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3.1 Introduction

Undoubtedly, humans have been analyzing the effectiveness of locational de-
cisions since they inhabited their first cave. We use the term “facility” here in
its broadest sense. That is, it is meant to include entities such as air and mar-
itime ports, factories, warehouses, retail outlets, schools, hospitals, day-care
centers, bus stops, subway stations, electronic switching centers, computer
concentrators and terminals, rain gages, emergency warning sirens, and satel-
lites, to name but a few that have been analyzed in the research literature.

The ubiquity of locational decision-making has led to a strong interest
in location analysis and modeling within the operations research and man-
agement science community. The long and voluminous history of location
research results from several factors. First, location decisions are frequently
made at all levels of human organization from individuals and households
to firms, government agencies and even international agencies. Second, such
decisions are often strategic in nature. That is, they involve large sums of cap-
ital resources and their economic effects are long term. In the private sector
they have a major influence on the ability of a firm to compete in the market
place. In the public sector they influence the efficiency by which jurisdictions
provide public services and the ability of these jurisdictions to attract house-
holds and other economic activity. Third, they frequently impose economic
externalities. Such externalities include pollution, congestion, and economic
development, among others.

Fourth, location models are often extremely difficult to solve, at least
optimally. Even the most basic models are computationally intractable for
large problem instances. In fact, the computational complexity of location
models is a major reason that the widespread interest in formulating and
implementing such models did not occur until the advent of high-speed digital
computers. Finally, location models are application specific. That is, their
structural form (the objectives, constraints and variables) is determined by
the particular location problem under study. Consequently, there does not
exist a general location model that is appropriate for all potential or existing
applications.
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3.1.1 Examples of facility location decision contexts

Much of the literature on facility location modeling has not been directed
to specific applications (i.e., case studies). Rather, it has been directed to
formulating new models and modifications to existing models which have
many potential applications, and to developing efficient solution techniques
for existing or newly formulated models.

There are several causes for this bias away from reporting specific appli-
cations in the literature. First, applications frequently employ existing mod-
els and solution techniques. Consequently, they are not viewed as scientific
advances by the research community, but rather as applications of existing
technology. Second, specific applications are frequently analyzed by consul-
tants and planners; two professions which are rarely motivated to publish
in research journals. Third, private sector advances in location modeling are
often viewed as proprietary because they give the firm a competitive advan-
tage; consequently, they are not shared with the larger community. In spite
of this bias, there are still many articles which relate directly to a specific
application or application area.

Table 3.1 lists some of the applications that have appeared in the liter-
ature. It is not intended to be exhaustive, but rather to demonstrate their
diversity. A single citation is given for each application. This is done because
of space limitations and is not meant to imply that the citation given is either
the only or the most important article addressing the topic. In fact, for sev-
eral of these applications, such as emergency medical services (EMS) siting,
there exists a rather extensive literature.

Undoubtedly, the multitude of applications is a major reason for the multi-
disciplinary interest in location modeling. In addition to the more traditional
applications listed in Table 3.1 there have also been less obvious ones. Some
of these are listed in Table 3.2. The reader is referred to Eiselt (1992) for a
review of facility location applications.

3.2 Basic Facility Location Models

In this section we present eight basic facility location models: set covering,
maximal covering, p-center, p-dispersion, p-median, fixed charge, hub, and
maxisum. In all of these models, the underlying network is given, as are the
locations of the demands to be served by the facilities and the locations of ex-
isting facilities (if pertinent.) The general problem is to locate new facilities to
optimize some objective. Distance or some measure more or less functionally
related to distance (e.g., travel time or cost, demand satisfaction) is funda-
mental to such problems. Consequently, we have classified them according to
their consideration of distance. The first four are based on maximum distance
and the second four are based on total (or average) distance.



3 Discrete Network Location Models

Table 3.1. Applications of Facility Location Models

Application Citation
Airline hubs O’Kelly, 1987
Airports Saatcioglu, 1982

Auto Emission testing stations
Blood bank

Brewery depots

Bus stops

Bus garages

Coal handling facilities
Computer concentrators
Computer service centers
Day-Care Centers

Electric power generating plants
Emergency medical services
Emergency equipment for oil spills
Essential air services
Fast-food restaurants

Fire stations

Forest harvesting sites
Franchise outlets

Hazardous waste disposal sites
Grain subterminals

Public swimming pools
Railroad sidings

Rain gauges

Regional health facilities
Rural health workers

Satellite homing stations
Satellite orbits

Schools

Social Service Centers

Solar power system design
Solid waste collection

Telecommunication switching centers

Truck terminals
Vehicle Inspection Stations
Warehouses

Swersey and Thakur, 1995
Price and Turcotte, 1986
Gelders, et al., 1987
Gleason, 1975

Maze et al., 1981

Osleeb and Ratick, 1983
Pirkul, 1987

Ghosh and Craig, 1986
Holmes, et al., 1972
Cohon, et al., 1980
ReVelle, et al., 1977
Belardo et al., 1984

Flynn and Ratick, 1988
Min, 1987

Schilling et al., 1980
Hodgson, et al., 1987
Pirkul, et al., 1987

ReVelle et al., 1991

Hilger, et al., 1977
Goodchild and Booth, 1980
Higgins, et al., 1997
Hogan, 1990

Abernathy and Hershey, 1972
Bennett, et al., 1982
Helme and Magnanti, 1989
Drezner, 1988

Tewari and Sidheswar, 1987
Patel, 1979

Birge and Malyshko, 1985
Marks and Liebman, 1971
Hakimi, 1965

Love, et al., 1985

Hodgson, et al., 1996
Kuehn and Hamburger, 1963

87
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Table 3.2. Additional Applications of Facility Location Models

Application Citation

Apparel sizing Tryfos, 1986

Archaeological settlement analysis Bell and Church, 1985

Chip manufacturing Cho and Sarrafzadeh, 1994
Data base management Pirkul, 1986

Flexible Manufacturing System tool selection Daskin, et al., 1990

Ingot size selection Vasko, et al., 1988

Location of bank accounts Cornuejols, et al., 1977
Medical diagnosis Reggia, et al., 1983
Metallurgical grade assignment Vasko, et al., 1989

Placement of dampers Kincaid and Berger, 1993
Political party platform Ginsberg, et al., 1987
Product positioning in feature space Gavish et al., 1983

Product procurement and standardization =~ Watson, 1996

Production lot sizing Van Oudheusden and Singh, 1988
Vehicle routing Bramel and Simchi-Levi, 1995

3.2.1 Maximum Distance Models

In some locations problems, a maximum distance exists a priori. For exam-
ple, in many school districts elementary school students within a mile of their
school must walk to school. Public transportation must be provided for those
not within this maximum distance. In the private sector, some businesses
guarantee service within a pre-determined time (e.g., 20 minute pizza deliv-
ery). In the former case, a school district might want to locate schools to
minimize the number of students who must be bussed at public expense. In
the latter example, a pizza chain might want to locate its outlets to maximize
the number of potential customers within 20 minutes of one of the outlets.

In the facility location literature, a priori maximum distances such as
these are known as “covering” distances. Demand within the covering dis-
tance of its closest facility is considered “covered.” An underlying assump-
tion of this measure of maximum distance is that demand is fully satisfied if
the nearest facility is within the coverage distance and is not satisfied if the
closest facility is beyond that distance. That is, being closer to a facility than
the maximum distance does not improve satisfaction.

Set covering location model The first location covering location problem
was the set covering problem (Toregas et al., 1971). Here the objective is to
locate the minimum number of facilities required to “cover” all of the demand
nodes. To formulate this problem we define the following inputs and sets
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I = the set of demand nodes indexed by ¢
J = The set of candidate facility locations, indexed by j
d;; = distance between demand node i and candidate site j
D, = distance coverage
Ni ={j|dij <D}
= the set of all candidate locations that can cover demand point i

and the following decision variable

o 1 if we locate at site j
Y77 1 0if not

With this notation, the set covering location problem (SCLP) can be
formulated as follows:

Minimize )~ z; (3.1)
jeJ
subject to:
x> 1Viel (3.2)
JEN;
z; €{0,1} Vj e J (3.3)

The objective function (3.1) minimizes the number of facilities located.
Constraint set (3.2) ensures that each demand node is covered by at least
one facility. Constraint set (3.3) enforces the yes or no nature of the siting
decision. The objective function can be generalized by including site-specified
costs as coeflicients of the decision variables. In this case, the objective would
be to minimize the total fixed cost of the siting configuration rather than the
number of facilities sited. Both versions of the set covering problem are NP-
hard (Garey and Johnson, 1979). However, the linear programming relaxation
of the set covering location problem as formulated above often results in an
all-integer solution. Typically, only a few branches in a branch and bound
algorithm are needed to obtain an optimal all-integer solution when the LP
relaxation is fractional.

A variety of row and column reduction rules have been developed to reduce
the size of the problem considerably (see Daskin (1995) for a discussion of
such rules). For example, variable z; can be eliminated from the formulation
if My C M;, where M; = {i|d;; < D.} and My, = {i|dsx < D.}. This column
reduction is possible because a facility at j would cover all of the demand
nodes that a facility at & would cover and possibly additional ones as well;
therefore, location j “dominates” location k. Individual constraints, say h, of
constraint set (3.2) can be eliminated if there is some covering set, say N;,
such that N; C Nj. This row reduction is possible because the constraint
in (3.2) for demand node h is redundant. That is, if the coverage constraint
for demand node ¢ is satisfied, then the constraint for demand node h is also
satisfied.
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Formulation (3.1)-(3.3) assumes that the candidate facility sites are lo-
cated at the nodes of the network. A lower cost facility siting scheme might
be possible if the facilities could be located along the arcs of the network
as well. This is illustrated by Figure 3.1. If the coverage distance is 10 and
facilities can only be located at the nodes, then two facilities are needed: one
at node A and one at either node B or C. If we could locate along the arcs
as well as at the nodes, then a single facility located ten units to the right
of node A would cover all three demand nodes. Church and Meadows (1979)
present a method to modify the original network to permit siting along the
arcs but still solve the problem using formulation (3.1)-(3.3). This method
augments the original network with a finite (albeit potentially large) num-
ber of nodes located along the arcs of the network. The inclusion of these
additional nodes in set J will result in a solution as good as one permitting
locations anywhere along the arcs.

Fig. 3.1. Example network

@ - O———O

Maximal covering location problem An underlying assumption of the
set covering location problem is that all of the demand nodes must be covered.
In essence, there is no budget constraint. However, in many facility planning
situations, a budget does exist. For example, many school districts would like
to have an elementary school within walking distance of all of its elemen-
tary age students. However, satisfying such a requirement may require more
schools than the district is prepared to build. The maximal covering loca-
tion problem (MCLP, Church and ReVelle, 1974) was formulated to address
planning situations which have an upper limit on the number of facilities to
be sited. The objective of the MCLP is to locate a predetermined number of
facilities, p, in such a way as to maximize the demand that is covered. Thus,
the MCLP assumes that there may not be enough facilities to cover all of the
demand nodes. If not all nodes can be covered, the model seeks the siting
scheme that covers the most demand.

To formulate the maximal covering problem, we augment the definitions
used in the SCLP with:

h; = demand at node ¢

p = the number of facilities to locate
- J 1if demand node i is covered
=Y 0if not

The maximal covering problem may now be formulated as follows:
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Maximize > hiz; (3.4)
i€l
subject to:
Zl‘j—ziZOViGI (35)
JEN;
2T =p (3.6)
jeJ
z; €{0,1} VjeJ (3.7)

s e{0,1} Viel

The objective function (3.4) maximizes the total demand covered. Constraint
set (3.5) ensures that demand at node i is not counted as covered unless we
locate at one of the candidate sites that covers node i. Constraint (3.6) limits
the number of facilities to be sited. Constraint sets (3.7) and (3.8) reflect
the binary nature of the facility siting decisions and demand node coverage,
respectively. Interestingly, constraint sets (3.5) and (3.7), allow us to replace
constraint set (3.8) with z; < 1, Vi € I, without loss of generality.

As with the SCLP, if the facilities can be sited anywhere along the arcs
of the network, the network can be modified as proposed by Church and
Meadows (1979) and the problem solved with (3.4)-(3.8). By systematically
varying p from 1 to k, where k is the minimum number of facilities required
to cover the entire demand, one can use (3.4)-(3.8) to determine the marginal
benefits associated with additional facilities.

The maximal covering problem is also NP-hard (Megiddo, Zemel and
Hakimi, 1983), but it can generally be solved effectively using heuristics of
the sort outlined later. Particularly useful is Lagrangean relaxation embed-
ded within a branch and bound algorithm (Daskin, 1995; Daskin and Owen,
1998; Galvdo and ReVelle, 1996). As mentioned earlier, some planning sce-
narios exist where there is a desired coverage distance and some maximum
distance beyond which service is unacceptable. For problems like this, Church
and ReVelle (1974) formulated the maximal covering location problem with
mandatory closeness constraints.

Given the previous definitions and D,, = the maximum distance that a
demand node may be from an opened facility and M; = {j|di; < Dy}, the
MCLP with mandatory closeness constraints may be formulated by adding
the following constraint set to formulation (3.4)—(3.8).

Y w;z1Viel (3.9)
jeM;

The SCLP and MCLP assume that the covering distance, D., is a fixed,
predetermined standard. This is certainly true in many location planning sit-
uations. However, in other situations D. may be a goal, or target, rather than
a fixed standard. For example, in siting facilities such as public libraries and
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recreational facilities, public agencies may desire to minimize the maximum
distance that a citizen is from such a facility for equity reasons (Marsh and
Schilling, 1994). Other facilities, such as schools or fire stations, may have
a desired distance (e.g., less than 1 mile or 3 minutes travel time) and an-
other distance (e.g., 5 miles or 10 minutes travel time) beyond which service
is unacceptable. The following sections address planning situations of this
nature.

p-center problem The p-center problem (Hakimi, 1964,1965) addresses
the problem of minimizing the maximum distance that demand is from its
closet facility given that we are siting a pre-determined number of facilities.
There are several possible variations of the basic model. The “vertex” p-center
problem restricts the set of candidate facility sites to the nodes of the network
while the “absolute” p-center problem permits the facilities to be anywhere
along the arcs. Both versions can be either weighted or unweighted. In the
unweighted problem, all demand nodes are treated equally. In the weighted
model, the distances between demand nodes and facilities are multiplied by
a weight associated with the demand node. For example, this weight might
represent a node’s importance or, more commonly, the level of its demand.
Given our previous definitions and the following decision variables
W = the maximum distance between a demand node and the facility to
which it is assigned
[ 1if demand node : is assigned to a facility at node j
Yij = { 0 if not

the p-center problem can be formulated as follows:

Maximize w (3.10)
subject to:
Sai=p (3.11)
JjE€J
Dyij=1 Viel (3.12)
JjeJ
yz'j*xjﬁo Yiel,jeJ (313)
w — Z hidijyij >0Viel (3.14)
jeJ
z; €4{0,1} Vjed (3.15)
yij € {0,1} Viel,jeld (3.16)

The objective function (3.10) minimizes the maximum demand-weighted dis-
tance between each demand node and its closest open facility. Constraint
(3.11) stipulates that p acilities are to be located. Constraint set (3.12) re-
quires that each demand node be assigned to exactly one facility. Constraint
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set (3.13) restricts demand node assignments only to open facilities. Con-
straint (3.14) defines the lower bound on the maximum demand-weighted
distance, which is being minimized. Constraint set (3.15) established the sit-
ing decision variable as binary. Constraint set (3.16) requires the demand at
a node to be assigned to one facility only. Constraint set (3.16) can be re-
placed by y;; > 0 Vi € I;j € J because constraint set (3.13) guarantees that
yi; < 1. If some y;; are fractional, we can simply assign node i to its closest
open facility.

For fixed values of p, the vertex p-center problem can be solved in O (NP)
time since we can enumerate each possible set of candidate locations in this
amount of time. Clearly, even for moderate values of N and p, such enu-
meration is not realistic and more sophisticated approaches are required. For
variable values of p, the problem is NP-hard (Garey and Johnson, 1979.)

If integer-valued distances can be assumed, the unweighted vertex or ab-
solute p-center problem is most often solved using a binary search over a range
of coverage distances (Handler and Mirchandani, 1979; Handler, 1990). For
each coverage distance, a set covering problem is solved. When the solution to
the SCP equals p, the minimum associated coverage distance is the solution
to the p-center problem. Daskin (2000) has recently shown how the maximal
covering model can be used effectively in place of the set covering model as
a sub-problem in solving the unweighted vertex p-center problem.

3.2.2 The p-dispersion problem

For all of the models discussed above the concern is with the distance between
demand and new facilities. Also, an unspoken assumption is that being close
to a facility is desirable. The p-dispersion problem (PDP) differs from those
problems in two ways (Kuby, 1987). First, it is concerned only with the
distance between new facilities. Second, the objective is to maximize the
minimum distance between any pair of facilities. Potential applications of
the PDP include the siting of military installations where separation makes
them more difficult to attack or locating franchise outlets where separation
reduces cannibalization among stores.

To formulate this model we require an additional input (M ) and a decision
variable (D):

M = a large constant (e.g., max {d;;
g (e max {d;})
D = the minimum separation distance between any pair of facilities

With this notation, the p-dispersion model may be formulated as follows:
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Maximize D (3.17)
subject to:
Sa=p (3.18)
jeJ
D+ (M — dij)xi + (M — dij)xj < 2M —dj;
Vi,j € J,i < j (3.19)
z; € {0,1} VjeJ (3.20)

The objective function (3.17) maximizes the distance between the two closest
facilities. Constraint (3.18) requires that p facilities are located. Constraint
(3.20) is a standard integrality constraint. Constraint (3.19) defines the min-
imum separation between any pair of open facilities. Note that if either z;
or z; is zero, the constraint will not be binding. However, if both are equal
to 1, then the constraint is equivalent to D < d;;. Therefore, maximizing D
has the effect of forcing the smallest inter-facility distance to be as large as
possible.

3.2.3 Total or Average Distance Models

Many facility location planning situations in the public and private sections
are concerned with the total travel distance between facilities and demand
nodes. An example in the private sector might be the location of production
facilities that receive their inputs from established sources by truckload de-
liveries. In the public sector, one might want to locate a network of service
providers such as licensing bureaus in such a way as to minimize the total
distance that customers must traverse to reach their closest facility. This ap-
proach may be viewed as an “efficiency” objective as opposed to the “equity”
objective of minimizing the maximum distance, which was mentioned earlier.

p-median problem One classic model in this area is the p-median model
(Hakimi, 1964, 1965) which finds the locations of p facilities to minimize the
demand-weighted total distance between demand nodes and the facilities to
which they are assigned. This model may be formulated as follows:
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Minimize Z Z hidijyij (321)

icljed

subject to:

daj=p (3.22)

jed
Syy=1 Viel (3.23)

jed
yijijﬁo Viel,jeJ (3.24)
z; €{0,1} VjeJ (3.25)
yij € {0,1} Viel,jelJ (3.26)

The objective function (3.21) minimizes the demand-weighted total distance
traveled. Constraint set (3.22) through (3.24) are identical to (3.11) through
(3.13) of the p-center problem. Constraints sets (3.25) and (3.26) are identical
to (3.15) and (3.16). Constraint set (3.26) can be eliminated following the
same arguments as were used for constraint set (3.16). Toregas and ReVelle
(1972) show that this formulation also minimizes the average travel distance
between the sited facilities and the demand.

This formulation (3.21-3.26) assumes that the potential facility sites are
nodes on the network. Hakimi (1964) proved that relaxing the problem to
allow facility locations on the arcs of the network would not reduce total
travel cost. Consequently, this formulation will yield an optimal solution,
even if the facilities could be located anywhere on an arc. Like the p-center
problem, the p-median problem can be solved in polynomial time for fixed
values of p, but is NP-hard for variable values of p (Garey and Johnson,
1979).

Fixed Charge Location Problem The p-median problem makes three
important assumptions that may not be appropriate for certain siting sce-
narios. First, it assumes that each potential site has the same fixed costs for
locating a facility at it. Secondly, it assumes that the facilities being sited do
not have capacities on the demand that they can serve. In the parlance of
the literature, it is an “uncapacitated” problem. Finally, it also assumes that
one knows, a priori, how many facilities should be opened (i.e., p)

The fixed charge location problem (FCLP) relaxes all three of these as-
sumptions. The objective of the FCLP is to minimize total facility and trans-
portation costs. In so doing, it determines the optimal number and locations
of facilities, as well as the assignments of demand to a facility. Given the fact
that the facilities have capacities, demand may not be assigned to its closest
facility, as was the case in the previous models presented in this chapter.

Given the previous definitions and the following inputs
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f; = fixed cost of locating a facility at candidate site j
C; = capacity of a facility at candidate site j
«a = cost per unit demand per unit distance

the capacitated fixed charge location problem can be formulated as follows
(Balinski, 1965):

Minimize Z szj + «a Z Z hidijyij (327)
jeJ i€l jeT
subject to:

Z Yij = 1 Viel (328)

jed
y,-j—ijO Viel,jeld (329)
Z hiyij — ijj <0 Viel (330)

JjeJ

zj €{0,1} ViedJ (3.31)
yi; € {0,1} Viel,jelJ (3.32)

The objective function (3.27) minimizes the sum of the fixed facility loca-
tion costs and the total travel costs for demand to be served. The second
set of terms in (3.27) is often referred to as demand-weighted distance. Con-
straint (3.30) prohibits the total demand assigned to a facility from exceed-
ing the capacity of the facility, C;. Constraint sets (3.28), (3.29), (3.31) and
(3.32) function as similar constraint sets in the previous problems. Relaxing
constraint set (3.32) allows demand at a node to be assigned (partially) to
multiple facilities. We also note that constraint (3.29) is not needed in this
integer programming formulation since constraint set (3.30) will also force
demands to be assigned only to open facilities. However, including constraint
set (3.29) in the formulation significantly strengthens the linear programming
relaxation of the model.

There are several other features of the FCLP that may not be initially
apparent. The inclusion of (3.32) as a binary constraint requires that all de-
mand points be singly sourced. That is, all demand at a particular location
is assigned to one facility. Note also that, due to the facility capacities, de-
mand may be served by a facility which is not its closest one. If constraint set
(3.30) is removed, the model becomes the uncapacitated fixed charge location
problem (UFCLP). In this case, each demand can be completely served by
its closest facility and (3.32) can be replaced by non-negativity constraints
on the assignment variables, y;;.

Hub location problems Many logistics systems such as less-than-truckload
carrier networks, airline networks, and inter-modal carriers, employ hub and
spoke systems. These systems are designed to utilize larger capacity or faster
vehicles or modes over the long-haul portion of an origin to destination deliv-
ery. Consequently, these systems reduce average per mile transportation cost
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or total delivery time. Numerous models (e.g. O'Kelly, 1986a, 1986b; and
Campbell, 1990, 1994) have been formulated to locate the hubs and delivery
routes of hub and spoke systems. Most of these models attempt to minimize
total cost (as a function of distance.) We refer the reader to chapter 12 of
this book for a detailed discussion of hub location problems. The basic p-hub
location model can be formulated using the following notation inputs

hi; = number of units of flow between nodes i and j
¢i; = unit cost of transportation between nodes i and j
a = discount factor for transport between hubs

and the following decision variables

1 if a hub is located at node j

0 if not

1 if demands at node i are assigned to a hub located at node j
0 if not

T =
Yij =
as follows (O’Kelly, 1987):

Minimize Z Z hij (Z CikYik + Z CimYjim +a Z Z Ck'rrbyikyj'rrL)

i€EN jEN keN

meN keN keN
(3.33)
subject to:

Sy =p (3.34)

JEN
Z Yij = 1 Viel (335)

JjEJ
yij—zjgo Viel,jelJ (336)
z; € {0,1} Vjield (3.37)
yij € {0,1} Viel,jeld (3.38)

The objective function (3.33) minimizes the sum of the cost of moving items
between a non-hub node and the hub to which the node is assigned, the cost
of moving from the final hub to the destination of the flow, and the inter-
hub movement cost which is discounted by a factor of . The model assumes
that the hub portion of the network is a complete graph and therefore flows
between any pair of nodes ¢ and j will pass through at most two different hub
nodes. Constraints (3.34) through (3.38) are identical to constraints (3.22)
through (3.27) for the p-median model above. In particular, constraints (3.35)
stipulate that each node should be assigned to exactly one hub. In practical
contexts, it may be valuable to relax this constraint and to allow flows from
particularly large nodes to be served directly by two or more hub nodes.
Despite the similarity between the constraints of the two models, it is
worth noting a number of important differences. First, the demands in the
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p-hub location model are node-to-node flows and not simply demands at a
particular node. Second, and perhaps most importantly, the objective func-
tion is quadratic in the assignment variables. Third, it may not be optimal to
assign a node to the nearest hub since the objective function is measured in
terms of node-to-node flows and not simply in terms of the cost of accessing
the hub system.

Given the difficulties in solving even moderate sized hub location problems
optimally, Ernst and Krishnamoorthy (1996) propose heuristic (or approxi-
mate) efficient algorithms to attack such problems. Kuby and Gray (1993)
analyzed an express air carrier’s network with a hub location model. For
a more complete review of hub location models, the reader is referred to
O’Kelley and Miller (1994) and chapter 12 of this book.

The maxisum location problem The average distance models discussed
above assume that locating facilities as close as possible to demands is desir-
able. For many facilities this is the case. However, for undesirable facilities
(e.g., prisons, power plants, and solid waste repositories) at least one objec-
tive involves locating facilities far from demand nodes.

The maxisum location problem seeks the locations of p facilities such that
the total demand-weighted distance between demand nodes and the facilities
to which they are assigned is maximized. This model may be formulated as
follows:

Maximize Z Z hidijyij (339)
i€l jET
subject to:
Y ri=p (3.40)
jeJ
> yij =1 Viel (3.41)
jeJ
yij —x; <0 Viel,jelJ (3.42)
Zyi[k}i*l’[m}iZOVieI,m:L...,Nfl (3.43)
k=1
z; €{0,1} ViedJ (3.44)
yiy €{0,1}  Viel,jeJ (3.45)

This formulation is identical to that of the p-median problem with two
notable exceptions. First, the objective (3.39) is to maximize the demand-
weighted total distance and not to minimize it. The unfortunate impact of
this objective is that it forces demands to be assigned to the most remote fa-
cility. Thus, the formulation has been extended with constraint (3.43), which
ensures that demands are assigned to the nearest facility. In this constraint,
[k]; is the index of the kD farthest candidate location from demand node .
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Constraint (3.43) then states that if the mth closest facility to demand node ¢
is opened then demand node ¢ must be assigned to that facility or to a closer
facility.

3.3 Location-Routing Models

The basic models discussed above assume that the demand is served directly
from a facility. This is valid for many siting scenarios such as those involving
direct shipments from factories to distribution centers or emergency medical
services. However, many facilities such as solid waste collection substations
and distribution centers provide collection and/or distribution functions in
which demand is served by multiple drop off and/or pickup routes. In such
cases, the overall effectiveness of the facility siting scheme depends not only
upon the distances from the individual demands but also upon the efficiency
of the vehicle routes needed to serve multiple demands. Such problems are
referred to as location-routing problems. It is well established that model-
ing distribution cost as the cost of a simple round trip from a facility to a
customer may significantly misrepresent the actual costs and may, as a con-
sequence, result in the selection of sub-optimal facility sites when multi-stop
tours are used. (Webb, 1968, Eilon, Watson-Gandy and Christofides, 1971,
and Perl and Daskin, 1985) As Perl and Daskin pointed out, location-routing
problems involve three inter-related, fundamental decisions: where to locate
the facilities, how to allocate customers to facilities, and how to route the
vehicles to serve customers.

Many variations of location-routing problems exist. For example, La-
porte, Nobert, and Taillefer (1988) consider three variants of location-routing
problems; including (1) capacity constrained vehicle routing problems, (2)
cost constrained vehicle routing problems, and (3) cost constrained location-
routing problems. The authors examine multi-depot, asymmetrical problems
and develop an optimal solution procedure that enables them to solve prob-
lems with up to 80 nodes. Berger (1997) formulates a location routing prob-
lem for perishable commodities as a variant of a fixed charge facility location
problem. Her model is applicable in cases in which the routes are constrained
to be short (since the commodity is perishable) and the vehicle does not have
to return to the original depot within a time window. Current and Schilling
(1994) formulate the median and maximal covering tour problems. These
problems determine which nodes should have facilities to serve demand as
well as the route (a cycle) connecting the nodes with facilities. The inter-
ested reader is referred to Laporte (1988) for a discussion of application,
formulations and solution approaches to a wide variety of location-routing
problems.
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3.4 Facility Location-Network Design Models

It is obvious that the underlying network is important in facility location
and location-routing problems. The underlying network was assumed to be
given in the models presented in the previous two sections. However, in many
location problems, one must determine which arcs should be included in
the network as well as where facilities should be located. Examples of such
problems include the design of subway or rail systems, electricity distribution
systems, and computer networks. The facilities in such systems are stations,
transformers, or concentrators and the network arcs are rail lines, power lines,
or fiber optic cable. One objective in these problems is to minimize total cost,
which includes facility and arc costs.

Current (1988) and Current and Pirkul (1991) develop a model and so-
lution procedure for problems where the desired network is a path and the
facilities are “entry locations” (e.g., station) for demand to enter the path
(e.g., rail line). The objective is to minimize facility and network costs as well
as the cost of arcs needed for demand to reach a facility on the path. The
models in Current and Schilling (1989) can be used in a similar fashion when
the network design requires a cycle.

Many hub location problems also fall into this category. For example, in
studying airline hub and spoke networks, we must simultaneously determine
the location of the hubs, the assignment of non-hub airports to the hubs (i.e.,
the links to be used in the spoke part of the network), and the connectivity of
the hubs. Similar problems arise in telecommunication, power transmission,
and computer networks. This is especially true when they address problems
where the spoke nodes are not necessarily assigned to their nearest hub or
when the hub network is not a complete graph. Melkote (1996) proposed a
number of novel formulations of the network design/facility location prob-
lem and outlined heuristic and optimal solution procedures. In particular,
he extended a number of coverage-based models to include network design
decisions. Such formulations are particularly appropriate for decisions in de-
veloping regions.

3.5 Multiobjective Models

Facility location decisions are often strategic in nature as they frequently
involve large capital outlays and long-term planning horizons. In general, they
are the least flexible component of a firm’s supply chain or a government’s
provisions of services. Factories, distribution centers, libraries and sewage
treatment plants have expected life times of 20 to 50 years. They impact
not only the providers of the facility but also their users and neighbors. They
impact the human resources, finance, accounting, marketing, production, and
logistics functions of a firm. Consequently, facility location decisions often
involve many stake holders and must consider multiple, often conflicting,
objectives.
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There are essentially two approaches to multiobjective problems: gener-
ating techniques and preference-based techniques (Cohon, 1978). Preference-
based techniques employ some method to “rank” the objectives and then find
the solution that optimizes this ranking. Ranking may be done by a variety of
means from a simple ordinal weighting of the objectives to a complex utility
function. In general, generating techniques identify the pareto optimal siting
configurations from which the decision makers select the one that they prefer.

The importance of distance and the ways it can be addressed in facility lo-
cation objectives is demonstrated by the development of models that include
multiple distance-related objectives. For example, Halpern (1976) included a
maximum distance (center) and an average distance objective (median) for
locating a single facility. Schilling, et al. (1980) included several different max-
imum covering objectives for fire equipment location. Church, et al. (1991)
included a maximum distance (covering) objective and an average distance
(median) objective.

Other researchers have included new objectives in facility location models.
Many of these have appeared in models to locate obnoxious or undesirable
facilities such as waste disposal sites, prisons, and power plants (e.g., Ratick
and White, 1988; Erkut and Newman, 1989, 1992; and Erkut and Verter,
1995). These models often consider objectives related to risk and equity as
well as efficiency.

Multiple objectives have also been considered in location-routing and
location-network design models. For example, List et al. (1991) and Current
and Ratick (1995) formulated hazardous material facility location-routing
models which include objectives related to cost, risk, and the equity of risk
imposed resulting from the facilities and the the routing of hazardous materi-
als to them. Current et al (1985) formulated location-network design problem
in which one objective minimizes the cost of a path network and the second
mazimizes the demand covered by facilities at the nodes of the path. Current,
et al. (1987) replaced the second objective with one to minimize access cost
for demand to reach a node on the path.

The models mentioned so far in this section are designed primarily to
generate pareto optimal solutions to multiobjective facility location problems.
That is, they are generating techniques. If preference weights on the objectives
are known a priori, these models can be used to find the solution which
optimizes a convex combination of the objectives based on these weights.

Another preference-based method employs a lexicographical ordering of
the objectives. This approach optimizes a primary objective and then, from
among the alternate optima for the primary objective, optimizes a secondary
(or tertiary) objective. Daskin and Stern (1981) proposed a hierarchical ob-
jective approach to locating emergency medical services. Their primary ob-
jective is that of the set covering model, to which they append a secondary
objective of maximizing a measure of backup coverage. Plane and Hendrick
(1977) proposed a hierarchical objective location problem for locating fire
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stations in Denver. Their primary objective is also to minimize the number
of required facilities, while their secondary objective is to maximize the num-
ber of existing facilities in the solution. Benedict (1983) outlines a number of
other hierarchical objective covering models.

For reviews of multiobjective facility location problems, the reader is re-
ferred to Current, et al. (1990), and Erkut and Verter (1995).

3.6 Dynamic Location Models

Since the pioneering work of Manne (1961, 1967), researchers have been in-
terested in dynamic location problems. As Ballou (1968) states: “the effect
of the future time dimension cannot be neglected in location analysis.” (p.
271) The basic models presented in section 3.2.3 have ignored time; that is,
they are static. Dynamic models incorporate time. Current et al. (1998) de-
fine two categories of dynamic models: “implicitly” dynamic and “explicitly”
dynamic. Implicitly dynamic models are “static” in the sense that all of the
facilities are to be opened at one time and remain open over the planning
horizon. They are dynamic because they recognize that problem parameters
(e.g., demand) may vary over time and attempt to account for these changes
in the facility location scheme generated. Examples of implicitly dynamic
models include Mirchandani and Odoni (1979), Weaver and Church (1983),
Drezner and Wesolowsky (1991), and Drezner (1995), which consider prob-
lems where demand and travel times change over time.

Explicitly dynamic models are those designed for problems where the fa-
cilities will be opened (and possibly closed) over time. Typically, explicitly
dynamic models extend the basic, static models with the addition of temporal
subscripts to the facility location and assignment variables and constraints
linking these variables over time. Early examples of such problems include
Roodman and Schwarz (1975), Wesolowsky and Truscott (1976), Schilling
(1980), Van Roy, Erlenkotter (1982), and Campbell (1990). The decision to
open and close facilities over time is related to changes in the problem pa-
rameters over time. Examples of parameters that might change include de-
mand, travel time/cost, facility availability, fixed and variable costs, profit,
and the number of facilities to be opened. Multiobjective approaches to dy-
namic problems also have been developed (e.g., Schilling, 1980; Gunawardane
1982, and Min 1988).

The interested reader is referred to Current et al. (1998), and Owen and
Daskin (1998a) for reviews of dynamic location problems.

3.7 Stochastic Location Models

The basic facility location models presented in section 2 assume that the para-
meters of the problem are known with certainty. Many of the dynamic models
discussed in the previous section assume that the changes over time are known



3 Discrete Network Location Models 103

with certainty. However, there is considerable uncertainty in most facility lo-
cation problems. This is particularly true given the long life spans of most
facilities. Demand, travel time, facility costs, and even distance may change.
These changes are often random. Uncertain parameters which have been ad-
dressed in the literature include demand (e.g., Frank, 1966; Manne, 1961;
Carbonne, 1974; Berman, 1985), travel time (e.g., Mirchandani and Odoni,
1979; Mirchandani, 1980; Berman and Odoni, 1982; Weaver and Church,
1983; Berman and LeBlanc, 1984; and Louveaux, 1986) the availability of
the facility for service (e.g., Daskin, 1982, 1983; ReVelle and Hogan, 1989a,
b; Marianov and ReVelle, 1992, 1996), and the number of facilities to be sited
(Current, et al., 1998).

There have been four basic approaches to stochastic facility location prob-
lems. The first, approximates the uncertainty via a deterministic surrogate.
For example, Bean, et al. (1992) formulated an equivalent deterministic prob-
lem by “replacing stochastic demand by its deterministic trend and discount-
ing all costs by a new interest rate that is smaller than the original, in ap-
proximate proportion to the uncertainty in the demand.” (p. S210) They cite
seven articles since Manne (1967) that have used a similar approach.

The second approach develops chance constrained models (Chapman and
White, 1974). For example, Daskin (1982, 1983) formulated a probabilistic
extension of the maximal covering problem in which facilities are assumed to
be busy with probability p. If busy, they cannot serve demand. The objective
of these models is to maximize the number of demands that are covered by
an available (i.e., not busy) facility. ReVelle and Hogan (1989a) formulated
a similar model in which they maximized the number of demands that are
covered at least b times, where b is the number of coverages needed to ensure
that a demand is covered by an available facility with probability 5. ReVelle
and Hogan (1989b) formulated a set covering version of the problem which
minimizes the number of facilities required to ensure that all demands are
covered with probability 5. Other articles using this approach include Mari-
anov and ReVelle (1992) which incorporated multiple vehicle types housed at
the facilities and Marianov and ReVelle (1996) which incorporated a M/G/s-
loss queuing model to compute the minimum number of facilities needed
to ensure coverage of a node within some minimum probability «. Daskin,
Hogan and ReVelle (1988) summarize these and other related models.

The third approach explicitly accounts for the queuing interactions that
occur in a spatially distributed queuing system with facilities at multiple
locations in a network. Larson (1974) formulated a hypercube queuing model
with 2%V states to account for all possible combinations of N facilities being
available or unavailable. The resulting model has either 2V linear equations or
N non-linear equations in an approximate model (Larson, 1975), thus making
it very difficult to embed in an optimization algorithm. Batta, Dolan and
Krishnamurthy (1989), however, used the model to show that the implicit
assumption of server independence in Daskin’s expected covering model is
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often violated. Berman, Larson and Chiu (1985) used an M/G/1 queuing
model to explore the location of a single facility on a network as a function of
the demand intensity when demands could wait for service. At very low and
very high demands, they showed that the facility would be located at the
1-median location; for intermediate demand intensities, alternate locations
were shown to be optimal. When no queuing was permitted, they showed
that the optimal location was always the 1-median.

The fourth approach utilizes scenario planning (van der Heijden, 1994;
Vanston et al., 1977). Scenarios represent possible values for parameters that
may vary over the planning horizon. One of the first applications of scenario
planning to facility location problems was Sheppard (1974) which minimized
the expected cost over all scenarios. Ghosh and McLafferty (1982) used sce-
narios to locate retail stores. Schilling (1982) extended the maximal cover-
ing location problem to incorporate scenarios by maximizing the number of
covered demands over all possible scenarios in an EMS siting situation. In
this model some facilities must be common to all scenarios, while others can
be located in a scenario-specific manner. Daskin, Hopp and Medina (1992)
demonstrated that this approach can lead to the selection of the worst possi-
ble sites under certain conditions. Serra and Marianov (1997) used scenarios
to incorporate varying travel times and demand conditions over the course of
a day. One of their objectives was to find locations that minimize the maxi-
mum average travel time over seven defined scenarios as well as locations that
minimize the maximum regret over the scenarios. Carson and Batta (1990)
used scenarios to describe demand conditions at different times of the day
in an ambulance location problem. Jornsten and Bjorndal (1994) formulated
an uncapacitated dynamic fixed charge facility location model using scenario
planning to minimize the expected cost across all scenarios and time periods.

In recent years there have been several facility location articles which
minimize regret or expected opportunity loss in scenario planning. Generally,
regret in these articles is defined as the difference between the optimal so-
lution (once the future is known) and the siting configuration selected when
the future is not known. For example, Serra et al. (1996) incorporated a min-
imax regret approach in which demands vary over the scenarios. Serra and
Marianov (1997) included a minimax regret objective for average travel times.
Current, et al. (1998) considered the problem where demand, travel cost, and
the number of facilities sited may vary over the different scenarios. Averbakh
(1997) and Averbakh and Berman (1997a, 1997b, 1997c) have focused on the
development of polynomial time algorithms for specially structured instances
of these problems.

Daskin, Hesse and ReVelle (1987) extend the minimax regret approach
by allowing the analyst or decision-maker to specify a reliability level, «.
The model then endogenously picks a subset of the scenarios whose total
probability of occurrence exceeds a and whose maximum regret is as small
as possible. In other words, the model minimizes the maximum regret over
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an endogenously determined subset of the scenarios whose total probability
is at least «. Clearly, if a = 1, the model reduces to the standard minimax
regret model. Owen (1998) formulates a variety of related models that do not
necessitate the specification of scenario probabilities. These models can be
solved effectively using evolutionary algorithms (Owen and Daskin, 1998b).

3.8 Solution Approaches for Location Models

As we have seen from the previous sections, discrete location models are gen-
erally constructed as mixed-integer linear programs. However, formulating an
appropriate model is only one step in analyzing a location problem. Another
(and often larger) challenge is identifying the optimal solution. Typically, the
first approach to finding the optimal solution to such problems is to apply one
of the well-known algorithms such as branch and bound or cutting planes.
While these methods work on at least some instances of most location models,
they are typically only useful on small problems. Realistically scaled location
models can easily have thousands even hundreds of thousands of constraints
and variables. Attempting a solution with these standard optimization meth-
ods will quite often consume unacceptable computational resources in terms
of both computer memory and time and with no guarantee of success. The
reason is that even the most basic location models are classified as NP-Hard
(Garey and Johnson, 1979).

As a result, the location analyst must devise other methods to identify
optimal solutions and, failing that, at least find very good solutions. A method
of the latter type is known as a heuristic, which is an algorithm, that can
find good solutions to a decision problem, but will not guarantee finding the
optimal solution. In the remainder of this section, we will explore several of
the most common solution approaches used by location analysts. Throughout,
we will use the p-median model to describe the solution process. However,
the methods discussed are generally applicable to a wide variety of location
models.

Greedy heuristics When faced with selecting a subset of things (in the case
of the p-median, facilities to open) that will optimize some objective, there
are numerous tactics or “rules-of-thumb” that quickly suggest themselves.
The most common is a sequential approach that begins by evaluating each
site individually and selecting the one facility site that yields the greatest
impact on the objective. That facility site is then fixed open. The location
of the next facility is then identified by enumerating all remaining possible
locations and choosing the site that provides the greatest improvement in
the objective. Each subsequent facility is located in an identical manner. The
method stops when the required number of facilities, p, have been sited.
For obvious reasons, this approach is known as a greedy heuristic. More
specifically it is called Greedy-Add since there is a reverse approach known
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as Greedy-Drop. Greedy-Drop starts with facilities located at all potential
sites, and then removes (drops) the facility that has the least impact on the
objective function. We continue to drop facilities until p facilities remain.

Improvement heuristics While both the Greedy-Add and the Greedy-
Drop heuristics are effective at identifying a feasible solution with modest
computational effort, neither can be relied upon to consistently produce good
solutions. Therefore, several different approaches have been developed that
begin with a good (or at least feasible) solution and seek to improve upon it.
Not surprisingly, these are known as improvement or search heuristics.

One of the earliest improvement heuristics is the neighborhood search
algorithm (Maranzana, 1964). In this method, we begin with any feasible so-
lution or specifically a set of p facility sites. Demand nodes are then assigned
to their nearest facility. The set of nodes assigned to a facility constitutes
a “neighborhood” around that facility. Within each neighborhood, the 1-
median problem can be solved optimally by simply evaluating each potential
site in the neighborhood and selecting the best. The facilities are then relo-
cated to the optimal 1-median locations within each neighborhood. Then, if
any facility sites are relocated, new neighborhoods can be defined and the
algorithm is repeated. This cycle continues until there are no further changes
in the facility sites or neighborhoods.

The most widely known improvement method was introduced by Teitz
and Bart (1968). The basic idea is to move a facility from the location it
occupies in the current solution to an unused site. Each unused location is
tried in turn and when a move produces a better objective function value,
then that relocation is accepted and we have a new (improved) solution.
When an improved solution is obtained, the search process is repeated on
the new solution. The procedure stops when no better solution can be found
via this method. This heuristic is known as an “interchange”, “exchange” or
“substitution” approach, because it can be thought of as exchanging an open
site with one of the unused sites. Although commonly used as an algorithm
for the p-median problem, this approach has been found useful in innumerable
facility location models.

While seemingly straightforward in concept, the exchange heuristic has a
number of alternative approaches that can be used in implementing it. One,
of course, is the process described above, where every time an exchange is
found that yields a better solution, the search process is restarted and applied
to improve this new solution. Alternatively, we could select the best solution
after considering all possible moves for a given facility site, or even choose
the best after all possible exchanges for all sites are examined. There are
many other variations possible, and these often influence the computational
speed of the heuristic. The most efficient implementation of the exchange
algorithm was presented by Whitaker (1983). His “Fast Interchange” method
is described in detail in Hansen and Mladenovic (1997).
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One issue in using improvement heuristics is to decide how the initial so-
lution is generated. An obvious choice is to use the result of another heuristic,
such as one of the greedy heuristics mentioned earlier. However, since the in-
terchange heuristic is relatively fast, many analysts have applied it to a series
of randomly generated solutions, selecting the best solution among all of the
local optima found as the one to be implemented.

The variety of local optima identified in repeated applications of an in-
terchange heuristic often have an interesting characteristic the solutions are
quite similar in the set of sites chosen for open facilities. Rosing and ReVelle
(1997) used this characteristic in developing their Heuristic Concentration
approach. In this methodology, the selected sites from a number of locally
optimal solutions are used as a reduced set of potential facility sites. This
reduced set produces a smaller model that can then be to be solved more
efficiently using conventional optimization technology. In most search heuris-
tics, each iteration of the search focuses on a “neighborhood” of the solution
it is trying to improve (the current set of open facilities). Rosing and ReVelle,
however, treat a neighborhood not as the set of nodes assigned to a facility,
but rather as the set of solutions that can be examined around the current
solution. For the interchange heuristic, the neighborhood is defined as that
set of solutions that can be reached by a single exchange.

In a strategy designed to escape local optima, Hansen and Mladenovic
(1997) present a “variable neighborhood” search algorithm for solving the p-
median problem. In their approach, they extend the notion of neighborhood
with a distance measure. That is, the neighborhood at a distance of k from
a current solution is the set of solutions that can be obtained by moving k
facilities. The algorithm performs an intensive local search (similar to the in-
terchange algorithm outlined above) on the current solution until it settles in
a local optima. It then diversifies the search by randomly selecting a solution
from a neighborhood at a distance of k¥ from the current best solution. The
process continues, incrementing &, until some exogenously specified maximum
value of k is attained. The algorithm compares very well with conventional
heuristics as well as the enhancements provided by tabu search.

The problem with many search heuristics is that, instead of yielding the
sought-after optimal solution, they become ‘stuck’ in local optima. More re-
cently, researchers have sought to apply heuristics in a more thoughtful or
“intelligent” manner. The strategy is to use what is known as a metaheuristic
to guide the application of a core search heuristic. The intent is to help them
break out of local optima and explore other regions of the solution space.

One of the earliest metaheuristics is Tabu search (Glover, 1989, 1990;
Glover and Laguna, 1997; Hansen, 1986). The basic procedure employs “tabu”
restrictions, which inhibit certain moves (exchanges). The tabu restrictions
are generally implemented with a short-term memory function to make them
time-dependent. That is, after a certain number of iterations, the moves are
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no longer tabu. There are also “aspiration criteria” which allow very good
solutions to overcome any tabu status.

Designing tabu search heuristics involves defining what types of moves to
restrict and the nature of the aspiration criteria and short-term memory to
utilize. In addition to these features, most tabu search designs include other
strategies such as a long-term memory function to diversify the search into
other areas of the solution space. Examples in the literature of tabu search
applied to location problems include: Hub location (Klincewicz, 1992; Skorin-
Kapov and Skorin-Kapov, 1994), the location-routing problem (Tazun and
Burke, 1999), multicommodity location (Gendron and Potvin, 1999), and the
p-median (Rolland, et al, 1997).

Lagrangean relaxation When using any heuristic, we are trading off sav-
ings in solution time against the quality of the solution. While the heuristics
discussed above often find good solutions to a variety of location problems
and do so relatively quickly, it is difficult to evaluate the tradeoff since we
have no way of knowing how far from optimality those solutions are. Without
having the optimal value of the objective function available for comparison,
we can sometimes approximate the difference between a heuristic’s solution
and the optimal solution by finding bounds. Worst-case bounds are one type
that has been the focus of considerable research. Such bounds are the greatest
distance from optimality the heuristic solution will be when solving the theo-
retically worst of all possible problem instances. Unfortunately, while they are
theoretically precise, these bounds are often quite far from optimality (thus
providing little insight). Fortunately, the average performance of heuristics is
often far better than these worst-case bounds would indicate.

One of the primary attractions of the technique known as Lagrangean
relaxation is that it provides both upper and lower bounds on the value of
the objective function (Fisher, 1981). That is, we know the optimal objective
function value lies between the value of the best feasible solution found and
a value that it can be no better than. The difference between the bounds is
known as the “gap.”

Lagrangean relaxation replaces the original problem with an associated
Lagrangean problem whose optimal solution will provide a bound on the
objective function of the original problem. This is done by eliminating (i.e.
relaxing) one or more of the constraints of the original model and adding these
constraints, multiplied by an associated Lagrange multiplier, to the objective
function. The idea is to relax constraints that will result in a relaxed problem
that, given values of the multipliers, is much easier to solve optimally. The
role of these multipliers is to drive the Lagrangean problem toward a solution
that satisfies the relaxed constraints. Unfortunately, determining the values
of the optimal Lagrangean multipliers is generally very difficult. In essence,
the Lagrangean relaxation approach replaces the problem of identifying the
optimal values of all of the decision variables with one of finding optimal or
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good values for the Lagrange multipliers. Most Lagrangean-based heuristics
use a search heuristic to identify the optimal multipliers. The most common
routine will be discussed below.

A major benefit of Lagrangean-based heuristics is that they generate
bounds (i.e. lower bounds on minimization problems and upper bounds on
maximization problems) on the value of the optimal solution of the origi-
nal problem. For discussion purposes, we will limit ourselves to minimization
problems like the four basic models presented in section 3.2. For any set of
values for the Lagrangean multipliers, the solution to the Lagrangean model
is less than or equal to the solution to the original model. Therefore, the La-
grangean solution is a lower bound on the solution to the original problem.
However, all lower bounds are not created equal; the higher the bound, the
smaller the gap in which the true optimal solution can be found.

The solution to the Lagrangean problem for any given values of the La-
grange multipliers will generally violate one or more of the relaxed con-
straints. Many Lagrangean based algorithms incorporate additional heuristics
to convert these infeasible solutions to feasible ones. In this way, they can pro-
duce good solutions to the original model. The best feasible solution among
those found by the procedure at any point, represents the upper bound on
the value of the true optimal solution. The difference between the upper and
lower bounds is referred to as the “gap.” If the gap reaches zero (or some
minimum value based on the integer properties of the model) then we have
found the optimal solution. Otherwise, when the gap gets sufficiently small
(e.g. less than 1%), the analyst may stop the procedure and be satisfied that
the current best solution is within 1% of optimality.

The primary challenge in applying Lagrangean relaxation is in selecting
which constraints to relax. The goal is to end up with a relaxed problem that
can be solved very easily, and result in good lower bounds. Since the relaxed
model may have to be solved hundreds or thousands of times in the search
for the best multiplier values, the ease of solution is critical to the success of
the approach. Ideally, the relaxed problem ought to be solvable by inspection
or by a simple sorting the objective function coefficients.

An excellent tutorial on the general application of Lagrangean relaxation
can be found in Fisher (1985). An exposition of its use in location models is
in the text by Daskin (1995). To make our discussion of Lagrangean relax-
ation more concrete, consider its application to the p-median problem, which
follows.

Recall the p-median formulation given above. Suppose we relaxed the
constraints (3.22). When these constraints are multiplied by Lagrange mul-
tipliers, we obtain the following model:
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Note that the objective function L in (3.46) is minimized with respect
to the original (location and assignment) variables (z; and y;;, respectively)
and is maximized with respect to the Lagrange multipliers ();). The largest
value of L over all iterations of the procedure represents a lower bound on
the objective function for the original p-median model.

As we discussed earlier, the overall approach is to, iteratively, 1) set values
of the multipliers, 2) solve the Lagrangean model and 3) adjust the multi-
pliers. To do this effectively, we must construct a procedure which efficiently
solves for z; and y;; when we are given values for the multipliers. In (3.46),
when the \; are known, the last term is a constant and can be ignored. The
objective is thus seen to be a direct function of the y;;, but, as in many
location problems, if we have the values of the facility siting variables (z;
in this case), we can derive the values of the remaining variables. That is,
when z; = 0, the y;; must = 0, and there is no impact on the objective.
When z; = 1, then the y;; can be either = 0 or 1. To minimize the first
term of the objective function we would like to set any y;; = 1, if the as-
sociated (hidij — A;) is < 0. The remaining y;; can be 0. Thus, to see the
overall influence on the objective function of setting a particular z; = 1, we
calculate V;, which is defined as > min{0, h;, d;; — A;}. If we rank order the

V; values from smallest to largestl, we can identify the first p values and set
the corresponding z; variables = 1. Then y;; = 1, if z; = 1 and (hidij — ;) is
< 0. This procedure yields the minimum objective function value for a given
set of ;.

The Lagrangean solution found above may not be feasible for the original
p-median model since the constraint we relaxed may be violated (demand
nodes ¢ may not be allocated to only one facility.) We can, however, develop a
feasible solution by simply assigning the demand points to their nearest open
facility. The resulting value of the p-median objective function represents an
upper bound on the optimal solution. The best of the feasible solutions found
over all iterations would also have the best (lowest) upper bound.

The final task is to modify the multipliers based on the solutions just
obtained. (See Bazaara and Goode, 1979, for a survey of various methods.)
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A common approach is subgradient optimization. Briefly, after any iteration
t, the Lagrangean multipliers are updated as follows:

)\f+1 =max ¢ 0, )\E -t nyj -1 Vi

J

where

= _ gt
T = A Z =2 5
> (S
L /L J -
t = an index of iterations =1,2,3, ...
Z = best (smallest) feasible solution value

Z! = Lagrangean value from current iteration (t)

Typically, A is initially set to 2. Then, if there has been no improvement in
the lower bound over some pre-specified number of iterations (e.g. 200), then
A is replaced with %. All )\; are sometimes then reset to the values used to
obtain the current best lower bound. Since the procedure is not guaranteed to
terminate at optimality, it is usually stopped after reaching a certain number
of iterations (e.g. 1000) or when A becomes sufficiently small. If the gap is not
sufficiently small at the end of the Lagrangean procedure, the entire process
can be embedded in a standard branch and bound algorithm.

For a numerical example of this procedure, the interested reader is di-

rected to Daskin (1995).

3.9 Conclusions

Discrete network location problems have attracted the attention of both re-
searchers and practitioners for several decades due to (1) the practical value
of such models in both private and public-sector decision-making contexts,
(2) the ever-present need and desire to incorporate increasingly realistic con-
straints and objectives into the models, (3) the challenges associated with
solving the models and (4) the ability of the basic formulations to represent
important decision-making issues in contexts far removed from a facility lo-
cation environment. These four factors continue to this day and are likely to
be present for years to come. We anticipate continued research, development
and application of the models we have outlined.

Several areas of potential research and development warrant particular
attention. Since location decisions are inherently strategic and long-term
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in nature, they often entail balancing conflicting objectives held by multi-
ple constituents. This suggests four important developmental needs. First,
multi-objective modeling will become increasingly important. Since most of
the single objective problems are NP-hard, their multi-objective extensions
are also NP-hard. Thus, it will be important to develop efficient and effective
heuristic algorithms for identifying non-inferior solutions for multi-objective
location problems. Methods for evaluating the quality of the solutions at-
tained by such algorithms will need to be developed as well.

Second, long-term location decisions impact and constrain the shorter-
term tactical and operational decisions made after facilities are in place. Such
decisions include production scheduling and planning, inventory management
and vehicle routing. Thus, the development of models that integrate facility
location decisions with approximations of such tactical and operational deci-
sions will be another important area for future work. One promising approach
to such integrated problems is stochastic programming (Birge and Louveaux,
1999).

Third, as the famous philosopher (and baseball player) Yogi Berra once
observed, “It’s tough to make predictions, especially about the future.” Thus,
it is impossible to predict the future conditions under which facilities will
operate. Therefore, it is important that models and solution algorithms be
developed that account for future uncertainty explicitly and that identify
solutions that are robust with respect to this uncertainty (Kouvelis and Yu,
1996).

Finally, public and private sector facilities interact with other parts of the
infrastructure (e.g., highways, airports, rail lines, ports, production facilities
and equipment). Embedding facility location modeling approaches in more
general network design algorithms will also be an important and challenging
area for future work. For example, in locating production facilities, managers
need to consider not only the location of the plants, but the equipment that
will be housed in the plant (ReVelle and Laporte, 1996).
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