given in the command.

- B
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The sort command and the by prefix are more compactly combined into the bysort \We can use tabulate with the generate() option.
prefix. For example, suppose we want to create for each individual a variable that equals
the sample average earnings for all persons with that individual’s years of education. _ % Create a set of indicator variables using tabulate with generate() option
Then we type . quietly tabulate edcat, generate(eddummy)
. summarize eddummy *
. * Create new variable using bysort: prefix Variable Obs Mean Std. Dev. Min Max
. bysort education: egen aveearnsbyed = mean(earnings)
(209 missing values generated) eddummy1 4081 .2087724 .4064812 0 1
sort id eddummy?2 4081 .3700074 .4828655 0 1
‘ eddummy3 4081 .2124479 .4090902 0 1
] ] o eddummy4 4081 .2087724 .4064812 0 1
The final command, one that returns the ordering of the observation to the original
ordering, is not required. But it could make a difference in subsequent analysis if, for The four means sum to one, as expected for four mutually exclusive categories. Note
example, we were to work with a subsample of the first 1,000 observations. that if edcat had taken on values 4, 5, 7, and 9, rather than 1-4, it would still generate
variables numbered eddummy1-eddummy4.
Indicator variables It is usually not necessary to actually create a set of indicator variables. Instead, we

can include factor variables in the variable list; see section 1.3.4. For example,
Consider creating a variable indicating whether earnings are positive. While there are

several ways to proceed, we only describe our recommended method. . * Set of indicator variables using factor variables - no category is omitted
. summarize ibn.edcat

The most direct way is to use generate with logical operators: Variable Obs Mean Std. Dev. Min Max
. * Create indicator variable using generate command with logical operators edcat

. generate dl = earnings > 0 if earnings < . 1 4081 .2087724 .4064812 0 1

(209 missing values generated) 2 4081 .3700074 .4828655 0 1

3 4081 .2124479 .4090902 0 1

4 4081 .2087724 .4064812 0 1

The expression d1 = earnings > O creates an indicator variable equal to 1 if the con-
dition holds and 0 otherwise. Because missing values are treated as large numbers, we

AR : ¢ ) Al No category is omitted because we used the ibn. operator. If instead we used the
add the condition if earnings < . so that in those cases d1 is set equal to missing.

simpler i. operator, then the lowest category (here edcat = 1) would be omitted.

Using summarize, Almost all commands with a variable list permit use of factor variables in the vari-

able list. Exceptions include a few estimation commands such as the asmprobit and
exlogistic commands. In such cases, the older xi prefix command can be used instead.
For details, type help xi.

. summarize dil

Variable l Obs Mean Std. Dev. Min Max

d1 | 4081 .929184  .2565486 0 1
we can see that about 93% of the individuals in this sample had some earnings in 1992. Interactions
We can also see that we have 0.929184 x 4081 = 3792 observations with a value of 1,

Interactive variables b ted in th i
289 observations with a value of 0, and 209 missing observations. can be created in the obvious mammer. - Tor example, fo create

an interaction between the binary earnings indicator d1 and the continuous variable
education, type

Set of indicator variables
. * Create interactive variable using generate commands

. generate dleducation = di*education

A complete set of mutually exclusive categorical indicator dummy variables can be o
(209 missing values generated)

created in several ways.

For example, suppose we want to create mutually exclusive indicator variables for
less than high school graduate, high school graduate, some college, and college graduate (Continued on next page)
or more. The starting point is the edcat variable, created earlier, which takes on the
values 1-4.
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Rather than create the interactive variables, we can use factor variables. For exam-
ple,

. * BSet of interactions using factor variables
. summarize i.edcat#c.earnings

Variable Obs Mean Std. Dev. Min Max
edcat#
c.earnings
1 4081 3146.368 8286.325 0 80000
2 4081 8757.823 15710.76 0 215000
3 4081 6419.347 16453.14 0 270000
4 4081 10383.11 32316.32 0 999999

Here the # operator is used to create interactions, the i. operator is applied to a cate-
gorical variable, and the c. operator is for a continuous variable.

We can also create interactions between categorical variables and interactions be-
tween continuous variables; see section 1.3.4.

Demeaning

Suppose we want to include a quadratic in age as a regressor. The marginal effect of age
is much easier to interpret if we use the demeaned variables (age—age) and (age—age)?
as regressors.

. * Create demeaned variables
. egen double aveage = mean(age)

. generate double agedemean = age - aveage
. generate double agesqdemean = agedemean”?2

. summarize agedemean agesqdemean

Variable | Obs Mean Std. Dev. Min Max
agedemean 4290 2.32e-15 5.650311 -8.379953 11.62005
agesqdemean 4290 31.91857 32.53392 .1443646 135.0255

We expect the agedemean variable to have an average of zero. We specified double
to obtain additional precision in the floating-point calculations. In the case at hand,
the mean of agedemean is on the order of 107!5 instead of 1079, which is what single-
precision calculations would yield.

2.4.8 Saving data

At this stage, the dataset may be ready for saving. The save command creates a Stata
data file. For example,

. * Save as Stata data file
. save mus02psid92m.dta, replace
file mus02psid92m.dta saved

4.9 Selecting the sample e

2

replace option means that an existing dataset with the same name, if it exists, will
ten. The .dta extension is unnecessary because it is the default extension.

The

be OVel'erit
The related command saveold saves a data file that can be read by versions 8 and
9 of Stata.

The data can also be saved in another format that can be read by programs other

than Stata. The outsheet command allows saving as a text file in a spreadsheet format.

For example,
. % Save as comma-separated values spreadsheet

. outsheet age education eddummy* earnings di hours using mus02psid92m.csv,
> comma replace

Note the use of the wildcard * in eddummy. The outsheet command expands this
to eddummyl—eddummy4 per the rules for wildcards, given in section 1.3.5. The comma
option leads to a .csv file with comma-separated variable names in the first line. The
first two lines in mus02psid92m. csv are then

age,education,eddummyi,eddummyZ,eddummyS,eddummy4,earnings,d1,hours
40,9,1,0,0,0,22000,1,2340

A space-delimited formatted text file can also be created by using the outfile
command:
. * Save as formatted text (ascii) file
. outfile age education eddummy* earnings dl hours using musO02psid92m.asc,
> replace

The first line in mus02psid92m. asc is then

40 9 il 0 0 0 22000
1 2340

This file will take up a lot of space; less space is taken if the comma option is used. The
format of the file can be specified using Stata’s dictionary format.

2.4.9 Selecting the sample

Most commands will automatically drop missing values in implementing a given com-
mand. We may want to drop additional observations, for example, to restrict analysis
to a particular age group.

This can be done by adding an appropriate if qualifier after the command. For
example, if we want to summarize data for only those individuals 35-44 years old, then

- * Select the sample used in a single command using the if qualifier
« summarize earnings lnearns if age >= 35 & age <= 44

Variable Obs Mean Std. Dev. Min Max
earnings 2114 30131.05 37660.11 0 999999
lnearns 1983 10.04658 .9001594  4.787492 13.81551
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Different samples are being used here for the two variables, because for the 131 obser-
vations with zero earnings, we have data on earnings but not on lnearns. The if
qualifier uses logical operators, defined in section 1.3.6.

However, for most purposes, we would want to use a consistent sample. For example,
if separate earnings regressions were run in levels and in logs, we would usually want to
use the same sample in the two regressions.

The drop and keep commands allow sample selection for the rest of the analysis.
The keep command explicitly selects the subsample to be retained. Alternatively, we
can use the drop command, in which case the subsample retained is the portion not
dropped. The sample dropped or kept can be determined by using an if qualifier, a
variable list, or by defining a range of observations.

For the current example, we use

. * Select the sample using command keep
. keep if (lnearns != .) & (age >= 35 & age <= 44)
(2307 observations deleted)

. summarize earnings lnearns

Variable I Obs Mean Std. Dev. Min Max
earnings 1983 32121.55 38053.31 120 999999
lnearns 1983 10.04658 .9001594  4.787492 13.815561

This command keeps the data provided: lnearns is nonmissing and 35 < age < 44.
Note that now earnings and lnearns are summarized for the same 1,983 observations.

As a second example, the commands

. * Select the sample using keep and drop commands
. use mus02psid92m.dta, clear

. keep lnearns age

drop in 1/1000
(1000 observations deleted)

will lead to a sample that contains data on all but the first one thousand observations
for just the two variables 1nearns and age. The use mus02psid92m.dta command is
added because the previous example had already dropped some of the data.

2.5 Manipulating datasets

Useful manipulations of datasets include reordering observations or variables, temporar-
ily changing the dataset but then returning to the original dataset, breaking one obser-
vation into several observations (and vice versa), and combining more than one dataset.

9.5.3 Wide and long forms for a dataset 55

1 Ordering observations and variables

gomie ¢ commands. such as those using the by prefix, require sorted observations. The
1. command orders observations in ascending order according to the variable(s) in

sor
mulnmml The gsort command allows ordering to be in descending order.

the
You can also reorder the variables by using the order command. This can be useful
if, for example, you want to distribute a dataset to others with the most important

vmlables appearing as the first variables in the dataset.

2.5.2 Preserving and restoring a dataset

In some cases, it is desirable to temporarily change the dataset, perform some calcu-
Jation, and then return the dataset to its original form. An example involving the
computation of marginal effects is presented in section 10.5.4. The preserve command

reserves the data, and the restore command restores the data to the form it had
immediately before preserve.

. * Commands preserve and restore illustrated
. use mus02psid92m.dta, clear

. list age in 1/1, noheader clean
1. 40

. preserve

. replace age = age + 1000
age was byte now int
(4290 real changes made)

, list age in 1/1, noheader clean
1. 1040

. restore

. list age in 1/1, noheader clean
1. 40

As desired, the data have been returned to original values.

2.5.3 Wide and long forms for a dataset

Some datasets may combine several observations into a single observation. For example,
a single household observation may contain data for several household members, or a
single individual observation may have data for each of several years. This format for
data is called wide form. If instead these data are broken out so that an observation
is for a distinct household member, or for a distinct individual-year pair, the data are
said to be in long form.

The reshape command is detailed in section 8.11. It converts data from wide form
to long form and vice versa. This is necessary if an estimation command requires data
to be in long form, say, but the original dataset is in wide form. The distinction is
mportant especially for analysis of panel data and multinomial data.

"
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2.5.4 Merging datasets

The merge command combines two datasets to create a wider dataset, i.e., new variables
from the second dataset are added to existing variables of the first dataset. Common
examples are data on the same individuals obtained from two separate sources that then
need to be combined, and data on supplementary variables or additional years of data.

Merging two datasets involves adding information from a dataset on disk to a dataset
in memory. The dataset in memory is known as the master dataset.

Merging two datasets is straightforward if the datasets have the same number of
observations and the merge is a line-to-line merge. Then line 10, for example, of one
dataset is combined with line 10 of the other dataset to create a longer line 10. We
consider instead a match-merge, where observations in the two datasets are combined
if they have the same values for one or more identifying variables that are used to
determine the match. In either case, when a match is made if a variable appears in
both datasets, then the master dataset value is retained unless it is missing, in which
case it is replaced by the value in the second dataset. If a variable exists only in the
second dataset, then it is added as a variable to the master dataset.

To demonstrate a match-merge, we create two datasets from the dataset used in
this chapter. The first dataset comprises every third observation with data on id,
education, and earnings:

. * Create first dataset with every third observation
. use mus02psid92m.dta, clear

. keep if mod(_n,3) ==
(2860 observations deleted)

. keep id education earnings
. list in 1/4, clean

educat~n  earnings id

1. 16 38708 3
2. 12 3265 6
3. 11 19426 9
4. 11 30000 12

. quietly save mergel.dta, replace

The keep if mod(n,3) == 0 comimand keeps an observation if the observation number
(.n) is exactly divisible by 3, so every third observation is kept. Because id=_n for these
data, by saving every third observation we are saving observations with id equal to 3,
6,9,....

The second dataset comprises every second observation with data on id, education,
and hours:

. * Create second dataset with every second observation
. use mus02psid92m.dta, clear

. keep if mod{(_n,2) ==
(2145 observations deleted)

. keep id education hours

9.5.4 Merging datasets

. 1ist in 1/4, clean

educat-n hours id
12 2008 2
12 2200 4
12 552 6
17 3750 8

. quietly save merge2.dta, replace

W N

Now we are saving observations with id equal to 2, 4, 6, ....

Now we merge the two datasets by using the merge command.

In our case, the datasets differ in both the observations included and the variables
included, though there is considerable overlap. We perform a match-merge on id to

obtain

. * Merge two datasets with some observations and variables different
. clear

. use mergel.dta
. sort id

. merge 1:1 id using merge2.dta

Result # of obs.
not matched 2,145
from master 715 (_merge==1)
from using 1,430 (_merge==2)
matched 715  (_merge==3)
. sort id

, list in 1/4, clean

educat~n  earnings id hours _merge

1. 12 . 2 2008 using only (2)

2. 16 38708 3 . master only (1)

3r 12 . 4 2200 using only (2)

4. 12 3266 6 552 matched (3)
Recall that observations from the master dataset have id equal to 3, 6, 9, ..., and
observations {rom the second dataset have id equal to 2, 4, 6, .... Data for education

and earnings are always available because they are in the master dataset. But obser-
vations for hours come from the second dataset; they are available when id is 2, 4, 6,
- and are missing otherwise.

merge creates a variable, merge, that takes on a value of 1 if the variables for an
observation all come from the master dataset, a value of 2 if they all come from only
the second dataset, and a value of 3 if for an observation some variables come from the
master and some from the second dataset. After using merge, you should check that
the number of observations for each value of _merge matches your expectations.

There are several options when using merge. The update option varies the action
fner.ge takes when an observation is matched. By default, the master dataset is held
Iviolate—if update is specified, values from the master dataset are retained if the same
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variables are found in both datasets. However, the values from the merging dataset are
used in cases where the variable is missing in the master dataset. The replace option,
allowed only with the update option, specilies that even if the master dataset contains
nonmissing values, they are to be replaced with corresponding values from the merging
dataset when corresponding values are not equal. A nonmissing value, however, will
never be replaced with a missing value.

2.5.5 Appending datasets

The append command creates a longer dataset, with the observations from the second
dataset appended after all the observations {rom the first dataset. If the same variable
has different names in the two datasets, the variable name in one of the datasets should
be changed by using the rename command so that the names match.

. * Append two datasets with some observations and variables different
. clear

. use mergel.dta

. append using merge2.dta
. sort id

. list in 1/5, clean

educat-n  earnings id  hours
1. 12 E 2 2008
2. 16 38708 3 .
3. 12 . 4 2200
4. 12 3265 6 5
5. 12 6 552

Now merge2.dta is appended to the end of mergel.dta. The combined dataset has
observations 3, 6, 9, ..., 4290 followed by observations 2, 4, 6, ..., 4290. We then sort
on id. Now both every second and every third observation is included, so after sorting
we have observations 2, 3, 4, 6, 8, 9, .... Note, however, that no attempt has been made
to merge the datasets. In particular, for the observation with id = 6, the hours variable
is missing in observation 4 and the earnings variable is missing in observation 5. This
is because the hours variable is missing from the master dataset and the earnings
variable is missing from the using dataset. There was no attempt to merge the data.

In this example, to take full advantage of the data, we would need to merge the two
datasets using the first dataset as the master, merge the two datasets using the second
dataset as the master, and then append the two datasets.

2.6 Graphical display of data

Graphs visually demonstrate important features of the data. Different types of data
require distinct graph formats to bring out these features. We emphasize methods for
numerical data taking many values, particularly, nonparametric methods.

9.6.1 Stata graph commands o

2.6.1 Stata graph commands

The Stata graplt commands begin with the word graph (in some cases, this is optional)
follOWed by the graph plottype. nsually twoway. We cover several leading examples
put ignore the plottypes bar and pie for categorical data.

ExamP|e graph commands

The basic graph commands are very short and simple to use. For example,

. use mus02psid92m.dta, clear

. twoway scatter lnearns hours

produces & scatterplot of 1nearns on hours, shown in figure 2.1. Most graph commands
support the if and in qualifiers, and some support weights.
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Figure 2.1. A basic scatterplot of log earnings on hours

In practice, however, customizing is often desirable. For example, we may want to
display the relationship between 1nearns and hours by showing both the data scatter-
plot and the ordinary least-squares (OLS) fitted line on the same graph. Additionally,
we may want to change the size of the scatterplot data points, change the width of the
regression line, and provide a title for the graph. We type

. * More advanced graphics command with two plots and with several options
. graph twoway (scatter lnearns hours, msize(small))

> (1fit lnearns hours, lwidth(medthick)),

> title("Scatterplot and OLS fitted line")

The two separate components scatter and 1fit are specified separately within paren-
theses. Fach of these commands is given with one option, after the comma but within
the relevant parentheses. The msize(small) option makes the scatterplot dots smaller
than the default, and the lwidth(medthick) option makes the OLS fitted line thicker
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than the default. The title() option for twoway appears after the last comma. The
graph produced is shown in figure 2.2.

Scatterplot and OLS fitted line

0 2000 4000 8000
ANN WORK HRS

® Inearns - Fitled values |

Figure 2.2. A more elaborate scatterplot of log earnings on hours

We often use lengthy graph commands that span multiple lines to produce template
graphs that are better looking than those produced with default settings. In particular,
these commands add titles and rescale the points, lines, and axes to a suitable size
because the graphs printed in this book are printed in a much smaller space than a full-
page graph in landscape mode. These templates can be modified for other applications
by changing variable names and title text.

Saving and exporting graphs

Once a graph is created, it can be saved. Stata uses the term save to mean saving the
graph in Stata’s internal graph format, as a file with the .gph extension. This can be
done by using the saving () option in a graph command or by typing graph save after
the graph is created. When saved in this way, the graphs can be reaccessed and further
manipulated at a later date.

Two or more Stata graphs can be combined into a single figure by using the graph
combine command. For example, we save the first graph as graphl.gph, save the second
graph as graph?2.gph, and type the command

. * Combine graphs saved as graphl.gph and graph2.gph
. graph combine graphl graph2

(output omitted)
Section 3.2.7 provides an example.

The Stata internal graph format (.gph) is not recognized by other programs, such
as word processors. To save a graph in an external format, you would use the graph
export command. For example,

Leal’l’lin
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2.6.2

& Save graph as a Windows meta-file
. graph export mygraph.wmf
(output omitted )

Jious formals are available, including PostScript (.ps), Encapsulated PostScript

( Jepg)_ Windows Metafile (.wmf), PDP (. pdf), and Portable Network Graphics (.png).
'l‘lht' pest format to seleet depends in part on what word processor is used; some trial
and error may be needed.

g how to use graph commands

The Stata graph commands are extremely rich and provide an exceptional range of user
control through a multitude of options.

A good way to learn the possibilities is to create a graph interactively in Stata. For
example, from the menus, select Graphics > Twoway graph (scatter, line, etc.).
In the Plots tab of the resulting dialog box, select Create..., choose Scatter, provide
4 Y variable and an X variable, and then click on Marker properties. From the
Symbol drop-down list, change the default to, say, Triangle. Similarly, cycle through
the other options and change the default settings to something else.

Once an initial graph is created, the point-and-click Stata Graph Editor allows
further customizing of the graph, such as adding text and arrows wherever desired.
This is an exceptionally powerful tool that we do not pursue here; for a summary, see
[G] graph editor. The Graph Recorder can even save sequences of changes to apply
to similar graphs created from different samples.

Even given familiarity with Stata’s graph commands, you may need to tweak a graph
considerably to make it useful. For example, any graph that analyzes the earnings
varjable using all observations will run into problems because one observation has a
large outlying value of $999,999. Possibilities in that case are to drop outliers, plot with
the yscale(log) option, or use log earnings instead.

2.6.2 Box-and-whisker plot

The graph box command produces a box-and-whisker plot that is a graphical way
to display data on a single series. The boxes cover the interquartile range, from the
lower quartile to the upper quartile. The whiskers, denoted by horizontal lines, extend
to cover most or all the range of the data. Stata places the upper whisker at the
upper quartile plus 1.5 times the interquartile range, or at the maximum of the data
if this is smaller. Similarly, the lower whisker is the lower quartile minus 1.5 times the
interquartile range, or the minimum should this be larger. Any data values outside the
whiskers are represented with dots. Box-and-whisker plots can be especially useful for
identifying outliers.

) _—
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The essential command for a box-and-whisker plot of the hours variable is

. * Simple box-and-whisker plot
. graph box hours

(output omitted )

We want to present separate box plots of hours for each of four education groups
by using the over () option. To make the plot more intelligible, we first provide labels
for the four education categories as follows:

. use mus02psid92m.dta, clear

. label define edtype 1 "< High School" 2 "High School" 3 "Some College"
> 4 "College Degree"

. label values edcat edtype

The scale(1.2) graph option is added for readability; it increases the size of text,
markers, and line widths (by a multiple 1.2). The marker () option is added to reduce
the size of quantities within the box; the ytitle() option is used to present the title;
and the yscale(titlegap(*5)) option is added to increase the gap between the y-axis
title and the tick labels. We have

. * Box and whisker plot of single variable over several categories
. graph box hours, over(edcat) scale(l.2) marker(1,msize(vsmall))
> ytitle("Annual hours worked by education") yscale(titlegap(#5))

The result is given in figure 2.3. The labels for edcat, rather than the values, arc
automatically given, making the graph much more readable. The filled-in boxes present
the interquartile range, the intermediate line denotes the median, and data outside the
whiskers appear as dots. For these data, annual hours are clearly lower for the lowest
schooling group, and there are quite a few outliers. About 30 individuals appear to
work in excess of 4,000 hours per year.
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4,000
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Annual hours worked by education
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Figure 2.3. Box-and-whisker plots of annual hours for four categories of educational
attainment
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2.6.3 Histogram

he prulmlnilii.)-' mass fimetion or density function can be estimated usin'g a histogra.m
uced by the histogram commnand. The command can be used with if and in
alifiers and with weights.  The key options are width(#) to set the bin width,
{Il.;(_y) to set the number of bins, start (#) to set the lower limit of the first bin,
t::ln'l c;iscreta to indicate that the data are discrete. The default number of bins is
}.]i.“f\/'}\"', 10In N/In10). Other options overlay a fitted normal density (the normal
! i a kernel density estimate (the kdensity option).

1

prml

upLiDll} 0
For discrete data taking relatively few values, there is usually no need to use the

options.

Tor continuous data or for discrete data taking many values, it can be necessary
to use options because the Stata defaults set bin widths that are not nicely rounded
pumbers and the number of bins might also not be desirable. For example, the output
from histogram lnearns states that there are 35 bins, a bin width of 0.268, and a start
value of 4.43. A better choice may be

. % Histogram with bin width and start value set

. histogram lnearns, width(0.25) start(4.0)
(bin=40, start=4, width=.25)

Denslty

10 1

Inearns

Figure 2.4. A histogram for log earnings

2.6.4 Kernel density plot

For continuous data taking many values, a better alternative to the histogram is a kernel
density plot. This provides a smoother version of the histogram in two ways: First, it
directly connects the midpoints of the histogram rather than forming the histogram
step function. Second, rather than giving each entry in a bin equal weight, it gives more
weight to data that are closest to the point of evaluation.

p—
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Let f(x) denote the density. The kernel density estimate of f(x) at z = xo is

Flo) = thm ( xo) (2.1)

where K(-) is a kernel function that places greater weight on points z; close to xo.
More precisely, K (z) is symmetric around zero, integrates to one, and either K(z) =0
if |2] > 2z (for some z) or 2 — 0 as z — oo. A histogram with a bin width of
2h evaluated at zo can be shown to be the special case K (z) = 1/2 if |z| < 1, and
K (z) = 0 otherwise.

A kernel density plot is obtained by choosing a kernel function, K(-); choosing a
width, h; evaluating f (aco) at a range of values of zp; and plotting f ( o) against these

o values.

The kdensity command produces a kernel density estimate. The command can
be used with if and in qualifiers and with weights. The default kernel function is
the Epanechnikov, which sets K (z) = (3/4)(1 — 22/5)/V/5 if |2| < v/5, and K (z) = 0
otherwise. The kernel () option allows other kernels to be chosen, but unless the width
is relatively small, the choice of kernel makes little difference. The default window
width or bandwidth is h = 0.9m/n'/5 where m = min(s,, igry/1.349) and iqr, is
the interquartile range of z. The bwidth(#) option allows a different width (h) to be
specified, with larger choices of h leading to smoother density plots. The n(#) option
changes the number of evaluation points, xg, from the default of min(N,50). Other
options overlay a fitted normal density (the normal option) or a fitted ¢ density (the
student (#) option).

The output from kdensity lnearns states that the Epanechnikov kernel is used and
the bandwidth equals 0.1227. If we desire a smoother density estimate with a bandwidth
of 0.2, one overlaid by a fitted normal density, we type the command

. * Kernel density plot with bandwidth set and fitted normal density overlaid
. kdensity lnearns, bwidth(0.20) normal n(4000)

which produces the graph in figure 2.5. This graph shows that the kernel density is
more peaked than the normal and is somewhat skewed.

9.6.4 Kernel density plot

Kernel density estimate

P

Inearns

Kernel density estimate
Normal density

kernel = epanechnikov, bandwidlh = 0 2000

Figure 2.5. The estimated density of log earnings

The following code instead presents a histogram overlaid by a kernel density estimate.
The histogram bin width is set to 0.25, the kernel density bandwidth is set to 0.2 using
the kdenopts () option, and the kernel density plot line thickness is increased using the
1width(medthick) option. Other options used here were explained in section 2.6.2. We

have

* Histogram and nonparametric kernel density estimate
histogram lnearns if lnearns > O, width(0.25) kdensity
kdenopts (bwidth(0.2) lwidth(medthick))
plotregion(style(none)) scale(1.2)
title("Histogram and density for log earnings")
xtitle("Log annual earnings", size(medlarge)) xscale(titlegap(*5))
ytitle("Histogram and density", size(medlarge)) yscale(titlegap(x5))
bin=38, start=4.4308167, width=.25)

AV VV V.V .

Histogram and density for log earnings

Histogram and density

4 6 8 10 14
Log annual earnings

Figure 2.6. Histogram and kernel density plot for natural logarithm of earnings
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The result is given in figure 2.6. Both the histogram and the kernel density estimate
indicate that the natural logarithm of earnings has a density that is mildly left-skewed.
A similar figure for the level of earnings is very right-skewed.

2.6.5 Twoway scatterplots and fitted lines

As we saw in figure 2.1, scatterplots provide a quick look at the relationship between
two variables.

For scatterplots with discrete data that take on few values, it can be necessary to
use the jitter () option. This option adds random noise so that points are not plotted
on top of one another; see section 14.6.4 for an example.

It can be useful to additionally provide a fitted curve. Stata provides several pos-
sibilities for estimating a global relationship between y against z, where by global we
mean that a single relationship is estimated for all observations, and then for plotting
the fitted values of y against z.

The twoway 1fit command does so for a fitted OLS regression line, the twoway
afit command does so for a fitted quadratic regression curve, and the twoway fpfit
command does so for a curve fit by fractional polynomial regression. The related twoway
commands 1fitei, gfitei, and fpfitci additionally provide confidence bands for
predicting the conditional mean E(ylx) (by using the stdp option) or for forecasting of
the actual value of yla: (by wsing the stdf option).

For example, we may want to provide a scatterplot and fitted quadratic with confi-
dence bands for the forecast value of y|z (the result is shown in figure 2.7):

- * Two-way scatterplot and quadratic regression curve with 95% ci for ylx
. twoway (qfitci lnearns hours, stdf) (scatter lnearns hours, msize(small))

o
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Figure 2.7. Twoway scatterplot and fitted quadratic with confidence bands
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2

g Lowess, kernel, local linear, and nearest-neighbor regression
2.6.

lternaiive curve-litting approach is to use nonparametric methods that fit a local
A Iqhip batween y and @, where by local we mean that separate fitted relationships
“‘lm'i;.ﬂ;i|1{ui- al dilﬁa.rmlt values of . There are several methods. All depend on a
g :i.(llh i'};tl'ﬁlucbe:' or smoothing parameter. There are well-established methods
lm“-t.h,r\‘;t.mm ically select the bandwidth parameter, but these choices in practice can
(‘}11[:1:'-51110ut.11 or oversmooth the data so that the bandwidth then needs to be set by
:::ing’ the bwidth () oplion.

An easily understood example is a median-band plot. The range o.f z is broken
-ito, say, 20 intervals; the medians of y and z in each interval are o.btan.led; and the
115 r’ledians of y are plotted against the 20 medians of z, with connecting lines between
ghel points. The twoway mband command does this, ar.ld the related .twoway mspline
command uses a cubic spline to obtain a smoother version of the median-band plot.

Most nonparametric methods instead use variants of local reg.rt?ssion. Consider Fhe :
regression model y = m(x) + u, where = is a scalar and the C011d1t10'nal mean fu%lCtIOH
m(-) is not specified. A local regression estlma.te of m(z) at z = o is & l(?cal wglghted
average of ;, 4 = 1,..., N, that places great weight on observatlor_ls for which z; is close
to zo and little or no weight on observations for which z; is far from zy. Formally,

N
m(zg) = Zi:l w(zwy, o, h)ys

where the weights w(z;, g, h) sum over i to one and decrease as the distance between
z; and zg increases. As the bandwidth parameter h increases, more weight is placed on
T; a

observations for which z; is close to zg.

A plot is obtained by choosing a weighting function, w(z;, zo, h); choosing a band-
width, h; evaluating m(xg) at a range of values of zo; and plotting m(xg) against these
g values.

The kth-nearest-neighbor estimator uses just the & observations for which x; is clos-
est to zp and equally weights these k closest values. This estimator can be obtained by
using the user-written knnreg command (Salgado-Ugarte, Shimizu, and Taniuchi 1996).

Kernel regression uses the weight w(z;,zo,h) = K{(z; — z0)/h}/ Zivzl K{{x; —
zo)/h}, where K(-) is a kernel function defined after (2.1). This estimator can be
obtained by using the user-written kernreg command (Salgado-Ugarte, Shimizu, and
Taniuchi 1996). Tt can also be obtained by using the lpoly command, which we present
next.

The kernel regression estimate at = = g can equivalently be obtained by minimizing
2o K {(zi—0) /h}H{yi—ap)?, which is weighted regression on a constant where the kernel
weights are largest for observations with z; close to zg. The local linear estimator
additionally includes a slope coefficient and at z = z¢ minimizes

ZL K <xi ; xo) {yi — a0 — Bo(@s — z0)}? (2.2)

p— :
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The local polynomial estimator of degree p more generally uses a polynomial of degree p
in (z; — o) in (2.2). This estimator is obtained by using 1poly. The degree (#) option
specifies the degree p, the kernel () option specifies the kernel, the bwidth(#) option
specifies the kernel bandwidth h, and the generate () option saves the evaluation points
xg and the estimates m(xzp). The local linear estimator with p > 1 does much better
than the preceding methods at estimating m(xzg) at values of zy near the endpoints of
the range of z, as it allows for any trends near the endpoints.

The locally weighted scatterplot smoothing estimator (lowess) is a variation of the
local linear estimator that uses a variable bandwidth, a tricubic kernel, and downweights
observations with large residuals (using a method that greatly increases the computa-
tional burden). This estimator is obtained by using the lowess command. The band-
width gives the fraction of the observations used to calculate m(zo) in the middle of the
data, with a smaller fraction used towards the endpoints. The default value of 0.8 can
be changed by using the bwidth(#) option, so unlike the other methods, a smoother
plot is obtained by increasing the bandwidth.

The following example illustrates the relationship between log earnings and hours
worked. The one graph includes a scatterplot (scatter), a fitted lowess curve (lowess),
and a local linear curve (1poly). The command is lengthy because of the detailed
formatting commands used to produce a nicely labeled and formatted graph. The
msize(tiny) option is used to decrease the size of the dots in the scatterplot. The
lwidth(medthick) option is used to increase the thickness of lines, and the clstyle(pl)
option changes the style of the line for lowess. The title() option provides the overall
title for the graph. The xtitle() and ytitle() options provide titles for the x axis
and y axis, and the size(medlarge) option defines the size of the text for these titles.
The legend() options place the graph legend at four o’clock (pos(4)) with text size
small and provide the legend labels. We have

. % Scatterplot with lowess and local linear nonparametric regression
graph twoway (scatter lmearns hours, msize(tiny))

(lowess lnearns hours, clstyle(pl) lwidth(medthick))

(1poly lnearns hours, kernel(epan2) degree(1l) lwidth(medthick)
bwidth(500)), plotregion(style(none))

title("Scatterplot, lowess, and local linear regression")

xtitle("Annual hours", size(medlarge))

ytitle("Natural logarithm of annual earnings", size(medlarge))
legend(pos(4) ring(0) col(1)) legend(size(small))

legend(label(1l "Actual Data") label(2 "Lowess") label(3 "Local linear"))
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Scatterplot, lowess and local linear regression
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Figure 2.8. Scatterplot, lowess, and local linear curves for natural logarithm of earnings
plotted against hours

From figure 2.8, the scatterplot, fitted OLS line, and nonparametric regression all in-
dicate that log earnings increase with hours until about 2,500 hours and that a quadratic
relationship may be appropriate. The graph uses the default bandwidth setting for
1owess and greatly increases the 1poly bandwidth from its automatically selected value
of 84.17 to 500. Even so, the local linear curve is too variable at high hours where the
data are sparse. At low hours, however, the lowess estimator overpredicts while the
local linear estimator does not.

2.6.7 Multiple scatterplots

The graph matrix command provides separate bivariate scatterplots between several
variables. Here we produce bivariate scatterplots (shown in figure 2.9) of lnearns,
hours, and age for each of the four education categories:

. * Multiple scatterplots
. label variable age "Age"

. label variable lnearns "Log earnings"
. label variable hours "Annual hours"”

. graph matrix lnearns hours age, by(edcat) msize(small)

(Continued on next page)
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[ = High Seliool ] Fiigh Senhool ] 2. Consider the example of section 2.3 except with the variables reordered. Specif-
1" 200090005000 ically, the variables are in the order age, name, income, and female. The three
Log :: observations are 29 "Barry" 40.990 0; 30 "Carrie" 37.000 1;and 31 "Gary"
6000 — ts 48.000 0. Use input to read these data, along with names, into Stata and list
e the results. Use a text editor to create a comma-separated values file that includes
i 0 variable names in the first line, read this file into Stata by using insheet, and
,.;: Jist the results. Then drop the first line in the text file, read in the data by using
o insheet with variable names assigned, and list the results. Finally, replace the
[ Some College | College Degree ] commas in the text file with blanks, read the data in by using infix, and list the
0 200040006000 1] 5000
- : 15 : 15 results.
ealr_#l%gs lﬁ ' *["’ . 3. Consider the dataset in section 2.4. The er32049 variable is the last known
- LR i 000 === 5 i i ; . . .
4000 Annual et Annual marital status. Rename this variable as marstatus, give the variable the label
B -':j' | heess & G 0 '-I* | fours | o “marital status”, and tabulate marstatus. From the codebook, marital status is
u‘*‘ "] oage fa N 3 ig married (1), never married (2), widowed (3), divorced or annulment (4), separated
g0 o % (5), not answered or do not know (8), and no marital history collected (9). Set
Graphs by RECODE of education (COMPLETED EDUCATION) marstatus to missing where appropriate. Use label define and label values to
provide descriptions for the remaining categories, and tabulate marstatus. Create
Figure 2.9. Multiple scatterplots for each level of education a binary indicator variable equal to 1 if the last known marital status is married,
and equal to 0 otherwise, with appropriate handling of any missing data. Provide
Stata does not provide three-dimensional graphs, such as that for a nonparametric a summary of earnings by marital status. Create a set of indicator variables for
bivariate density estimate or for nonparametric regression of one variable on two other marital status based on marstatus. Create a set of variables that interact these
variables. marital status indicators with earnings.
4. Consider the dataset in section 2.6. Create a box-and-whisker plot of earnings (in
2.7 Stata resources levels) for all the data and for each year of educational attainment (use variable
education). Create a histogram of earnings (in levels) using 100 bins and a
The key data-management references are [U] Users Guide and [D] Data Management kernel density estimate. Do earnings in levels appear to be right-skewed? Create
Reference Manual. Useful online help categories include 1) double, string, and a scatterplot of earnings against education. Provide a single figure that uses
format for data types; 2) clear, use, insheet, infile, and outsheet for data in- scatterplot, 1fit, and lowess of earnings against education. Add titles for
put; 3) summarize, list, label, tabulate, generate, egen, keep, drop, recode, by, the axes and graph heading.
s?rt, merge, appeind, and collapse for data management; and 4) graph, graph box, 5. Consider the dataset in section 2.6. Create kernel density plots for Inearns using
histogram, kdensity, twoway, lowess, and graph matrix for graphical analysis. the kernel(epan2) option with kernel K(z) = (3/4)(1 — 22/5) for |z] < 1, and
The Stata graphics commands were greatly enhanced in version 8 and are still using the kernel (epan2) option with kernel K(z) =1/2 for |2| < 1. Repeat with
relatively underutilized. The Stata Graph Editor was introduced in version 10; see the bandwidth increased from the default to 0.3. What makes a bigger difference,
[c] graph editor. A Visual Guide to Stata Graphics by Mitchell (2008) provides many choice of kernel or choice of bandwidth? The comparison is easier if the four
hundreds of template graphs with the underlying Stata code and an explanation for graphs are saved using the saving() option and then combined using the graph
each. combine command.
6. Consider the dataset in section 2.6. Perform lowess regression of lnearns on hours
2.8 Exercises using the default bandwidth and using bandwidth of 0.01. Does the bandwidth
make a difference? A moving average of y after data are sorted by x is a simple
1. Type the command display %10.5f 123.321. Compare the results with those case of nonparametric regression of y on z. Sort the data by hours. Create a
you obtain when you change the format %10.5f to, respectively, %10.5e, %10.5g, centered 15-period moving average of lnearns with ith observation yma; = 1/25
%»-10.5%, %10,5f, and when you do not specify a format. ;-217212 Yit;. This is easiest using forvalues. Plot this moving average against

hours using the twoway connected graph command. Compare to the lowess plot.



3 Linear regression basics

3.1 Introduction

Linear regression analysis is often the starting point of an empirical investigation. Be-
cause of its relative simplicity, it is useful for illustrating the different steps of a typical
modeling cycle that involves an initial specification of the model followed by estimation,
diagnostic checks, and model respecification. The purpose of such a linear regression
analysis may be to summarize the data, generate conditional predictions, or test and
evaluate the role of specific regressors. We will illustrate these aspects using a specific

data example.

This chapter is limited to basic regression analysis on cross-section data of a contin-
wous dependent variable. The setup is for a single equation and ¢xogenous regressors.
Some standard complications of linear regression, such as misspecification of the condi-
tional mean and model errors that are heteroskedastic, will be considered. In particular,
we model the natural logarithm of medical expenditures instead of the level. We will
ignore other various aspects of the data that can lead to more sophisticated nonlinear
models presented in later chapters.

3.2 Data and data summary

The first step is to decide what dataset will be used. In turn, this decision depends on
the population of interest and the research question itself. We discussed how to convert
a raw dataset to a form amenable to regression analysis in chapter 2. In this section,
we present ways to summarize and gain some understanding of the data, a necessary
step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures of individuals 65 years and older who qualify for
health care under the U.S. Medicare program. The original data source is the Medical
Expenditure Panel Survey (MEPS).

Medicare does not cover all medical expenses. For example, copayments for medical
services and expenses of prescribed pharmaceutical drugs were not covered for the time
period studied here. About half of eligible individuals therefore purchase supplementary
Insurance in the private market that provides insurance coverage against various out-
of-pocket expenses.

p—
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In this chapter, we consider the impact of this supplementary insurance on total an-
nual medical expenditures of an individual, measured in dollars. A formal investigation
must control for the influence of other factors that also determine individual medica)
expenditure, notably, sociodemographic factors such as age, gender, education and in-
come, geographical location, and health-status measures such as self-assessed health
and presence of chronic or limiting conditions. In this chapter, as in other chapters,
we instead deliberately use a short list of regressors. This permits shorter output and
simpler discussion of the results, an advantage because our intention is to simply explain
the methods and tools available in Stata.

3.2.2 Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list
various features of the variables to be used in the linear regression. The command with-
out a variable list describes all the variables in the dataset. Here we restrict attention
to the variables used in this chapter.

« * Variable description for medical expenditure dataset
« use musO3data.dta

. describe totexp ltotexp posexp suppins phylim actlim totchr age female income

storage display value
variable name type format label variable label
totexp double %12.0g Total medical expenditure
ltotexp float %9.0g In(totexp) if totexp > 0
posexp float %9.0g =1 if total expenditure > 0
suppins float %9.0g =1 if has supp priv insurance
phylim double %12.0g =1 if has functional limitation
actlim double %12.0g =1 if has activity limitation
totchr double %12.0g # of chronic problems
age double %12.0g Age
female double %12.0g =1 if female
income double %12.0g annual household income/1000

The variable types and format columns indicate that all the data are numeric. In this
case, some variables are stored in single precision (float) and some in double precision
(double). From the variable labels, we expect totexp to be nonnegative: 1totexp to
be missing if totexp equals zero: Posexp, suppins, phylim, actlim, and female to
be 0 or 1; totchr o be a nonnegative integer; age to be positive; and income to be
negative or positive. Note that the integer variables could have been stored much more
compactly as integer or byte. The variable labels provide a short description that is
helpful but may not fully describe the variable. For example, the key regressor suppins
was created by aggregating across several types of private supplementary insurance. No
labels for the values taken by the categorical variables have been provided.

3.2

Summary statistics

3.2.3
3 Summary statistics

ential in an}.f data analysis to first check the data by using the summarize
It is €sS

command.

umm: isti i diture dataset

ary statistics for medical expen ) ; )
’ *uimarizz totexp ltotexp posexp suppins phylim actlim totchr age female income
. 8

Variable Obs Mean Std. Dev. Min Max

064 7030.889 11852.75 0 125610

122EZ§§ 2955 8.059866 1.367592 1.098612 11.7409?

posexp 3064 .9644256 .1852568 g :

suppins 3064 .5812663 .4934321 i :

phylim 3064 .4256875 .4946125

— actlim 3064 .2836162 .4508263 0 $

totchr 3064 1.754243 1.307197 0 o

age 3064 74.17167 6.372938 65 °

female 3064 .5796345 .4936982 0 _
income 3064 22.47472 22.53491 -1 312.

On average, 96% of individuals incur medical -exI.)en(.iitures during a year; 58‘? hifg(_e
lementary insurance; 43% have functional hn.nta‘?long 28% .hfwe activity lim i
S}lpp" d 58% are female, as the elderly population is dispropotrtionately female bg
Lo a? the greater longe;/ity of women. The only variable to have missing data is
iifcee}(()p, the natural logarithm of totexp, which is missing for the (3064 —2955) = 109

observations with totexp = 0.

All variables have the expected range, except that income is negative. To s,tef.e ?ow
many observations on income are negativ.e, we use the tabulate command, restricting
attention to nonpositive observations to limit output.

. * Tabulate variable
. tabulate income if income <= 0

annual
household
income/1000 Freq. Percent Cum.
-1 1 1.14 1.14
0 87 98.86 100.00
Total 88 100.00

Only one observation is negative, and negative income is possible for in.come from selti;
employment or investment. We include the observation in the analysis here, thoug
checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with zero
medical expenditures, so in a research paper, it would be best to report summary
statistics without these observations.
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3.2.4 More-detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, ig
useful. For totexp, the level of medical expenditures, summarize, detail yields

« * Detailed summary statistics of a single variable
- summarize totexp, detail

Total medical expenditure

Percentiles Smallest

1% 0 0

5% 112 0
10% 393 0 Obs 3064
25% 1271 0 Sum of Wgt. 3064
50% 3134.5 Mean 7030.889
Largest Std. Dev, 11852.75

75% 7151 104823
90% 17050 108256 Variance 1.40e+08
95% 27367 123611 Skewness 4.165058
99% 62346 125610 Kurtosis 26.26796

Medical expenditures vary greatly across individuals, with a standard deviation of
11,853, which is almost twice the mean. The median of 3,134 is much smaller than
the mean of 7,031, reflecting the skewness of the data. For variable z, the skewness
statistic is a scale-free measure of skewness that estimates E {(z — 11)3} /032, the third
central moment standardized by the second central moment. The skewness is zero for
symmetrically distributed data. The value here of 4.16 indicates considerable right
skewness. The kurtosis statistic is an estimate of E{(z — p)*}/c*, the fourth central
moment standardized by the second central moment. The reference value is 3, the value
for normally distributed data. The much higher value here of 26.26 indicates that the
tails are much thicker than those of a normal distribution. You can obtain additional
summary statistics by using the centile command to obtain other percentiles and by
using the table command, which is explained in section 3.2.5.

We conclude that the distribution of the dependent variable is considerably skewed
and has thick tails. These complications often arise for commonly studied individual-
level economic variables such as expenditures, income, earnings, wages, and house prices.
It is possible that including regressors will eliminate the skewness, but in practice, much
of the variation in the data will be left unexplained (R? < 0.3 is common for individual-
level data) and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of
additive errors. A standard solution is to transform the dependent variable by taking
the natural logarithm. Here this is complicated by the presence of 109 zero-valued
observations. We take the expedient approach of dropping the zero observations from
analysis in either logs or levels. This should make little difference here because only
3.6% of the sample is then dropped. A better approach, using two-part or selection
models, is covered in chapter 16.

The output for tabstat in section 3.2.5 reveals that taking the natural logarithm
for these data essentially eliminates the skewness and excess kurtosis.

3.2.

Tubles for data 7

3.2.5

1 peer-yeritten £sum command (Wolfe 2002) is an enhancement of summarize that
The °° -ﬁmt.t.ill" the output and including additional information such as percentiles
les le |al)r;-.;.:;. The nser-written outsum command (Papps 2006) produces a text
& and standard deviations for one or more subsets of the data, e.g., one
full sample, one for a male subsample, and one for a female subsample.

enad .
gl v piab

file ol means
columi for the

5 Tables for data

av tables can be created by using the table command, which produces just
Onel—l\;lz,ies or the tabulate command, which additionally produces percentages and
freq ’

ulative percentages; an example was given in section 3.2.3.
cum

Two-way tables can also be created by using these commands. For frequencies, only
table produces clean output. For example,

_ % Two-way table of frequencies
. table female totchr

=1 if # of chronic problems

female 0 1 2 3 4 5 [§ ifl
0 239 415 323 201 82 23 4 1
1 313 466 493 305 140 46 11 2

provides frequencies for a two-way tabulation of gender against the number of chronic
conditions. The tabulate command is much richer. For example,

. * Tyo-way table with row and column percentages and Pearson chi-squared
. tabulate female suppins, row col chi2

Key

frequency
row percentage
column percentage

=1 if has supp priv

=1 if insurance
female 0 1 Total
0 488 800 1,288
37.89 62.11 100.00
38.04 44,92 42.04
1 795 981 1,776
44.76 55.24 100.00
61.96 55.08 57.96
Total 1,283 1,781 3,064
41.87 58.13 100.00
100.00 100.00 100.00

Pearson chi2(1) = 14.4991 Pr = 0.000
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Comparing the row percentages for this sample, we see that while a woman is more
likely to have supplemental insurance than not, the probability that a woman in this
sample has purchased supplemental insurance is lower than the probability that a man
in this sample has purchased supplemental insurance. Although we do not have the
information to draw these inferences for the population, the results for Pearson’s chi-
squared test soundly reject the null hypothesis that these variables are independent.
Other tests of association are available. The related command tab2 will produce all
possible two-way tables that can be obtained from a list of several variables.

For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies
. table female totchr suppins

=1 if has supp priv insurance and # of chronic

problems
=1 if 0
female 0 1 2 3 4 5 6 7
0 102 165 121 68 25 6 1
al 135 212 233 134 56 22 1 2

=1 if has supp priv insurance and # of chronic

problems
=1 if 1
female 0 1 2 3 4 5 6 7
0 137 260 202 133 57 17 3 1

1 178 254 260 171 84 24 10

An alternative is to use tabulate with the by prefix, but the results are not as neat as
those from table.

The preceding tabulations will produce voluminous output if one of the variables
being tabulated takes on many values. Then it is much better to use table with the
contents () option to present tables that give key summary statistics for that variable,
such as the mean and standard deviation. Such tabulations can be useful even when
variables take on few values. For example, when summarizing the number of chronic
problems by gender, table yields

. * One-way table of summary statistics
. table female, contents(N totchr mean totchr sd totchr p50 totchr)

=1 if

female N(totchr) mean(totchr) sd(totchr) med (totchr)
0 1,288 1.659937888 1.261175 1
1 1,776 1.822635135 1.335776
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yomen On average have more chronic problems (1.82 versus 1.66 for men). The option

A . i i . .
) can produce many other statistics, including the minimum, maximum, and

contents(
Key percentlles.

The table command with the contents () option can additionally produce two-way
and multiway tables of summary statistics. As an example,

. % Two-way table of summary statistics
_ table female suppins, contents(N totchr mean totchr)

=1 if has supp priv
=1 if insurance
female 0 1
0 488 800
1.530737705 1.73875
it 795 981
1.803773585 1.837920489

shows that those with supplementary insurance on average have more chronic problems.
This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and two-
way tables with means, standard deviations, and frequencies. This is a small subset of
the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more
flexibility than summarize. The following output presents summary statistics on medical
expenditures and the natural logarithm of expenditures that are useful in determining
skewness and kurtosis.

. * Summary statistics obtained using command tabstat
. tabstat totexp ltotexp, stat (count mean p50 sd skew kurt) col(stat)

variable N mean p50 sd skewness kurtosis
totexp 3064 7030.889 3134.5 11852.75 4.165058 26.26796
ltotexp 2955 8.069866 8.111928 1.367592 -.3857887 3.842263

This reproduces information given in section 3.2.4 and shows that taking the natural
logarithm eliminates most skewness and kurtosis. The col(stat) option presents the
results with summary statistics given in the columns and each variable being given in
a separate row. Without this option, we would have summary statistics in rows and
variables in the columns. A two-way table of summary statistics can be obtained by
using the by () option.

(Continued on next page)
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3.2.6 Statistical tests

The ttest command can be used to test hypotheses about the population mean of a
single variable (Hg: p = p* for specified value p*) and to test the equality of means
(Ho: p1 = p2). For more general analysis of variance and analysis of covariance, the
oneway and anova commands can be used, and several other tests exist for more special-
ized examples such as testing the equality of proportions. These commands are rarely
used in microeconometrics because they can be recast as a special case of regression
with an intercept and appropriate indicator variables. Furthermore, regression has the
advantage of reliance on less restrictive distributional assumptions, provided samples
are large enough for asymptotic theory to provide a good approximation.

For example, consider testing the equality of mean medical expenditures for those
with and without supplementary health insurance. The ttest totexp, by (suppins)
unequal command performs the test but makes the restrictive assumption of a com-
mon variance for all those with suppins=0 and a (possibly different) common variance
for all those with suppins=1. An alternative method is to perform ordinary least-
squares (OLS) regression of totexp on an intercept and suppins and then test whether
suppins has coefficient zero. Using this latter method, we can permit all observations
to have a different variance by using the vce(robust) option for regress to obtain
heteroskedastic-consistent standard errors; see section 3.3.4.

3.2.7 Data plots

It is useful to plot a histogram or a density estimate of the dependent variable. Here
we use the kdensity comimand, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately $40,000 and a
maximum of $1,000,000. The kdensity totexp command will therefore bunch 97% of
the density in the first 4% of the z axis. One possibility is to type kdensity totexp
if totexp < 40000, but this produces a kernel density estimate assuming the data
are truncated at $40,000. Instead, we use command kdensity totexp, we save the
evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot
kdl against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and
we use graph combine to produce a figure that includes both density graphs (shown in
figure 3.1). We have

+ * Kernel density plots with adjustment for highly skewed data
. kdensity totexp if posexp==1, generate (kx1 kd1l) n(500)

. graph twoway (line kdl kx1) if kxl < 40000, name(levels)
. kdensity ltotexp if posexp==1, generate (kx2 kd2) n(500)
. graph twoway (line kd2 kx2) if kx2 < 1n(40000), name(logs)

. graph combine levels logs, iscale(1.0)

p—
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Figure 3.1. Comparison of densities of level and natural logarithm of medical expendi-

tures

Ounly positive expenditures are considered, and for graph readability, the very long
right tail of totexp has been truncated at $40,000. In figure 3.1, the distribution of
totexp is very right-skewed, whereas that of 1totexp is fairly symmetric.

3.3 Regression in levels and logs

We present the linear regression model, first in levels and then for a transformed de-
pendent variable, here in logs.

3.3.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let 68
denote the vector of parameters to be estimated, and let @ denote an estimator of 6.
Ideally, the distribution of 8 is centered on 6 with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for @, meaning that in infinitely large samples, 8 equals @ aside
from negligible random variation. This is denoted by 0 2 6 or more formally by (A
69, where 8y denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.
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Under additional assumptions, the estimators considered in this book are asymptot-
ically normally distributed, meaning that their distribution is well approximated by the
multivariate normal in large samples. This is denoted by

9 % N{6, Var(6)}

where Var(/é) denotes the (asymptotic) variance—covariance matrix of the estimator
(VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by 17(5) Standard errors of the
parameter estimates are obtained as the square root of diagonal entries in ?(@) Differ-
ent, assumptions about the data-generating process (DGP), such as heteroskedasticity,
can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi-squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the ¢ dis-
tribution and the F' distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but it may provide a better approxima-
tion in smaller samples.

3.3.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean
E(ylx) = x'B = fiz1 + far2 + -+ + BrTK (3.1)

where usually an intercept is included so that z; = 1. Here x is a K x 1 column vector
with the jth entry—the jth regressor z;-—and 8 is a K x 1 column vector with the jth

entry f3;.

Sometimes F(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),

OB _

8CC]'
for the jth regressor. For example, we are interested in the marginal effect of supple-
mentary private health insurance on medical expenditures. An attraction of the linear
model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive error so that, for the typical ith
observation,
v =x\84 u;, i=1,...,N

The OLS estimator minimizes the sum of squared errors, Zfil(yl —x13)2.

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the N x 1
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vector y to have the ith entry y;, and we define the N x K regressor matrix X

Cohlﬁln K ’ . . . .
he 2 TOW X, . en € estlmator can be written 111 several ways, witly
Le ith Tow x’. Then the OLS estimat be writt 1 ways, witl

4o have b

B=(XX)"XYy

N , . N
Zi:l g i Y
N 9 N N -1

Zi:1 Ty, Zi:l T1:T24 Zq’,:l T1:TKq Zi:l L1:Yq
N N 2 " N YA
| Y mamn Dl Ty : 2z T2l
N N o N e
> e TKiT14 v 3Tk 2 im1 TKiYi

We define all vectors as column vectors, with a transpose if row vectors are desired.
By contrast, Stata commands and Mata commands define vectors as row vectors, so in
parts of Stata and Mata code, we need to take a transpose to conform to the notation
in the book.

3.3.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGP. For
the linear regression model, this reduces to assumptions about the regression error u;.

The starting point for analysis is to assume that wu; satisfies the following classical
conditions:

1. E(u;|x;) = 0 (exogeneity of regressors)
2. E(u?|x;) = 0* (conditional homoskedasticity)

3. E(uujlxi,x;5) = 0, 1 # j, (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of B and implies that the condi-
tional mean given in (3.1) is correctly specified. This means that the conditional mean is
linear and that all relevant variables have been included in the regression. Assumption 1
is relaxed in chapter 6.

Assumptions 2 and 3 determine the form of the VCE of E)’ Assumptions 1-3 lead to
B being asymptotically normally distributed with the default estimator of the VCE

‘,}default (/@) . 52 (XIX) -t
where

$=(N-k™) (3.2)

"‘nd.@i =1y — xg,@ Under assumptions 1-3, the OLS estimator is fully efficient. If,
Elddltlonally, u; is normally distributed, then “¢ statistics” are exactly ¢ distributed. This
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fourth assumption is not made, but it is common to continue to use the ¢ distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5,
we present examples of more-efficient feasible generalized least-squares (FGLS) estima-
tion. In the current chapter, we continue to use the OLS estimator, as is often done in
practice, but we use alternative estimates of the VCE that are valid when assumption
2, assumption 3, or both are relaxed.

3.3.4 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

Viobust (B) = (X'X) - < g D, lixix ) (X'X) - (3.3)

For cross-section data that are independent, this estimator, introduced by White (1980),
has supplanted the default variance matrix estimate in most applied work because het-
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.

In Stata, a robust estimate of the VCE is obtained by using the vce (robust) option
of the regress command, as illustrated in section 3.4.2. Related options are vce (hc2)
and vce (he3), which may provide better heteroskedasticity-robust estimates of the VCE
when the sample size is small; see [R] regress. The robust estimator of the VCE has been
extended to other estimators and models, and a feature of Stata is the vce (robust) op-
tion, which is applicable for many estimation commands. Some user-written commands
use robust in place of vce(robust).

3.3.5 Cluster—robust standard errors

When errors for different observations are correlated, assumption 3 is violated. Then
both default and robust estimates of the VCE are invalid. For time-series data, this is
the case if errors are serially correlated, and the newey command should be used. For
cross-section data, this can arise when errors are clustered.

Clustered or grouped errors are errors that are correlated within a cluster or group
and are uncorrelated across clusters. A simple example of clustering arises when sam-
pling is of independent units but errors for individuals within the unit are correlated.
For example, 100 independent villages may be sampled, with several people from each
village surveyed. Then, if a regression model overpredicts y for one village member,
it is likely to overpredict for other members of the same village, indicating positive
correlation. Similar comments apply when sampling is of households with several indi-
viduals in each household. Another leading example is panel data with independence
over individuals but with correlation over time for a given individual.
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Given assumption 1, but not 2 or 3, a cluster—robust estimator of the VCE of the
OLS estimator is

-~

P (B) = (X) (G5 7 X, XX, ) (XX)

where g = 1, , G denotes the cluster (such as village), U, is the vector of residuals
for the obselvatlons in the gth cluster, and X, is a matrix of the regressors for the
observations in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G — oo.

Cluster—robust standard errors can be computed by using the vce(cluster clust-
par) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and
cluster—robust, because there is no restriction on Cov(ugs, ug;). The cluster VCE esti-
mate can be applied to many estimators and models; see section 9.6.

Cluster—robust standard errors must be used when data are clustered. For a scalar
regressor @, arule of thumb is that cluster—robust standard errors are V1 + pepu(M — 1)
times the incorrect default standard errors, where p, is the within-cluster correlation
coefficient of the regressor, p, is the within-cluster correlation coefficient of the error,
and A is the average cluster size.

It can be necessary to use cluster—robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macro variable, because then p, = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so A is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section 5.5.

3.3.6 Regression in logs

The medical expenditure data are very right-skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error
that is algo multiplicative, so y; = exp(x3)e;. Defining ¢; = exp(u;), we have y; =
exp(x;3 +- u;), and taking the natural logarithm, we fit the log-linear model

Iny, =x;B8+ w
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by OLS regression of Iny on x. The conditional mean of Iny is being modeled, rather
than the conditional mean of y. In particular,

E(nylx) =x'8

assuming u; is independent with conditional mean zero.

Parameter interpretation requires care. For regression of Iny on x, the coeflicient f3;
measures the effect of a change in regressor z; on E(Iny|x), but ultimate interest lies
instead on the effect on E(y|x). Some algebra shows that $; measures the proportionate
change in E(y|x) as x; changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if 8; = 0.02, then a one-unit change in z; is associated with a
proportionate increase of 0.02, or 2%, in E(y|x).

Prediction of E(y|x) is substantially more difficult because it can be shown that
E(lny|x) # exp(x’3). This is pursued in section 3.6.3.

3.4 Basic regression analysis

We use regress to run an OLS regression of the natural logarithm of medical expendi-
tures, 1totexp, on suppins and several demographic and health-status measures. Using
Iny rather than y as the dependent variable leads to no change in the implementation of
OLS but, as already noted, will change the interpretation of coefficients and predictions.

Many of the details we provide in this section are applicable to all Stata estimation
commands, not just to regress.

3.4.1 Correlations

Before regression, it can be useful to investigate pairwise correlations of the dependent
variables and key regressor variables by using correlate. We have

. * Pairwise correlations for dependent variable and regressor variables
. correlate ltotexp suppins phylim actlim totchr age female income

(obs=2955)
ltotexp suppins phylim actlim totchr age
ltotexp 1.0000
suppins 0.0941 1.0000
phylim 0.2924 -0.0243 1.0000
actlim 0.2888 -0.0676 0.5904 1.0000
totchr 0.4283 0.0124 0.3334 0.3260 1.0000
age 0.0858 -0.1226 0.2538 0.2394 0.0904 1.0000
female -0.0058 -0.0796 0.0943 0.0499 0.0557 0.0774
income 0.0023 0.1943 -0.1142 -0.1483 -0.0816 -0.1542
female income
female 1.0000
income -0.1312 1.0000

3.4.2 The regress command g7

yfedical expenditures are most lighly correlated with the health-status measures phylim,
;—icl‘- 14m, and totehr, The regressors are only weakly correlated with each other, aside
from the henlth-status measures. Note that correlate restricts analysis to the 2,955
ghservations where data arve available for all variables in the variable list. The related
pand pweorr, nol demonstrated, with the sig option gives the statistical signifi-

ol :
of the correlations.

eanee

3.4.2 The regress command

The regress command performs OLS regression and yields an analysis-of-variance table,
goodness—of—ﬁt statistics, coeflicient estimates, standard errors, ¢ statistics, p-values, and
confidence intervals. The syntax of the command is

regress depvar [indep’uars] [zf] [m] [weight] [, options]-

Other Stata estimation commands have similar syntaxes. The output from regress
is similar to that from many linear regression packages.

For independent cross-section data, the standard approach is to use the vce (robust)
option, which gives standard errors that are valid even if model errors are heteroskedas-
tic; see section 3.3.4. In that case, the analysis-of-variance table, based on the assump-
tion of homoskedasticity, is dropped from the output. We obtain

. % OLS regression with heteroskedasticity-robust standard errors
. regress ltotexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs = 2955
F(C 7, 2947) = 126.97
Prob > F = 0.0000
R-squared = 0.2289
Root MSE = 1.2023

Robust
ltotexp Coef.  Std. Err. t P>|t| [95% Conf. Intervall
suppins .2556428  .0465982 5.49  0.000 .1642744 .3470112
phylim .3020598 .067705 5.23 0.000 .1889136 .415206
actlim .3560054 .0634066 5.61 0.000 .2316797 .4803311
totchr .3758201 .0187185 20,08 0.000 .3391175 .4125228
age .0038016 .0037028 1,03 0.305 -.0034587 .011062
female -.0843275 .045654 -1,85 0.065 -.1738444 .0051894
income .0025498 .0010468 2,44 0.015 .0004973 .0046023
_cons 6.703737 .2825751 23.72  0.000 6.149673 7.257802

The regressors are jointly statistically significant, because the overall F' statistic of
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained
with R? = 0.2289. The root MSE statistic reports s, the standard error of the regression,
defined in (3.2). By using a two-sided test at level 0.05, all regressors are individually
statistically significant because p < 0.05, aside from age and female. The strong
statistical insignificance of age may be due to sample restriction to elderly people and
the inclusion of several health-status measures that capture well the health effect of age.
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Statistical significance of coefficients is easily established. More important is the eco-
nomic significance of coeflicients, meaning the measured impact of regressors on medical
expenditures. This is straightforward for regression in levels, because we can directly
use the estimated coefficients. But here the regression is in logs. From section 3.3.6, in
the log-linear model, parameters need to be interpreted as semielasticities. For example,
the coefficient on suppins is 0.256. This means that private supplementary insurance
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures.
Similarly, large effects are obtained for the health-status measures, whereas health ex-
penditures for women are 8.4% lower than those for men after controlling for other
characteristics. The income coeflicient of 0.0025 suggests a very small effect, but this
is misleading. The standard deviation of income is 22, so a 1-standard deviation in
income leads to a 0.055 proportionate rise, or 5.5% rise, in medical expenditurcs.

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding
interpretations are based on calculus methods that consider very small changes in the
regressor. For larger changes in the regressor, the finite-difference method is more
appropriate. Then the interpretation in the log-linear model is similar to that for the
exponential conditional mean model; see section 10.6.4. For example, the estimated
effect of going from no supplementary insurance (suppins=0) to having supplementary
insurance (suppins=1) is more precisely a 100 x (e%2%% — 1), or 29.2%, rise.

The regress command provides additional results that are not listed. In particular,
the estimate of the VCE is stored in the matrix e(V). Ways to access this and other
stored results from regression have been given in section 1.6. Various postestimation
commands enable prediction, computation of residuals, hypothesis testing, and model
specification tests. Many of these are illustrated in subsequent sections. Two useful
commands are

. * Display stored results and list available postestimation commands
. ereturn list

(output omitted )
. help regress postestimation

(output omitted )

3.4.3 Hypothesis tests

The test command performs hypothesis tests using the Wald test procedure that uses
the estimated model coefficients and VCE. We present some leading examples here, with
a more extensive discussion deferred to section 12.3. The F' statistic version of the Wald
test is used after regress, whereas for many other estimators the chi-squared version
is instead used.

A common test is one of equality of coefficients. For example, consider testing that
having a functional limitation has the same impact on medical expenditures as having
an activity limitation. The test of Hy: SBony1in — Sact1rin against Ho: Bonyrin # Bactlin 1S
implemented as
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. * Wald test of equality of coefficients
. quietly regress ltotexp suppins phylim actlim totchr age female
> income, vce(robust)
. test phylim = actlim
( 1) phylim - actlim = 0
F( 1, 2947)
Prob > F

0.27
0.6054

Because p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance
Jevel. There is no statistically significant difference between the coeflicients of the two

variables.

The model can also be fit subject to constraints. For example, to obtain the
least-squares estimates subject to Bony1in = Pact1in; we define the constraint using
constraint define and then fit the model using cnsreg for constrained regression
with the constraints() option. See exercise 2 at the end of this chapter for an exam-

ple.

Another common test is one of the joint statistical significance of a subset of the
regressors. A test of the joint significance of the health-status measures is one of Hy:
Bopyrin = 0, Bactiim = 0, Beotenr = 0 against H,: at least one is nonzero. This is
implemented as -

. * Joint test of statistical significance of several variables
. test phylim actlim totchr

( 1) phylim = 0
( 2) actlim =0
{ 3) totchr = 0
F( 3, 2947) = 272.36
Prob > F = 0.0000

These three variables are jointly statistically significant at the 0.05 level because p =
0.000 < 0.05.

3.4.4 Tables of output from several regressions

It is very useful to be able to tabulate key results from multiple regressions for both
one’s own analysis and final report writing.

The estimates store command after regression leads to results in e () being associ-
ated with a user-provided model name and preserved even if subsequent models are fit.
Given one or more such sets of stored estimates, estimates table presents a table of
regression coeflicients (the default) and, optionally, additional results. The estimates
stats command lists the sample size and several likelihood-based statistics.

We compare the original regression model with a variant that replaces income with
educyr. The example uses several of the available options for estimates table.

~
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. * Store and then tabulate results from multiple regressions
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. estimates store REG1

. quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)

. estimates store REG2

. estimates table REG1 REG2, b(%9.4f) se stats(N r2 F 11)
> keep(suppins income educyr)

Variable REG1 REG2
suppins 0.2556 0,2063
0.0466 0.0471
income 0.0025
0.0010
educyr 0.0480
0.0070
N 2955 2955
r2 0.2289 0.2406
F 126.9723 132.5337
11 -4.73e+03 -4.71e+03

legend: b/se

This table presents coefficients (b) and standard errors (se), with other available options
including ¢ statistics (t) and p-values (p). The statistics given are the sample size,
the R2, the overall F statistic (based on the robust estimate of the VCE), and the
log likelihood (based on the strong assumption of normal homoskedastic errors). The
keep () option, like the drop () option, provides a way to tabulate results for just the key
regressors of interest. Here educyr is a much stronger predictor than income, because it
is more highly statistically significant and R? is higher, and there is considerable change
in the coefficient of suppins.

3.4.5 Even better tables of regression output

The preceding table is very useful for model comparison but has several limitations. It
would be more readable if the standard errors appeared in parentheses. It would be
beneficial to be able to report a p-value for the overall F' statistic. Also some work may
be needed to import the table into a table format in external software such as Excel,
Word, or BTEX.

The user-written esttab command (Jann 2007) provides a way to do this, following
the estimates store command. A cleaner version of the previous table is given by
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. * Tabulate results using user-written command esttab to produce cleaner output
. esttab REG1 REG2, b(%10.4f) se scalars(N r2 F 11) mtitles
> keep(suppins income educyr) title("Model comparison of REG1-REG2")

Model comparison of REG1-REG2

(6] (2)
REG1 REG2
suppins 0.2556%** 0.2063**x*
(0.0466) (0.0471)
income 0.0025%
(0.0010)
educyr 0.0480%*x*
(0.0070)
N 2955 2955
r2 0.2289 0.2406
F 126.9723 132.5337
11 -4733.4476 -4710.9578

Standard errors in parentheses
* p<0.0b, #** p<0.01, #** p<0.001

Now standard errors are in parentheses, the strength of statistical significance is given
using stars that can be suppressed by using the nostar option, and a title is added.

The table can be written to a file that, for example, creates a table in I¥TEX.

. * Write tabulated results to a file in latex table format

. quietly esttab REG1 REG2 using musO3table.tex, replace b(%10.4f) se
> scalars(N r2 F 11) mtitles keep(suppins age income educyr _cons)

> title("Model comparison of REG1-REG2")

Other formats include .rtf for rich text format (Word), .csv for comma-separated
values, and .txt for fixed and tab-delimited text.

As mentioned earlier, this table would be better if the p-value for the overall F
statistic were provided. This is not stored in e(). However, it is possible to calculate
the p-value given other variables in e (). The user-written estadd command (Jann 2005)
allows adding this computed p-value to stored results that can then be tabulated with
esttab. We demonstrate this for a smaller table to minimize output.

. * Add a user-calculated statistic to the table
. estimates drop REG1 REG2

. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(zrobust)

. estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F))
(output omitted )
. estimates store REG1

. quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)
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% Factor variables for sets of indicator variables and interactions
. regress ltotexp suppins phylim actlim totchr age female c.income

. estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F)) : 3
> i.famsze c.income#i.famsze, vce(robust) noheader allbaselevels

(output omitted) e: 8.famsze#c.income omitted because of collinearit
not y
. estimates store REG2 note: 13.famsze#c.income omitted because of collinearity
. esttab REG1 REG2, b(%10.4f) se scalars(F pvalue) mtitles keep(suppins) .
Qbus
@) @ ltotexp Coef. Std. Err. t P>t [95% Conf. Intervall
— S suppins .2393808  .0466804 5.13  0.000 .1478511  ,3309104
_ phylim .3053458  .0575971 5.30  0.000 .192411 .4182807
suppins 02556+ 0.2063* actlim .3464812 0631655 5.49  0.000 . 2226279 ,4703345
(0.0466) (0.0471) totchr .3743755  .0187983  19.92  0.000 .3375162  .4112347
age .00313  ,0037607 0.83  0.405  -.0042438 .0105039
N 2955 £ female | -.0725641 0475022  -1.53 0.127  —-.1657051 0205769
B e SERRSSE income .0028057 0015684  1.79  0.074  -.0002695  .0058809
pvalue 0.0000 0.0000
famsze
Standard errors in parentheses 1 (base)
* p<0.05, ** p<0.01, *** p<0.001 2 .0759168  .0722829 1.05  0.294  -.0658145  .2176462
) ) ) 3 -.2180488  ,1310662  -1.66 0,096  -.4750399 .0389423
The estimates drop command saves memory by dropping stored estimates that are no a ~.2928383 1983967 -1.48  0.140 —.6818493 L0961727
longer needed. In particular, for large samples the sample inclusion indicator e (sample) 5 -393989  .4501513 0.88  0.382 -.4886557 1.276634
can take up much memor 6 -.3438142  ,4524585  -0.76 0.447  -1.230983 .5433545
p Y 7 -1.101773  .5046005  -2.18 0,029 -2.09118  -.1123653
- ) R X 8 .216274  .0625337 3.46  0.001 .0936596 .3388884
Re}ated user—yvntten commands by Jann (2095, 2007) are est'out, a richer but more 1 o 2t e G P 8
complicated version of esttab, and eststo, which extends estimates store. Several 13 -1.874285 .0T12566 -26.30  0.000 -2.014003  -1.734567
earlier user-written commands, notably, outreg, also create tables of regression output
but are generally no longer being updated by their authors. The user-written reformat . ii’:i;g#
command (Brady 2002) allows formatting of the usual table of output from a single 1 (base)
estimation command. 2 -.0012899  ,0020704  -0.62 0.533  -.0053495 .0027697
3 .004134  .0039464 1.056  0.295 -.003604 0118719
4 0160613  .0083284 1.93 0.054  -.0002688 .0323915
346 F iables f ical iabl di . 5 -.0251491 .017609  -1.43 0.1563  -.0596764 .0093781
4. actor variables for categorical variables and interactions 6 0280329 0227835 1.93  0.219  -.0166403 0797062
7 -.0324118  .0279151 -1.16  0.246 -.087147 .0223234
Suppose we wish to add as regressors to the regression model a set of indicator variables 8 (omitted)
for family size and this set of indicators interacted with income. From sections 1.3.4 ig ?1?520?1; s0L6361S - =L0adi = (R000 SE2OS el £26387
. . L . omitte
and 2.4.7, the factor variables i.famsze form a set of indicator variables based on
the nonnegative, integer-valued categorical variable famsze, and the factor variables _cons 6.748094  .3005551  22.45  0.000 6.158773  7.337414
c.incomet#i.famsze denote the continuous variable income interacted with the set of
indicators.

Here there are 10 possible indicator variables for family size (1-8, 10, and 13), and
the indicator for the lowest-valued of these (famsze = 1) is the base category that is
omitted from the regression. In principle, there should be as many interactions with
income included in the regression, but those corresponding to famsze equal to 8 and 13
are omitted because they are not identified for these data where only one observation

has famsze equal to 8 and only one has famsze equal to 13.

] We can test for joint significance of the sets of indicator variables, including their
literaction with income, with the following command:
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. * Test joint significance of sets of indicator variables and interactions
. testparm i.famsz c.income#i.famsze

(1) 2.famsze = 0
( 2) 3.famsze =0
( 3) 4.famsze =0
( 4) b.famsze = 0
( 5) 6.famsze = 0
( 6) 7.famsze =0
(7) 8.famsze = 0
( 8) 10.famsze = 0
( 9) 13.famsze =0

(10) 2.famsze#c.income = 0
(11) 3.famsze#c.income = 0
(12) 4.famsze#c.income = 0
(13) b5.famszef#tc.income = 0
(14) 6.famsze#tc.income = 0

=0

(15) 7.famsze#c.income
(16) 10.famsze#c.income = 0

F( 16, 2931) = 83.76
Prob > F = 0.0000

The sets of indicator variables for famsze are jointly statistically significant at level 0.05
because p = 0.00 < 0.05. The number of degrees of freedom is 16, so the additional two
omitted variables (interaction with income when famsze equals 8 or 13) were correctly
accounted for.

Calculation of the MEs with respect to income or family size will be complicated in
this model. We calculate MEs in section 3.6.2.

3.5 Specification analysis

The fitted model has R? = (.23, which is reasonable for cross-section data, and most re-
gressors are highly statistically significant with the expected coefficient signs. Therefore,
it is tempting to begin interpreting the results.

However, before doing so, it is useful to subject this regression to some additional
scrutiny because a badly misspecified model may lead to erroneous inferences. We
consider several specification tests, with the notable exception of testing for regressor
exogeneity, which is deferred to chapter 6.

3.5.1 Specification tests and model diagnostics

In microeconometrics, the most common approach to deciding on the adequacy of a
model is a Wald-test approach that fits a richer model and determines whether the data
support the need for a richer model. For example, we may add additional regressors to
the model and test whether they have a zero coefficient.

5.2 Residual diagnostic plots o5

3

Stata also presents the user with an impressive and bewildering menu of choices of
diagrostic checks for the currently litted regression; see [R] regress postestimation.
Some are specific to OLS regression, whereas others apply to most regression models.
Gome are visnal aids such as plots of residuals against fitted values. Some are diagnostic
statistics gueh as influence statisties that indicate the relative importance of individual
ahservalions. And some are formal tests that test for the failure of one or more assump-
iohs of the madel. We briefly present. plots and diagnostic statistics, before giving a
jengthier treatment of specilication tests.

3.5.2 Residual diagnostic plots

Diagnostic plots are used less in microeconometrics than in some other branches of
statistics, for several reasons. First, economic theory and previous research provide a
lot of guidance as to the likely key regressors and functional form for a model. Studies
rely on this and shy away from excessive data mining. Secondly, microeconometric
studies typically use large datasets and regressions with many variables. Many variables -
potentially lead to many diagnostic plots, and many observations make it less likely
that any single observation will be very influential, unless data for that observation are
geriously miscoded.

‘We consider various residual plots that can aid in outlier detection, where an outlier
is an observation poorly predicted by the model. One way to do this is to plot actual
values against fitted values of the dependent variable. The postestimation command
rvfplot gives a trarisformation of this, plotting the residuals u; = y; — 7; against the
fitted values y; = x;3. We have

. * Plot of residuals against fitted values
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. rvfplot

o o

Residuals
0

2

4

-6

a4
[-- T}
=

Fitted values

Figure 3.2, Residuals plotted against fitted values after OLS regression
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Figure 3.2 does not indicate any extreme outliers, though the three observations
with a residual less than —5 may be worth investigating. To do so, we need to generate
U by using the predict command, detailed in section 3.6, and we need to list some
details on those observations with & < —5. We have

. ¥ Details on the outlier residuals
. predict uhat, residual
(109 missing values generated)

. predict yhat, xb
. list totexp ltotexp yhat uhat if uhat < -5, clean

totexp ltotexp yhat uhat
1. 3  1.098612 7.254341  -6.155728
2. 6 1.791759  7.513358 -5.721598
3. 9 2.197225 7.631211  -5.433987

The three outlying residuals are for three observations with the very smallest total an-
nual medical expenditures of, respectively, $3, $6, and $9. The model evidently greatly
overpredicts for these observations, with the predicted logarithm of total expenditures
(vhat) much greater than 1totexp.

Stata provides several other residual plots. The rvpplot postestimation command
plots residuals against an individual regressor. The avplot command provides an added-
variable plot, or partial regression plot, that is a useful visual aid to outlier detection.
Other commands give component-plus-residual plots that aid detection of nonlinearities
and leverage plots. For details and additional references, see [R] regress postestima-
tion.

3.5.3 Influential observations

Some observations may have unusual influence in determining parameter estimates and
resulting model predictions.

Influential observations can be detected using one of several measures that are large
if the residual is large, the leverage measure is large, or both. The leverage measure
of the ith observation, denoted by h;, equals the ith diagonal entry in the so-called
hat matrix H = X(X'X) ~*X. If h; is large, then y; has a big influence on its OLS
prediction ¥; because ¥ = Hy. Different measures, including h;, can be obtained by
using different options of predict.

A commonly used measure is dfits;, which can be shown to equal the (scaled) differ-
ence between predictions of y; with and without the ith observation in the OLS regression
(so dfits means difference in fits). Large absolute values of dfits indicate an influential
data point. One can plot dfits and investigate further observations with outlying values
of dfits. A rule of thumb is that observations with |dfits| > 24/k/N may be worthy of
further investigation, though for large datasets this rule can suggest that many obser-
vations are influential.

5.4 Specification tests N
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The dfits option of predict can be used after regress provided that regression
. with default standard errors because the underlying theory presumes homoskedastic
is

er1oLs: We have

. * Compute dfits that combines outliers and leverage
. quietly regress ltotexp suppins phylim actlim totchr age female income

. predict dfits, dfits
(109 missing values generated)

_ scalar threshold = 2#*sqrt((e(df_m)+1)/e(N))

. display "dfits threshold = " ¥%6.3f threshold
dfits threshold = 0.104

. tabstat dfits, stat (min pl p5 p95 p99 max) format(%9.3f) col(stat)
variable min pl p5 P95 P99 max

dfits -0.421 -0.147 -0.083 0.085 0.127 0.221

. list dfits totexp ltotexp yhat uhat if abs(dfits) > 2*threshold & e(sample),

> clean

dfits  totexp ltotexp yvhat uhat

1. .2319179 3 1.098612  7.254341  -6.155728

2, .3002994 6 1.791769 7.5133568 -5.721598

3: . 2765266 9 2.197225  7.631211 -5.433987
10. .2170063 30 3.401197  8.348724  -4.947527

42, .2612321 103 4.634729 7.57982  -2.945091

44. 4212185 110 4.70048  8.993904  -4.293423

108. 2326284 228  5.429346  7.971406 -2.54206

114, -.2447627 239  5.476463  7.946239 -2.469776

137. -.2177336 283  5.645447  7.929719  -2.284273

211, -.211344 415  6.028278  8.028338 -2.00006

2925, .2207284 62346 11.04045 8.660131 2.380323

Here over 2% of the sample has |dfits| greater than the suggested threshold of 0.104.
But only 11 observations have |dfits| greater than two times the threshold. These
correspond to observations with relatively low expenditures, or in one case, relatively
high expenditures. We conclude that no observation has unusual influence.

3.5.4 Specification tests

Formal model-specification tests have two limitations. First, a test for the failure of
a specific model asstumption may not be robust with respect to the failure of another
assumption that is not under test. For example, the rejection of the null hypothesis
of homoskedasticity may be due to a misspecified functional form for the conditional
mean. An example is given in section 3.5.5. Second, with a very large sample, even
trivial deviations from the null hypothesis of correct specification will cause the test to
reject the null hypothesis. For example, if a previously omitted regressor has a very
small coefficient, say, 0.000001, then with an infinitely large sample the estimate will be
sufficiently precise that we will always reject the null of zero coefficient.
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Test of omitted variables

The most common specification test is to include additional regressors and test whether
they are statistically significant by using a Wald test of the null hypothesis that the
coefficient is zero. The additional regressor may be a variable not already included, a
transformation of a variable(s) already included such as a quadratic in age, or a quadratic
with interaction terms in age and education. If groups of regressors are included, such
as a set of region dummies, test can be used after regress to perform a joint test of
statistical significance.

In some branches of biostatistics, it is common to include only regressors with p <
0.05. In microeconometrics, it is common instead to additionally include regressors that
are statistically insignificant if economic theory or conventional practice includes the
variable as a control. This reduces the likelihood of inconsistent parameter estimation
due to omitted-variables bias at the expense of reduced precision in estimation.

Test of the Box—Cox model

A common specification-testing approach is to fit a richer model that tests the current
model as a special case and perform a Wald test of the parameter restrictions that lead
to the simpler model. The preceding omitted-variable test is an example.

Here we consider a test specific to the current example. We want to decide whether
a regression model for medical expenditures is better in logs than in levels. There is no
obvious way to compare the two models because they have different dependent variables.
However, the Box—Cox transform leads to a richer model that includes the linear and
log-linear models as special cases. Specifically, we fit the model with the transformed

dependent variable
0 _

5 1
gy, 0) = le =x.0+u;

where 6 and 3 are estimated under the assumption that u; ~ N(0,0?). Three leading
cases are 1) g(y,0) =y —1if 0 = 1; 2) g(y,0) = Iny if 6 = 0; and 3) g(y,0) =1~ 1/y
if § = —1. The log-linear model is supported if 9 is close to 0, and the linear model is
supported if 8 = 1.

The Box—Cox transformation introduces a nonlinearity and an additional unknown
parameter # into the model. This moves the modeling exercise into the domain of
nonlinear models. The model is straightforward to fit, however, because Stata provides
the boxcox command to fit the model. We obtain
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« Boxcox model with lhs variable transformed
poxcox totexp suppins phylim actlim totchr age female income if totexp>0, nolog
Fitting comparison model

Fitting full model

Number of obs = 2955
LR chi2(7) = 773.02
Log likelihood = -28518.267 Prob > chi2 = 0.000
totexp Coef.  Std. Err. z P>|z| [95% Conf. Intervall
/theta .0758956 .0096386 7.87 0.000 .0570042 .0947869
Estimates of scale-variant parameters
Coef.
Notrans
suppins .4459618
phylim .B77317
actlim .6905939
totchr .6754338
age .0051321
female -.1767976
income . 0044039
_cons 8.930566
/sigma 2.189679
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
theta = -1 -37454.643 17872.75 0.000
theta = 0 -28550.353 64.17 0,000
theta = 1 -31762.809 6489.08 0.000

The null hypothesis of § = 0 is strongly rejected, so the log-linear model is rejected.
However, the Box—Cox model with general ¢ is difficult to interpret and use, and the
estimate of § = 0.0759 gives much greater support for a log-linear model (6 = 0) than
the linear model (# = 1). Thus we prefer to use the log-linear model.

Test of the functional form of the conditional mean

The linear regression model specifies that the conditional mean of the dependent variable
(whether measured in levels or in logs) equals x}3. A standard test that this is the
correct specification is a variable augmentation test. A common approach is to add
bowers of §; = x;/3, the fitted value of the dependent variable, as regressors and a test
for the statistical significance of the powers.

The estat ovtest postestimation command provides a RESET test that regresses y

%{Il x and 2, 7%, and 7%, and jointly tests that the coefficients of 72, 73, and y* are zero.
e have
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- * Variable augmentation test of conditional mean using estat ovtest

- quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. estat ovtest
Ramsey RESET test using powers of the fitted values of ltotexp
Ho: model has no omitted variables
F(3, 2944) = 9.04
Prob > F = 0.0000

The model is strongly rejected because p = 0.000.

An alternative, simpler test is provided by the linktest command. This regresses y

on § and 72, where now the original model regressors x are omitted, and it tests whether
the coefficient of 42 is zero. We have

. * Link test of functional form of conditional mean

- quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. linktest
Source 88 df MS Number of obs = 2955
F( 2, 2952) = 454.81
Model 1301.41696 2 650.708481 Prob > F = 0.0000
Residual 4223.47242 2952 1.43071559 R-squared = 0.2356
Adj R-squared = 0.2350
Total 5524.88938 2954 1.87030785 Root MSE = 1.1961
ltotexp Coef . Std. Err, t P>t [95% Conf. Intervall
_hat 4.429216 .6779517 6.53 0,000 3.09991 5.758522
_hatsq -.2084091 .0411515 -5.06  0.000 -.2890976  -.1277206
_cons -14.01127  2.779936 -5.04 0,000 -19.46208 -8.56046

Again the null hypothesis that the conditional mean is correctly specified is rejected.

A likely reason is that so few regressors were included in the model, for pedagogical
reasons.

The two preceding commands had different formats. The first test used the estat
ovtest command, where estat produces various statistics following estimation and the
particular statistics available vary with the previous estimation command. The second
test used linktest, which is available for a wider range of models.

Heteroskedasticity test

One consequence of heteroskedasticity is that default OLS standard errors are incorrect.

This can be readily corrected and guarded against by routinely using heteroskedasticity-
robust standard errors.

Nonetheless, there may be interest in formally testing whether heteroskedasticity is
present. For example, the retransformation methods for the log-linear model used in
section 3.6.3 assume homoskedastic errors. In section 5.3, we present diagnostic plots
for heteroskedasticity. Here we instead present a formal test.
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3.5.4

ite general model of heteroskedasticity is
Aqu

Var(y|x) = h(oq + 2’ o)

) is a positive monotonic function such as exp(-) and the variables in z are

wheré h(: f the variables in x. Tests for heteroskedasticity are tests of

functions ©
}{02(123: 0

n be shown to be independent of the choice of function h() We reJ.'ect. HO. at

wirl if the test statistic exceeds the o critical value of a chl—squared.dlstrlbutlon
the a X \ w of freedom equal to the number of components of z. The test is performed
with t'k-:g-:?lw.estat hettest postestitnation command. The simplest version is the
by HS.I?;?‘ Pa :-au Lagrange multiplier test, which is equal to N times the unpentered
Ihlm'"\" ]- | qain of sr;nm'(-rs from the regression of the squared residuals on an intercept
"'\.P“m“{;-‘l: use the iid option to obtain a different version of the test that relaxes the
““;.lll:l.l gsstumption that the errors are normally distributed.

ane cft

de .
Geveral choices of the components of z are possible. By far, -tllle besti choice lls Fo
. variables that are a priori likely determinants of heteroslfedastlmty. For example, in
Ube-‘a ing the level of earnings on several regressors including years of schooling, it is
l"egllesil}?ai those with many years of schooling have the greatest variability in earnings.
lsliilfcandidates rarely exist. Instead, standard choices are to use the OLS ﬁtt‘ed, value
7, the default for estat hettest, or to use all the Iegressors S0 z = X. W}élte s tes(g
f(;r heteroskedasticity is equivalent to letting z equal unique terms in the products an
cross products of the terms in x.

We consider z = 7 and z = x. Then we have

. * Heteroskedasticity tests using estat hettest and option iid )
quietly regress ltotexp suppins phylim actlim totchr age female income
. estat hettest, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of ltotexp

chi2(1) B 32.87
Prob > chi2 =  0.0000

. estat hettest suppins phylim actlim totchr age female income, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance )
Variables: suppins phylim actlim totchr age female income

chi2(7) = 93.13
Prob > chi2 = 0.0000
Both versions of the test, with z = § and with z = x, have p = 0.0000 and strongly
reject homoskedasticity.
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Omnibus test

An alternative to separate tests of misspecification is an omnibus test, which is a joint
test of misspecification in several directions. A leading example is the information ma.
trix (IM) test (see section 12.7), which is a test for correct specification of a fully para-
metric model based on whether the IM equality holds. For linear regression with norma)
homoskedastic errors, the IM test can be shown to be a joint test of heteroskedasticity,
skewness, and nonnormal kurtosis compared with the null hypothesis of homoskedas-
ticity, symmetry, and kurtosis coefficient of 3; see Hall (1987).

The estat imtest postestimation command computes the joint IM test and also
splits it into its three components. We obtain

. * Information matrix test
. quietly regress ltotexp suppins phylim actlim totchr age female income

. estat imtest

Cameron & Trivedi’s decomposition of IM-test

Source chi2 df P
Heteroskedasticity 139.90 31 0.0000
Skewness 35.11 7 0.0000
Kurtosis 11.96 1 0.0005
Total 186.97 39 0.0000

The overall joint TM test rejects the model assumption that y ~ N(x'8,02I), because
p = 0.0000 in the Total row. The decomposition indicates that all three assumptions
of homoskedasticity, symmetry, and normal kurtosis are rejected. Note, however, that
the decomposition assumes correct specification of the conditional mean. If instead the
mean is misspecified, then that could be the cause of rejection of the model by the M
test.

3.5.56 Tests have power in more than one direction

"Tests can have power in more than one direction, so that if a test targeted to a particular
type of model misspecification rejects a model, it is not necessarily the case that this
particular type of model misspecification is the underlying problem. For example, a test
of heteroskedasticity may reject homoskedasticity, even though the underlying cause
of rejection is that the conditional mean is misspecified rather than that errors are
heteroskedastic.

To illustrate this example, we use the following simulation exercise. The DGP is one
with homoskedastic normal errors

yi = exp(140.25 X z; + 4 x 22) + u;,
Ti ~ U(O, 1), U; ~ N(O, 1)
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nstead fit a model with a misspecified conditional mean function:

We i
y=Bo+ Pz + fox® +

We consider a simulation with a sample size of 50. We generate the regressors and
the dependent variable by using commands detailed in section 4.2. We obtain

. % Simulation to show tests have power in more than one direction
. clear all

. set obs 50

obs was 0, now 50

. set seed 10101

. geperate x = runiform() // % -~ uniform(0,1)
. gemerate u = rnormal() // u ~ N(O,1)

., generate y = exp(l + 0.25*x + 4%x72) + u

. generate xsq = x"2

. regress y X xsq

Source SS df MS Number of obs = 50
F( 2, 47) = 168.27

Model 76293.9057 2 38146.9528 Prob > F = 0.0000
Residual 10654.8492 47 226.698919 R-squared = 0.8775
Adj R-squared = 0.8722

Total 86948.7549 49 1774.46438 Root MSE = 15.057

y Coef.  Std. Err, t P>{t] [95% Conf. Intervall

X -228.8379 29.3865 -7.79  0.000 -287.9559  -169.7199

xsq 342.7992  28.71815 11,94  0.000 285.0258 400.5727
_cons 28.68793  6.605434 4.34  0.000 15.39951 41.97635

The misspecified model seems to fit the data very well with highly statistically significant
regressors and an R? of 0.88.

Now consider a test for heteroskedasticity:

. * Test for heteroskedasticity
. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of y

chi2(1) = 22.70
Prob > chi2 = 0.0000

This test strongly suggests that the errors are heteroskedastic because p = 0.0000, even
though the DaP had homoskedastic errors.

(Continued on next page)
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The problem is that the regression function itself was misspecified. A RESET tegt
yields

- * Test for misspecified conditional mean
. estat ovtest

Ramsey RESET test using powers of the fitted values of y
Ho: model has no omitted variables
F(3, 44) = 2702.16
Prob > F = 0.0000

This strongly rejects correct specification of the conditional mean because p = 0.0000.

Going the other way, could misspecification of other features of the model lead to
rejection of the conditional mean, even though the conditional mean itself was cor-
rectly specified? This is an econometrically subtle question. The answer, in general, ig
yes. However, for the linear regression model, this is not the case essentially because
cousistency of the OLS estimator requires only that the conditional mean be correctly
specified.

3.6 Prediction

For the linear regression model, the estimator of the conditional mean of y given x = Xp,
E(ylx,) = x3,/3, is the conditional predictor Y= x;ﬁ. We focus here on prediction for
each observation in the sample. We begin with prediction from a linear model for medical
expenditures, because this is straightforward, before turning to the log-linear model.

Further details on prediction are presented in section 3.7, where weighted average
prediction is discussed, and in sections 10.5 and 10.6, where many methods are pre-
sented.

3.6.1 In-sample prediction

The most common type of p ‘cdiction is in-sample, ~where evaluation is at the observed
regressor values for each obser ~tion. Then §; = x; 8 predicts E(y;|x;) fori =1, ... ,N.

To do this, we use predict fter regress. The syntax for predict is

predict [type] newvar [zf] [m] [, optz'ons]

The user always provides a name for the created variable, newvar. The default option is
the prediction g;. Other options yield residuals (usual, standardized, and studentized),
several leverage and influential observation measures, predicted values, and associated
standard errors of prediction. We have already used some of these options in section 3.5.
The predict command can also be used for out-of-sample prediction. When used for
in-sample prediction, it is good practice to add the if e(sample) qualifier, because this
ensures that prediction is for the same sample as that used in estimation.
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7o consider prediction based on a linear regression model in levels rather than logs.
e : : .
\S oin by reporting the regression results with totexp as the dependent variable.
We bes
+ Change dependent variable to level of positive medical expenditures
) use mus03data.dta, clear

. >0
. keep if totexp
(109 observations deleted)

regress totexp suppins phylim actlim totchr age female income, vce(robust)

pimens TegReseien FC T, 2940 = a0
Prob > F = 0.0000
R-squared = 0.1163
Root MSE = 11285

Robust
totexp Coef.  Std. Err. t P>|t| [95% Conf. Intervall
suppins 724.8632 427.3045 1.70 0.090 -112.9824 1662.709
phylim 2389.019 544.3493 4.39 0.000 1321.675 3456.362
actlim 3900.491 705.2244 5.53 0.000 2517.708 5283.273
totchr 1844.377 186.8938 9.87 0.000 1477.921 2210.832
age -86.36264 37.81868 -2.26 0,024 -1569.5163 -11.20892
female -1383.29 432.4759 -3.20 0,001 -2231.275 -535.3044
income 6.46894  8.570658 0.75 0.450 -10.33614 23.27402
_cons 8358.954 2847.802 2.94 0.003 2775.07 13942.84

We then predict the level of medical expenditures:

. * Prediction in model linear in levels
. predict yhatlevels
(option xb assumed; fitted values)

. summarize totexp yhatlevels

Variable | Obs Mean Std. Dev. Min Max
totexp 2955 7290.235 11990.84 3 125610
yhatlevels 2955 7290.235 4089.624 -236.3781 22559

The summary statistics show that on average the predicted value yhatlevels equals
the dependent variable. This suggests that the predictor does a good job. But this is
misleading because this is always the case after OLS regression in a model with an inter-
cept, since then residuals sum to zero implying 3 y; = > 3i. The standard deviation
of yhatlevels is $4,090, so there is some variation in the predicted values.

For this example, a more discriminating test is to compare the median predicted
and actual values. We have

- * Compare median prediction and median actual value
- tabstat totexp yhatlevels, stat (count p50) col(stat)

variable N p50
totexp 2955 3334
yhatlevels 2955 6464.692
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There is considerable difference between the two, a consequence of the right-skewness
of the original data, which the linear regression model does not capture.

The stdp option provides the standard error of the prediction, and the stdf option
provides the standard error of the prediction for each sample observation, provided the
original estimation command used the default VCE. We therefore reestimate without
vce(robust) and use predict to obtain

. * Compute standard errors of prediction and forecast with default VCE
. quietly regress totexp suppins phylim actlim totchr age female income

. predict yhatstdp, stdp
. predict yhatstdf, stdf
. summarize yhatstdp yhatstdf

Variable ] Obs Mean Std. Dev. Min Max
yhatstdp 2955 572.7 129.6575  393.5964 2813.983
yhatstdf 2955 11300.52 10.50946 11292.12 11630.8

The first quantity views xi,@ as an estimate of the conditional mean x3 and is quite
precisely estimated because the average standard deviation is $573 compared with an
average prediction of $7,290. The second quantity views x;3 as an estimate of the actual
value y; and is very imprecisely estimated because y; = x}8 + u;, and the error u; here
has relatively large variance because the levels equation has s = 11285.

More generally, microeconometric models predict poorly for a given individual, as
evidenced by the typically low values of R? obtained from regression on cross-section
data. These same models may nonetheless predict the conditional mean well, and it is
this latter quantity that is needed for policy analysis that focuses on average behavior.

3.6.2 MEs and elasticities

The computation of MEs and elasticities using the postestimation margins command,
introduced in Stata 11, is detailed in section 10.6 in the context of nonlinear models.
Here we provide a brief summary for the linear model after OLS regression.

The margins command calculates predictions (with no option), marginal effects
(with the dydx () option), and elasticities (with the eyex() option). These can be eval-
uated at the sample average values and then averaged (the default option), or evaluated
at the sample means of the regressors (with the atmean option), or evaluated at specified
values of the regressors (with the at() option). The margins command also produces
associated standard errors and confidence intervals.

The default for the margins command is to obtain predictions, MEs, and elasticities
for the quantity that is the default for the postestimation predict command. For
many estimation commands, including regress, this is the conditional mean. Then the
margins, dydx() command computes for each regressor the derivative 0F(y|x)/0z.
For binary indicator variables that explicitly enter the regression as factor variables,
margins instead computes the finite difference AE(y|x)/Ax.
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~r the linear model, the estimated ME of the jth regressor is Bj. As a result, the
' argins, dydx(income) reproduces the slope coefficients, associated stan-

an¢l confidence intervals for the regressor income; the command margins,
es 50 for all regressors. Therefore, there is often no need to use margins to

I
:'ulm'mul‘l m

(Im‘f'l AYTOIS,

dydx{*) do

compite the ME.

Once interactions between variables are introduced, however, computation of the

\E becomes murelc‘nmplic:at.f:'rl. ‘I"'or example, the effect of a change in income on
the i1|»¢-.11icl.m.l eonditional mean ol 1totexp will be quite burdensome in the model of
oction 3.4.6, where income is interacfed with sets of indicator variables for family
;mﬂm However, margins takes care of this automatically, provided that we use factor

variables to define the key varialles in the original regression. Continuing the example
of section 3.4.0, but with the dependent variable now totexp rather than ltotexp and

using the full sample, we have

. # Compute the average marginal effect in model with interactions
. quietly regress totexp suppins phylim actlim totchr age female c.income
> i.famsze c.income#i.famsze, vce(robust) noheader allbaselevels

. margins, dydx(income)

Average marginal effects Number of obs = 3064
Model VCE : Robust

Expression : Linear prediction, predict()

dy/dx w.r.t. : income

Delta-method
dy/dx  Std. Err. z P>|z]| [95% Conf. Intervall

income 3.893248 8.387865 0.46 0.643 -12.54667 20.33316

By comparison, for the simpler model of section 3.6.1, running margins, dydx(income)
gives an ME of 6.469 with a standard error of 8.571.

In this example, the average ME is obtained; that is, the ME for each individual
observation is calculated and then they are averaged. Alternative points at which to
evaluate the ME are detailed in section 10.6.

Another use of the margins command is to compute elasticities (and semielasticities).
The elasticity of y with respect to z is dy/0x x (z/y). Because the elasticity can be
rewritten as (9y/y)/(dz/x), it is interpreted as the proportionate change in y divided
by the proportionate change in .

To compute the elasticity, we use the eyex() option of the margins command. The
fiefault is to compute the sample average elasticity, but usually there is no intrinsic
nterest in this quantity because it is a nonlinear transformation of the ME. Instead,
1t is more useful to evaluate the elasticity at a specific value of the regressors; most
simply, at the sample mean of the regressors by using the atmean option. For example,
to obtain the elasticity of totexp with respect to variable totchr in the model above,
with evaluation at the sample means of totchr and the regressors, we type the following
commands:

S
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. * Compute elasticity for a specified regressor
. quietly regress totexp suppins phylim actlim totchr age female income,
> vce(robust)

. margins, eyex(totchr) atmean

Conditional marginal effects Number of obs = 3064
Model VCE : Robust
Expression : Linear prediction, predict()
ey/ex w.r.t. : totchr
at : suppins = .56812663 (mean)
phylim = .4255875 (mean)
actlim = .2836162 (mean)
totchr - 1.754243 (mean)
age = 74.17167 (mean)
female = .5796345 (mean)
income = 22.47472 (mean)
Delta-method
ey/ex  Std. Err. z P>|z]| [95% Conf. Intervall
totchr .4839724 .0433653 11.16 0.000 .398978 .5689668

A 1% increase in chronic problems is associated with a 0.48% increase in medical ex-
penditures. The eyex(*) option computes elasticities for all regressors.

3.6.3 Prediction in logs: The retransformation problem

Transforming the dependent variable by taking the natural logarithm complicates pre-
diction. It is easy to predict E(lny|x), but we are instead interested in E(y|x) because
we want to predict the level of medical expenditures rather than the natural logarithm.
The obvious procedure of predicting Iny and taking the exponential is wrong because

exp{E(Iny)} # E(y), just as, for example, \/F(y?) # E(y).

The log-linear model Iny = x’8 + u implies that y = exp(x'83) exp(u). It follows
that
E(yi|x:) = exp(x;B8) E{exp(us)}

The simplest prediction is exp(xg,@), but this is wrong because it ignores the multiple
E{exp(u;)}. If it is assumed that u; ~ N(0,02), then it can be shown that E{exp(u;)} =
exp(0.50%), which can be estimated by exp(0.552), where 52 is an unbiased estimator
of the log-linear regression model error. A weaker assumption is to assume that u;
is independent and identically distributed, in which case we can consistently estimate
E{exp(u;)} by the sample average N1 Z;vﬂ exp(U;); see Duan (1983).

Applying these methods to the medical expenditure data yields

. * Prediction in levels from a logarithmic model
. quietly regress ltotexp suppins phylim actlim totchr age female income

. quietly predict lyhat
. generate yhatwrong = exp{(lyhat)
. generate yhatnormal = exp(lyhat)*exp(0.5%e(rmse) 2)

Prediction exercise ™

3.6.4

., quietly predict uhat, residual

; generate expuhat = exp(uhat)

. quietly summarize expuhat

. generate yhatduan = r(mean)*exp(lyhat)

_ summarize totexp yhatwrong yhatnormal yhatduan yhatlevels

Variable Obs Mean Std. Dev. Min Max
totexp 2955 7290,235 11990.84 3 125610
yhatwrong 2965 4004.453 3303.555 959.5991 37726.22
yhatnormal 2955 8249.927 6805.945 1976.955 77723.13
yhatduan 2955 8005.522 6604.318 1918.387 75420.57
yhatlevels 2955 7290.235 4089.624 -236.3781 22559

Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong
Las a mean of $4,004 compared with the sample mean of $7,290." The two alterna-
tive methods yield much closer average values of $8,250 and $8,006. Furthermore, the
predictions from log regression, compared with those in levels, have the desirable fea-
ture of always being positive and have greater variability. The standard deviation of
yhatnormal, for example, is $6,806 compared with $4,090 from the levels model.

3.6.4 Prediction exercise

There are several ways that predictions can be used to simulate the effects of a policy
experiment. We consider the effect of a binary treatment, whether a person has supple-
mentary insurance, on medical expenditure. Here we base our predictions on estimates
that assume supplementary insurance is exogenous. A more thorough analysis could
instead use methods that more realistically permit insurance to be endogenous. As we
discuss in section 6.2.1, a variable is endogenous if it is related to the error term. Our
analysis here assumes that supplementary insurance is not related to the error term.

An obvious comparison is to compare the difference in sample means (7, — To)s
where the subscript 1 denotes those with supplementary insurance and the subscript
0 denotes those without supplementary insurance. This measure does not control for
individual characteristics. A measure that does control for individual characteristics is
the difference in mean predictions @1 75\0), where, for example, ;?1 denotes the average
prediction for those with health insurance.

We implement the first two approaches for the complete sample based on OLS re-
gression in levels and in logs. We obtain

(Continued on next page)
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. * Predicted effect of supplementary insurance: methods 1 and 2
. bysort suppins: summarize totexp yhatlevels yhatduan

-> suppins = 0
Variable Obs Mean Std. Dev, Min Max
totexp 1207 6824.303 11425.94 9 104823
yhatlevels 1207 6824.303 4077.064 -236.3781 20131.43
yhatduan 1207 6745.959 5365.255 1918.387 64981.73

-> suppins = 1
Variable Obs Mean Std. Dev. Min Max
totexp 1748 7611.963 12368.83 3 125610
yhatlevels 1748 7611.963 4068.397 502.9237 225659
yhatduan 1748 8875.2565 7212.993 2618.538 75420.57

The average difference is $788 (from 7612 — 6824) using either the difference in sample
means or the difference in fitted values from the linear model. Equality of the two
is a consequence of OLS regression and prediction using the estimation sample. The
log-linear model, using the prediction based on Duan’s method, gives a larger average
difference of $2,129 (from 8875 — 6746).

A third measure is the difference between the mean predictions, one with suppins
set to 1 for all observations and one with suppins = 0. For the linear model, this is
simply the estimated coefficient of suppins, which is $725.

For the log-linear model, we need to make separate predictions for each individual
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions
in levels from the log-linear model assuming normally distributed errors. To make these
changes and after the analysis have suppins returned to its original sample values, we
use preserve and restore (see section 2.5.2). We obtain

. * Predicted effect of supplementary insurance: method 3 for log-linear model
. quietly regress ltotexp suppins phylim actlim totchr age female income

. preserve
. quietly replace suppins = 1

. quietly predict lyhatl

. generate yhatnormall = exp(lyhatl)*exp(0.5%e(rmse) 2)
. quietly replace suppins = 0

. quietly predict lyhatO

. generate yhatnormalO = exp(lyhat0)*exp(0.5%e(rmse)"2)
. generate treateffect = yhatnormall - yhatnormalO

. summarize yhatnormall yhatnormalO treateffect

Variable Obs Mean Std. Dev. Min Max
yhatnormall 2955 9077.072 7313.963 2552.825 77723.13
yhatnormalO 2955 7029.453 5664.069 1976.955 60190.23
treateffect 2955 2047.619 1649.894 575.8701 17532.91

. restore
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While the average treatment effect of $2,048 is considerably larger than that obtained
by using the difference in sample means of the linear model, it is comparable to the
estimate produced by Duan’s method.

3.7 Sampling weights

The analysis to date has presumed simple random sampling, where sample observations
have been drawn from the population with equal probability. In practice, however,
many microeconometric studies use data from surveys that are not representative of
the population. Instead, groups of key interest to policy makers that would have too
few observations in a purely random sample are oversampled, with other groups then
undersampled. Examples are individuals from racial minorities or those with low income
or living in sparsely populated states.

As explained below, weights should be used for estimation of population means and
for postregression prediction and computation of MEs. However, in most cases, the -
regression itself can be fit without weights, as is the norm in microeconometrics. If
weighted analysis is desired, it can be done using standard commands with a weighting
option, which is the approach of this section and the standard approach in microecono-
metrics. Alternatively, one can use survey commands as detailed in section 5.5.

3.7.1 Weights

Sampling weights are provided by most survey datasets. These are called probability
weights or pweights in Stata, though some others call them inverse-probability weights
because they are inversely proportional to the probability of inclusion of the sample. A
pweight of 1,400 in a survey of the U.S. population, for example, means that the obser-
vation is representative of 1,400 U.S. residents and the probability of this observation
being included in the sample is 1/1400.

Most estimation commands allow probability weighted estimators that are obtained
by adding [pweight=weight], where weight is the name of the weighting variable.

To illustrate the use of sampling weights, we create an artificial weighting variable
(sampling weights are available for the MEPS data but were not included in the data
extract used in this chapter). We manufacture weights that increase the weight given to
those with more chronic problems. In practice, such weights might arise if the original
sampling framework oversampled people with few chronic problems and undersampled
people with many chronic problems. In this section, we analyze levels of expenditures,
including expenditures of zero. Specifically,

(Continued on next page)
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« * Create artificial sampling weights
+ use musO3data.dta, clear

+ generate swght = totchr~2 + 0.5
- summarize swght

Variable [ Obs Mean Std. Dev. Min Max

swght ‘ 3064 5.285574 6.029423 .5 49.5

What matters in subsequent analysis is the relative values of the sampling weights rather
than the absolute values. The sampling weight variable swght takes on values from 0.5

to 49.5, so weighted analysis will give some observations as much as 49.5 /0.5 = 99 times
the weight given to others.

Stata offers three other types of weights that for most analyses can be ignored.
Analytical weights, called aweights, are used for the quite different purpose of compen-
sating for different observations having different variances that are known up to scale;
see section 5.3.4. For duplicated observations, fweights provide the number of dupli-

cated observations. So-called importance weights, or iweights, are sometimes used in
more advanced programming.

3.7.2 Weighted mean

If an estimate of a population mean is desired, then we should clearly weight. In this
example, by oversampling those with few chronic problems, we will have oversampled
people who on average have low medical expenditures, so that the unweighted sample
mean will understate population mean medical expenditures.

Let w; be the population weight for individual 3. Then, by defining W = Zfil w;
to be the sum of the weights, the weighted mean Gy, is

T
yVV B W Z W;Y,
=1
with variance estimator (assuming independent observations) V(yw) ={l/W(W - 1)}

Zi]\;1 wi(y: — Yw)?. These formulas reduce to those for the unweighted mean if equal
weights are used.

The weighted mean downweights oversampled observations because they will have a

value of pweights (and hence w;) that is smaller than that for most observations. We
have

- * Calculate the weighted mean
- mean totexp [pweight=swght]

Mean estimation Number of obs = 3064
Mean  Std. Err. [95% Conf. Interval]
totexp 10670.83  428.5148 9830.62 115611.03

3.7.

3 Weighted regression .

3.7.

:shted mean of $10,671 is much larger than the unweighted mean of $7,03.1 (see
¥ Welg 2.4) because the unweighted mean does not adjust for the oversampling of
.ls with few chronic problems.

Th
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3 Weighted regression

he W eighted least-squares estimator for the regression of y; on x; with the weights w;
rI‘ he J

R b
is given bY N

—1
. N o s
Bw = E i:quiXﬁXﬁ g Wi iYi .

The OLS estimator is the special case of equal weights with w; = w; for gl} 1 and j.

default estimator of the VCE is a weighted version of the heteroslkedastlcmy—1‘obust
Th~e~jon in (3.3), which assumes independent observations. If observations are clustered,
Z’Ei;l the option vce(cluster clustvar) should be used.

Although the weighted estimator is easily obtained, for legitimate reasons many

nicroeconometric analyses do not, use weighted regression even where sa,mp%ing weights
111‘e available. We provide a brief explanation of this conceptually difficult issue. For a
;nore complete discussion, see Cameron and Trivedi (2005, 818-821).

Weighted regression should be used if a census parameter estima'te is desired. For
example, suppose we want to obtain an estimate for the US populathn o.f the average
change in earnings associated with one more year of schooling. T.hen,.lf disadvantaged
minorities are oversampled, we most likely will understate the earnings increase, becaus.e
disadvantaged minorities are likely to have earnings that are lower than average for their
given level of schooling. A second example is when aggregate state-level data are used
in a natural experiment setting, where the goal is to measure the (?f.fect of an exogenous
policy change that affects some states and not other states. Intultlvel}'f, the 1mpact.on
more populous states should be given more weight. Note that these estimates are being
given a correlative rather than a causal interpretation.

Weighted regression is not needed if we make the stronger assumptions that the DGP
is the specified model y; = %3 + u; and suflicient controls are assumed. to be added
so that the error E(uq|x;) = 0. This approach, called a control—func.tlon aPpl‘oach
or a model approach, is the approach usually taken in microeconometric studies that
emphasize a causal interpretation of regression. Under the assumption the.Lt E(ul|xz) e
0, the weighted least-squares estimator will be consistent for 3 for any ch01.ce of wglghts
including equal weights, and if u; is homoskedastic, the most efficient estimator is the
OLS estimator, which uses equal weights. For the assumption that E(u;|x;) = 0 to be
reasonable, the determinants of the sampling frame should be included in the controls
x and should not be directly determined by the dependent variable y.

These points carry over directly to nonlinear regression models. In most cases, mi—
Croeconometric analyses take on a model approach. In that case, unweighted estimation
is appropriate, with any weighting based on efficiency grounds. If a census-parameter
approach is being taken, however, then it is necessary to weight.
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For our data example, we obtain

. * Perform weighted regression
. regress totexp suppins phylim actlim totchr age female income [pweight=swght]
(sum of wgt is  1.6195e+04)

Linear regression Number of obs = 3064
F( 7, 3056) = 14.08
Prob > F = 0.0000
R-squared = 0.0977
Root MSE = 13824

Robust
totexp Coef. std. Err. t P>|tl [95% Conf. Intervall
suppins 278.15678  825.6959 0.34 0.736 -1340.818 1897.133
phylim 2484.62  933.7118 2.66 0.008 653.7541 4315.286
actlim 4271.154  1024.686 4.17  0.000 2262.011 6280.296
totchr 1819.929  349.2234 5.21 0,000 1135.193 2504.666
age -59.3125  68.01237 -0.87 0.383 -192.6671 74.04212
female -2654.432 911.6422 -2.91  0.004 -4441.926 -866.9381
income 5.042348 16.6509 0.30 0,762 -27.60575 37.69045
_cons 7336.758  5263.377 1.39 0.163 -2983.359 17656.87

The estimated coeflicients of all statistically significant variables aside from female are
within 10% of those from unweighted regression (not given for brevity). Big differences
between weighted and unweighted regression would indicate that E(u;|x;) # 0 because
of model misspecification. Note that robust standard errors are reported by default.

3.7.4 Weighted prediction and MEs

After regression, unweighted prediction will provide an estimate of the sample-average
value of the dependent variable. We may instead want to estimate the population-mean
value of the dependent variable. Then sampling weights should be used in forming an
average prediction.

This point is particularly easy to see for OLS regression. Because 1 /N>y —
7:) = 0, because in-sample residuals sum to zero if an intercept is included, the average
prediction 1/N )", 9; equals the sample mean 7. But given an unrepresentative sample,
the unweighted sample mean 7 may be a poor estimate of the population mean. Instead,
we should use the weighted average prediction 1/N > Wili, even if ; is obtained by
using unweighted regression.

For this to be useful, however, the prediction should be based on a model that
includes as regressors variables that control for the unrepresentative sampling,.
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For our example, we obtain the weighted prediction by typing

+ Weighted prediction
] quietly predict yhatwols

_ mean yhatwols [pweight=swght], noheader

Mean  Std. Err. [95% Conf. Intervall

yhatwols 10670.83 138.0828 10400.08 10941.57

_ mean yhatwols, noheader // unweighted prediction

Mean  Std. Err. [95% Conf. Intervall]

yhatwols 7135.206  78.57376 6981.144 7289.269

The population mean for medical expenditures is predicted to be $10,671 using weighted
prediction, whereas the unweighted prediction gives a much lower value of $7,135.

Weights similarly should be used in computing average MEs. For the -1inear. model,
the standard ME OF (y;|x;)/0z;; equals B; for all observations, so Weightm-g will make
no difference in computing the marginal effect. Weighting will make a filfference for
averages of other marginal effects, such as elasticities, and for MEs in nonlinear models.

3.8 OLS using Mata

Stata offers two different ways to perform computations using matrices: Stata matrix
commands and Mata functions (which are discussed, respectively, in appendices A

and B).

Mata, introduced in Stata 9, is much richer. We illustrate the use of Mata by using
the same OLS regression as that in section 3.4.2.

The program is written for the dependent variable provided in the local macro y and
the regressors in the local macro x1ist. We begin by reading in the data and defining
the local macros.

. * OLS with White robust standard errors using Mata
. use mus03data.dta, clear

. keep if totexp > 0 // Analysis for positive medical expenditures only
(109 observations deleted)

. generate cons = 1
- local y 1ltotexp
. local xlist suppins phylim actlim totchr age female income cons

We then move into Mata. The st_view() Mata function is used to transfer the Stata
data variables to Mata matrices y and X, with tokens("") added to convert “xlist”
t0 a comma-separated list with each entry in double quotes, necessary for st_view().
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The key part of the program forms 8 = (X'X)~'X'y and YA/(,@) = (N/N - K)
(X'X)H(3, ufx;x})(X'X) L. The cross-product function cross(X,X) is used to form
X'X because this handles missing values and is more efficient than the more obvious X’ .
The matrix inverse is formed by using cholinv() because this is the fastest method in
the special case that the matrix is symmetric positive definite. We calculate the K x K
matrix )., uZx;x; as y_,(u;x})'(U;x}) = A’A, where the N x K matrix A has an ith
row equal to u;x}. Now u;x} equals the ith row of the N x 1 residual vector U times the
1th row of the N x K regressor matrix X, so A can be computed by element-by-element
multiplication of 1 by X, or (e:*X), where e is u. Alternatively, > . u?x;x; = X'DX,
where D is an N x N diagonal matrix with entries %2, but the matrix D becomes
exceptionally large, unnecessarily so, for a large N.

The Mata program concludes by using st matrix() to pass the estimated B and

V(B) back to Stata.

. mata

mata (type end to exit)
// Create y vector and X matrix from Stata dataset

st_view(y=., ., "y™") // y is nx1
st_view(X=., ., tokens(" xlist ")) // X is nxk
XXinv = cholinv(cross(X,X)) // ¥Xinv is inverse of X°X

b = XXinv*cross(X,y) // b= [(XX)"-11*X"y

e =y - X¥b

n = rows(X)

k = cols(X)

s2 = (e"e)/(n-k)

vdef = s2#XXinv // default VCE not used here
vwhite = XXinvx((e:*X) " (e:#X)*n/(n-k))*XXinv // robust VCE

! st_matrix("b",b")

// pass results from Mata to Stata
st_matrix("V",vwhite) // pass results from Mata to Stata

: end

Once back in Stata, we use ereturn to display the results in a format similar to that
for built-in commands, first assigning names to the columns and rows of b and V.

. * Use Stata ereturn display to present nicely formatted results

. matrix colnames b = “xlist~
, matrix colnames V = “xlist~
+ matrix rownames V = “xlist~

. ereturn post b V
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ereturn display

Coef. Std. Err. z P>zl [95% Conf. Intervall

suppins .2556428 ,0465982 5.49 0,000 .1643119 .3469736
phylim .3020598 .057705 5.23 0.000 .18896 .4151595
actlim .3560054 . 0634066 5.61 0.000 .2317308 .48028
totchr .3758201 ,0187185 20.08 0,000 .3391326 .4125077
age .0038016 .0037028 1.03 0.305 -.0034558 .011059
female -.0843275 .045654 -1.85 0.065 -.1738076 .00651526
jncome .0025498 .0010468 2.44 0,015 .0004981 .0046015
cons 6.703737 .2825751 23.72 0.000 6.1499 7.257575

The results are exactly the same as those given in section 3.4.2, when we used regress
with the vce (robust) option. '

3.0 Stata resources

The key Stata references are [U] User’s Guide and [R] regress, [R] regress postes-
timation, [R] estimates, [R] predict, and [R] test. A useful user-written command
is estout. The material in this chapter appears in many econometrics texts, such as

Greene (2008).

3.10 Exercises

1. Fit the model in section 3.4 using only the first 100 observations. Compute stan-
dard errors in three ways: default, heteroskedastic, and cluster—robust where
clustering is on the number of chronic problems. Use estimates to produce a
table with three sets of coefficients and standard errors, and comment on auy
appreciable differences in the standard errors. Construct a similar table for three
alternative sets of heteroskedasticity-robust standard errors, obtained by using the
vce (robust), vece(hc2), and vce(he3) options, and comment on any differences
between the different estimates of the standard errors.

2. T'it the model in section 3.4 with robust standard errors reported. Test at 5%
the joint significance of the demographic variables age, female, and income. Test
the liypothesis that being male (rather than female) has the same impact on
medical expenditures as aging 10 years. Fit the model under the constraint that
Bptylin = Pact1in Dy first typing constraint 1 phylim = actlim and then by using
cnsreg with the constraints(1) option.

3. Fit the model in section 3.5, and implement the RESET test manually by regressing
yon x and 32, %, and §* and jointly testing that the coefficients of 2, 7°, and 7*
are zero. To get the same results as estat ovtest, do you need to use default or
robust estimates of the VCE in this regression? Comment. Similarly, implement
linktest by regressing y on ¥ and %% and testing that the coefficient of 72 is
zero. To get the same results as 1inktest, do you need to use default or robust
estimates of the VCE in this regression? Comment.
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Fit the model in section 3.5, and perform the standard Lagrange multiplier test
for heteroskedasticity by using estat hettest with z = x. Then implement the
test manually as 0.5 times the explained sum of squares from the regression of yr
on an intercept and z;, where y; = {u?/(1/N)Y ;U5} — 1 and @; is the residual
from the original OLS regression. Next use estat hettest with the iid option
and show that this test is obtained as N x R2, where R2 is obtained from the
regression of 47 on an intercept and z;.

Fit the model in section 3.6 on levels, except use all observations rather than
those with just positive expenditures, and report robust standard errors. Predict
medical expenditures. Use correlate to obtain the correlation coefficient between
the actual and fitted value and show that, upon squaring, this equals R2. Show
that for the linear model margins with the dydx(*) option reproduces the OLS
coefficients. Now use margins with an appropriate option to obtain the average
income elasticity of medical expenditures.

Fit the model in section 3.6 on levels, using the first 2,000 observations. Use these
estimates to predict medical expenditures for the remaining 1,064 observations,
and compare these with the actual values. Note that the model predicts very
poorly in part because the data were ordered by totexp.




