IBM1088 Linguagens Formais e Teoria da Computação

Linguagens e Gramáticas

Evandro Eduardo Seron Ruiz evandro@usp.br

Universidade de São Paulo

Frase do dia

Sofremos muito com o pouco que nos falta e gozamos pouco o muito que temos.

William Shakespeare^a

^aDramaturgo e poeta inglês (1564 – 1616).

Preâmbulo

Objetivo deste tópico:

- Definir formalmente dois conceitos, linguagem e gramática
- Preparar outros conceitos e propriedades para o estudo das linguagens formais

Conteúdo

- Alfabeto
- Palavra
- 3 Linguagem formal
- Gramática

Linguagem

O que é:

Para CC^a sabemos que é um conceito (+ a ferramenta embutida) fundamental em Computação, no processamento da informação e na Informática.

^aMesmo antes de definir formalmente o que é linguagem.

Linguagem segundo Aurélio

Definição

A linguagem é o uso da palavra articulada, ou escrita, como meio de expressão, ou comunicação entre pessoas.

Linguagem segundo Aurélio

Definição

A linguagem é o uso da palavra articulada, ou escrita, como meio de expressão, ou comunicação entre pessoas.

- Definição ampla, pouco clara para Ciências Exatas
- Insuficiente para o estudo de linguagens em Computação
- Falta formalismo (Álgebra, Matemática, um modelo)
- Não permite o desenvolvimento lógico (algébrico, matemático)

Linguagem: início da definição

Vamos então definir linguagem através de dois outros conceitos:

Alfabeto

Palavra

Alfabeto

Definição

Um alfabeto é um conjunto finito de símbolos ou caracteres.

Alfabeto

Definição

Um alfabeto é um conjunto finito de símbolos ou caracteres.

Portanto:

- Um conjunto infinito não é um alfabeto
- Um conjunto vazio (∅) é um alfabeto

São exemplos de alfabetos:

- $\{a, b, c\}$
- {}
- $\bullet \ A = \{ \forall x \in \mathbb{N} \mid x \le 10 \}$

São exemplos de alfabetos:

- $\{a, b, c\}$
- {}
- $A = \{ \forall x \in \mathbb{N} \mid x \le 10 \}$

Não são exemplos de alfabetos:

- N
- {*a*, *ab*, *aa*, *ab*, *bb*, *aaa*, . . .}

São exemplos de alfabetos:

- $\{a, b, c\}$
- {}
- $A = \{ \forall x \in \mathbb{N} \mid x \leq 10 \}$

Não são exemplos de alfabetos:

- N
- {*a*, *ab*, *aa*, *ab*, *bb*, *aaa*, . . .}

Representação

 Σ é normalmente usado para representar um alfabeto, o conjunto dos símbolos usados na linguagem.

Exercício em sala: 1 minuto

Qual é o alfabeto da linguagem de programação C?

Alfabeto e linguagem de programação

O alfabeto de uma linguagem de programação, como a linguagem **C**, é o conjunto de todos os símbolos usados na construção de programas, tais como:

- Letras;
- Dígitos;
- Caracteres especiais; e
- Espaço em branco

Alfabeto e linguagem de programação

O alfabeto de uma linguagem de programação, como a linguagem **C**, é o conjunto de todos os símbolos usados na construção de programas, tais como:

- Letras;
- Dígitos;
- Caracteres especiais; e
- Espaço em branco

Alfabeto binário

 $\Sigma = \{a, b\}$. Usaremos muito este alfabeto. Similar ao alfabeto real de hardware binário baseado em 0 e 1. Facilita o desenvolvimento de abordagens relacionadas a LFA.

Palavra

Definição

Uma palavra (ou cadeia de caracteres) sobre um alfabeto é uma seqüência finita de símbolos justapostos do alfabeto.

Notem que, pela definição acima, uma cadeia sem símbolos é uma palavra válida.

Notação: $\epsilon=$ palavra vazia ou cadeia vazia

Prefixo e sufixo

Definição

Um prefixo de uma palavra é qualquer seqüência inicial de símbolos da palavra.

Prefixo e sufixo

Definição

Um prefixo de uma palavra é qualquer seqüência inicial de símbolos da palavra.

Definição

Um sufixo de uma palavra é qualquer seqüência final de símbolos da palavra.

- abcd é uma palavra sobre $\Sigma = \{a, b, c, d\}$
- ϵ , a, ab, abc, abcd são prefixos na palavra abcd
- ullet $\epsilon, d, cd, bcd, abcd$ são sufixos na palavra abcd

- abcd é uma palavra sobre $\Sigma = \{a, b, c, d\}$
- ϵ , a, ab, abc, abcd são prefixos na palavra abcd
- ullet $\epsilon, d, cd, bcd, abcd$ são sufixos na palavra abcd

Definição

Uma subpalavra de uma palavra é qualquer seqüência de símbolos contíguos da palavra.

Portanto, qualquer prefixo ou sufixo é uma subpalavra.

Outro exemplo!!!

Palavra

Considerando uma linguagem de programação como **C**, um um programa é uma palavra.

Concatenação de palavras

Definição

A concatenação de palavras, ou simplesmente concatenação, é uma operação binária, definida sobre um conjunto de palavras, a qual associa a cada par de palavras uma palavra formada pela justaposição da primeira com a segunda.

Exemplo de concatenação

Suponha o alfabeto $\Sigma = \{a, b\}$. Suponha as palavras v = baaaa e w = bb.

Vale que:

• vw = baaaabb

Exemplo de concatenação

Suponha o alfabeto $\Sigma = \{a, b\}$. Suponha as palavras v = baaaa e w = bb.

Vale que:

- vw = baaaabb
- $v\epsilon = v = baaaa$

Exemplo de concatenação

Suponha o alfabeto $\Sigma = \{a, b\}$. Suponha as palavras v = baaaa e w = bb.

Vale que:

- vw = baaaabb
- $v\epsilon = v = baaaa$

Usamos aqui duas propriedades da concatenação:

Elemento neutro $\epsilon w = w \epsilon = w$

Associatividade
$$v(wt) = (vw)t$$

Concatenação sucessiva

Definição

A concatenação sucessiva de uma palavra, representada na forma de um expoente de uma palavra (e.g.: 'w'), ou seja:

 w^n , tal que, n é o número de concatenações sucessivas,

é definida indutivamente como:

- $w^0 = \epsilon$
- $w^n = ww^{n-1}$, para n > 0

Percebam como ϵ é realmente uma palavra em Σ .

Sejam: a um símbolo de Σ , w uma palavra e $n \in \mathbb{N}$. Então:

- $w^3 = www$
- $w^1 = w$
- \bullet $a^n = \underline{aaaa...a}$

Importante!

Notações importantes

Se Σ representa um alfabeto, então:

- Σ^* denota o conjunto de todas as palavras possíveis em Σ ; e

Conjunto de todas as palavras

Definição

Seja Σ um alfabeto. Então o conjunto de todas as palavras, Σ^* , é indutivamente definido como:

Base da indução:

$$\epsilon \in \Sigma^*$$

$$\forall x \in \Sigma, \ x \in \Sigma^*$$

Passo da indução

Se \underline{u} e \underline{v} são palavras em Σ^* então a concatenação $\underline{u}\underline{v}$ é uma palavra em Σ^* .

Definição alternativa

Definição de palavra

Assim, uma definição alternativa para palavra ou sentença sobre um alfabeto Σ é qualquer elemento w de Σ^* , ou seja,

$$w \in \Sigma^*$$

Considerando $\Sigma = \{a, b\}$, então:

- $\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, \ldots\}$
- $\bullet \ \Sigma^* = \{\epsilon, \textit{a}, \textit{b}, \textit{aa}, \textit{ab}, \textit{ba}, \textit{bb}, \textit{aaa}, \ldots\}$

Comprimento de uma palavra

Definição

O comprimento, ou tamanho, de uma palavra w, representado por |w|, é o número de símbolos que compõem a palavra.

Comprimento de uma palavra

Definição

O comprimento, ou tamanho, de uma palavra w, representado por |w|, é o número de símbolos que compõem a palavra.

- Representação do comprimento da palavra w: |w|
- Domínio: Σ*
- Imagem: N

- |abcd| = 4• $|\epsilon| = 0$

Linguagem formal

Definição

Uma linguagem formal, ou simplesmente uma linguagem L definida sobre um alfabeto Σ , é um conjunto de palavras sobre Σ , ou seja,

$$L\subseteq \Sigma^*$$

Lembrando... Σ^* são as palavras possíveis, incluindo ϵ .

Lembrando...

Palíndromo

Um palíndromo é uma palavra, ou qualquer outra sequência símbolos, cujo significado pode ser interpretado igualmente se lida tanto da direita para a esquerda como da esquerda para a direita.

Exemplos: anilina, Renner, 'A cara rajada da jararaca'.

• Σ^* e Σ^+ são linguagens sobre Σ . Lembrando que

$$\Sigma^* \neq \Sigma^+$$

• Σ^* e Σ^+ são linguagens sobre Σ . Lembrando que

$$\Sigma^*
eq \Sigma^+$$

• Seja $\Sigma = \{a, b\}$, então o conjunto de palíndromos sobre Σ é um exemplo de linguagem infinita.

São palavras desta linguagem ϵ , a, b, aa, bb, aba, bab, aaa, . . .

• Σ^* e Σ^+ são linguagens sobre Σ . Lembrando que

$$\Sigma^*
eq \Sigma^+$$

- Seja $\Sigma = \{a, b\}$, então o conjunto de palíndromos sobre Σ é um exemplo de linguagem infinita.
 - São palavras desta linguagem ϵ , a, b, aa, bb, aba, bab, aaa, . . .
- Uma linguagem de programação

• Σ^* e Σ^+ são linguagens sobre Σ . Lembrando que

$$\Sigma^*
eq \Sigma^+$$

- Seja $\Sigma = \{a,b\}$, então o conjunto de palíndromos sobre Σ é um exemplo de linguagem infinita.
 - São palavras desta linguagem ϵ , a, b, aa, bb, aba, bab, aaa, \dots
- Uma linguagem de programação
- \varnothing e $\{\epsilon\}$ são linguagens sobre qualquer alfabeto. Saibam que:

$$\emptyset \neq \{\epsilon\}$$

Diferença conceitual entre \varnothing e $\{\epsilon\}$

• Imaginem uma palavra: abab

Diferença conceitual entre \varnothing e $\{\epsilon\}$

- Imaginem uma palavra: abab
- $abab = abab\epsilon$

Diferença conceitual entre \varnothing e $\{\epsilon\}$

- Imaginem uma palavra: abab
- abab = ababe
- Imaginem a leitura, caracter a caracter, desta palavra
- Existirá o momento da leitura de ϵ , o final da cadeia
- ∅ é a ausência de palavra
- ullet $w=\epsilon$ é a palavra vazia, mas é uma palavra

Diferença conceitual entre \varnothing e $\{\epsilon\}$, continua

- Imaginem a linguagem $L = \{a, ab, abab\}$
- $\epsilon \notin L$, ou seja, a cadeia vazia não faz parte de L

Diferença conceitual entre \varnothing e $\{\epsilon\}$, continua

- Imaginem a linguagem $L = \{a, ab, abab\}$
- $\epsilon \notin L$, ou seja, a cadeia vazia não faz parte de L
- Mas, como em todo conjunto, $\varnothing \in L$
- $2^L = \{\emptyset, \{a\}, \{ab\}, \{aab\}, \{aab\}, \{aabab\}, \{a, ab, abab\}\}$

Gramática: definição informal

É basicamente um conjunto finito de regras para gerar palavras. O conjunto de todas as palavras geradas pela gramática define uma linguagem.

Assim...

- Um programa = palavra
- Conjunto de todas as palavras de uma gramática de uma LP = Linguagem de programação

Assim...

- Um programa = palavra
- Conjunto de todas as palavras de uma gramática de uma LP = Linguagem de programação
- Conjunto de todos os programas (e.g.: Na linguagem C)
- Porém, esta não é uma definição formalmente adequada, ou algebricamente ideal para o estudo de LFA

Gramática

Definição

Uma gramática de Chomsky, ou uma gramática irrestrita, aqui denotada por G, é uma quádrupla ordenada

$$G=(V,T,P,S)$$

em que

- V é um conjunto de símbolos não terminais
- ullet T é um conjunto de símbolos terminais, para T disjunto de V
- $P: (V \cup T)^+ \to (V \cup T)^*$ é uma relação finita chamada de relação de produções. Cada par é denominado regra de produção ou produção
- S é um elemento de V denominado símbolo inicial.

Em termos práticos... Nem tanto!

Uma regra de produção pode ser representada como:

$$\alpha \to \beta$$

Um grupo de regras de produção da forma

$$\alpha \to \beta_1$$
; $\alpha \to \beta_2$; ...; $\alpha \to \beta_n$

e pode ser abreviado como:

$$\alpha \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

Em termos práticos... Nem tanto!

Uma regra de produção pode ser representada como:

$$\alpha \to \beta$$

Um grupo de regras de produção da forma

$$\alpha \to \beta_1$$
; $\alpha \to \beta_2$; ...; $\alpha \to \beta_n$

e pode ser abreviado como:

$$\alpha \to \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

Importante!

As regras de produção definem as condições de geração das palavras da linguagem.

Derivação: informalmente

Derivação

A aplicação de uma regra de produção é denominada derivação de uma **palavra** e é formalmente definida como um par de uma relação.

Derivação: informalmente

Derivação

A aplicação de uma regra de produção é denominada derivação de uma **palavra** e é formalmente definida como um par de uma relação.

Nota:

A aplicação sucessiva de regras de produção (Fecho Transitivo da Relação de Derivação) permite derivar as palavras da linguagem representada pela gramática.

Relação de derivação

Definição

Seja G = (V, T, P, S) uma gramática. Uma derivação é um par da relação de derivação denotada por \Rightarrow com domínio em $(V \cup T)^+$ e imagem (codomínio) $(V \cup T)^*$ a.

Um par $\langle \alpha, \beta \rangle$ da relação de derivação é representado na forma infixa como:

$$\alpha \Rightarrow \beta$$
.

Esta relação é definida como:

$$^{a}(V \cup T)^{+} \Rightarrow (V \cup T)^{*}$$

próximo slide...

Relação de derivação: continua...

Definição

Esta relação é definida como:

• Para toda produção na forma $S \to \beta$, (S símbolo inicial em G) o seguinte par pertence a relação de derivação

$$S \Rightarrow \beta$$

• Para todo par $\eta \Rightarrow \rho \ \alpha \ \sigma$ da relação de derivação, se $\alpha \to \beta$ é regra de P, então o seguinte par também pertence à relação de derivação

$$\eta \Rightarrow \rho \beta \sigma$$

Vemos que uma derivação é a substituição de uma subpalavra de acordo com uma regra de produção.

Notem que:

- Existe uma derivação que é um par de $(V \cup T)^+ \Rightarrow (V \cup T)^*$
- Um par da relação de derivação $\langle \alpha, \beta \rangle$ é representado por $\alpha \Rightarrow \beta$;
- Esta relação é definida através de regras de produção na forma inicial $S \to \beta$

Uma coisa é uma coisa, outra coisa é...

Derivação A derivação de uma cadeia é conseqüência da aplicação de regras de produção que transformam um símbolo inicial nesta cadeia.

A derivação prova que a cadeia pertence a linguagem descrita pela gramática.

Regras de produção É a definição da regra de derivação.

Passos de derivação

Os sucessivos passos de derivação são definidos como:

- →* Fecho transitivo e reflexivo da relação ⇒, ou seja, zero ou mais passos sucessivos de derivação;
- ⇒⁺ Fecho transitivo da relação ⇒, ou seja, um ou mais passos sucessivos de derivação;
- \Rightarrow^i Exatos *i* passos de derivações sucessivas, $i \in \mathbb{N}$.

Linguagem gerada

Definição

Seja G = (V, T, P, S) uma gramática. A linguagem gerada por G, denotada por L(G), é composta por todas as palavras de símbolos terminais deriváveis a partir do símbolo inicial S, ou seja,

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Exemplo

Suponha G = (V, T, P, S) uma gramática capaz de gerar qualquer número natural válido. Assim G, na qual:

- $V = \{N, D\}$, símbolos não terminais
- $T = \{0, 1, 2, \dots, 9\}$, símbolos terminais
- $P = \{N \to D, N \to DN, D \to 0 \mid 1 \mid \dots \mid 9\}$

gera, sintaticamente, \mathbb{N} .

Perceba que *G* gera distintamente 0123 e 123

Regra × Passo da derivação

Passo da derivação	Regra usada
$N \Rightarrow$	N o DN
$DN \Rightarrow$	D o 2
$2N \Rightarrow$	N o DN
$2DN \Rightarrow$	D o 4
24 <i>N</i> ⇒	N o D
24 <i>D</i> ⇒	$D \rightarrow 3$
243	

Existe alguma outra derivação para 243?

Regra × Passo da derivação

Passo da derivação	Regra usada
$N \Rightarrow$	N o DN
$DN \Rightarrow$	D o 2
$2N \Rightarrow$	N o DN
$2DN \Rightarrow$	D o 4
24 <i>N</i> ⇒	N o D
24 <i>D</i> ⇒	$D \rightarrow 3$
243	

Existe alguma outra derivação para 243? Portanto, indica-se que:

- ⇒* 243
- ⇒⁺ 243
- $\bullet \Rightarrow$ 6 243

Outro exemplo

Seja $G = (\{S, X, Y, A, B, F\}, \{a, b\}, P, S)$ uma gramática na qual:

$$P = \{S \rightarrow XY, \ X \rightarrow XaA \mid XbB \mid F \ Aa \rightarrow aA, Ab \rightarrow bA, AY \rightarrow Ya, \ Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb, \ Fa \rightarrow aF, Fb \rightarrow bF, FY \rightarrow \epsilon\}.$$

 ${\it G}$ gera a linguagem cujas palavras são tais que a primeira metade é igual a segunda metade, ou seja,

$$\{ww \mid w \text{ \'e palavra de } \{a, b\}^*\}$$

Veja a seguir:

Regra imes Passo da derivação para a palavra ${f baba}$

Passo da derivação	Regra usada
$S \Rightarrow$	$S \rightarrow XY$
$XY \Rightarrow$	X o XaA
$XaAY \Rightarrow$	AY o Ya
$XaYa \Rightarrow$	X o XbB
$XbBaYa \Rightarrow$	Ba ightarrow aB
$XbaBYa \Rightarrow$	BY o Yb
$XbaYba \Rightarrow$	$X \rightarrow F$
FbaYba ⇒	Fb o bF
$bFaYba \Rightarrow$	Fa ightarrow aF
$baFYba \Rightarrow$	$FY \rightarrow \epsilon$
baba	

Exercício em sala: 5 minutos

Existe alguma outra derivação para baba?

Palavra final

Caros,

Teremos mais na próxima aula, inclusive exercícios.

Estudem, pois novos conceitos dependerão dos conceitos estudados hoje.