

Departamento de Engenharia Elétrica e de Computação SEL 384 – Laboratório de Sistemas Digitais I

PRÁTICA №07

"Dispositivos de Lógica Programável de Complexo (CPLD- "Complex Programable Logic Devices")- Circuitos Sequenciais: Aplicação de contadores"

1. Objetivos:

- Projeto e síntese de circuitos sequenciais em dispositivo FPGA utilizando o esquemático do Quartus II;
- Aplicação de contadores e decodificadores.

2. Material utilizado:

- Configuração de Dispositivo Programável de Alta Complexidade HCPLD do tipo FPGA
 Cyclone IV da Altera
- Módulo de desenvolvimento Mercúrio IV Macnica DWH
- Multímetro

3. Procedimento Experimental:

Utilizando o software QUARTUSII v.12.OSP2, escolha o dispositivo HCPLD Cyclone IV EP4CE30F23C7 e faça um projeto para acionamento da matriz de LEDs de 8 linhas x 5 colunas do módulo de desenvolvimento Mercúrio IV, que realize o seguinte procedimento: acenda todos os 5 LEDs da mesma linha simultaneamente e sequencialmente a cada 5Hz, de maneira a fazer a varredura nas 8 linhas de cima para baixo e, de baixo para cima.

As 5 colunas são nomeadas como LEDM_C[0] até LEDM_C[4], as 8 linhas como LEDM_R[0] a LEDM_R[7]. Ambas, linhas e colunas,são selecionadas com o nível '0'. O clock interno de 50MHz é nomeado como CLOCK_50MHz.

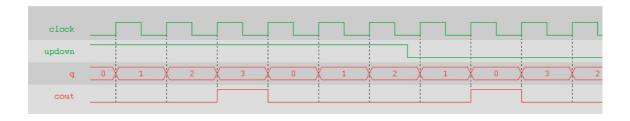
- 3.1 Inicialmente implementar o divisor de frequência para gerar 5Hz a partir de 50MHz interno à placa(CLOCK_50MHz.). Para isso utilize o projeto lpm_counter da biblioteca Megafunction e verifique a frequência de 5Hz no LED RGB, criando uma saída LED_R (ou LED_G ou LED_B). Obs: veja informações sobre o projeto lpm_counter no final desse arquivo.
- 3.2 Utilize outro contador lpm_counter para implementar um contador crescente/decrescente de 0 a 7. Criar entrada UP/DOWN e saída Cout.
- 3.3 Ligar as saídas binárias do contador do item 3.2 a um decodificador 3X8, 74138.
- 3.4 Utilizando a entrada UP/DOWN e saída Cout do contador do item 3.2 implemente o controle para contagem crescente e decrescente.
- 3.5 Ligar as saídas do decodificador às linhas da matriz de LEDs.
- 3.6 Para ativar as colunas da matriz criar pinos de saída (output) para cada coluna da matriz LEDM C[0] até LEDM C[4].

- 3.7 Configure o dispositivo no módulo de desenvolvimento Mercúrio IV e teste os circuitos projetados nos itens anteriores. Para programar a chave 1 do Kit deve estar na posição PROG FPGA e a chave 2 na posição ON. (como mostrado no Guia Rápido Mercúrio IV).
- 3.8 Mostre o funcionamento do circuito sintetizado no FPGA após a programação.
- 3.9 Como relatório entregue o circuito esquemático documentado.

Para criar um arquivo de projeto esquemático no software QuartusII siga os passos do arquivo "Manual QUARTUS" que se encontra no Moodle disciplinas Stoa USP.

INFORMAÇÕES SOBRE O PROJETO LPM_COUNTER:

INPUT PORTS


Port Name	Required	Description	Comments		
clock	Yes	Positive-edge-triggered clock.			
updown	No	Controls the direction of the count. High (1) = count up. Low (0) = count down.	Default = up (1). If the LPM_DIRECTION parameter is used, the updown port cannot be connected. If LPM_DIRECTION is not used, the updown port is optional		

OUTPUT PORTS

	Port Name	Required	Description	Comments		
q	(1)	No	Data output from the counter.	Output port LPM_WIDTH wide. Either q[] or at least one of the eq[150] ports must be connected.		
c	out	No	Carry-out of the MSB.			

Truth Table/Functionality:

	Inputs									Outputs	Function
aclr	aset	aload	clk_en	clock	sclr	sset	sload	cnt_en	updown	q[LPM_WIDTH-10]	
1	х	х	х	х	х	х	х	х	х	000	
0	1	х	х	х	х	х	х	х	х	111	
0	1	х	х	х	х	х	х	х	х	LPM_AVALUE	Asynchronous set to value specified for LPM_AVALUE
0	0	1	х	х	х	х	х	х	х	data[]	Asynchronous load from data[] input
0	0	0	0	x	х	х	х	х	х	ā[]	Hold current count value
0	0	0	1	ı	1	х	х	х	х	000	Synchronous clear
0	0	0	1	ſ	0	1	х	х	х	111	Synchronous set
0	0	0	1	l	0	1	х	х	х	LPM_SVALUE	Synchronous set to value specified for LPM_SVALUE
0	0	0	1	ſ	0	0	0	0	0	ā[]	Hold current count value
0	0	0	1	ı	0	0	1	х	х	data[]	Synchronous load from data [] input
0	0	0	1	ſ	0	0	0	1	1	q[]+1	Count up
0	0	0	1	ſ	0	0	0	1	0	q[]-1	Count down

4. Bibliografia:

- Site da ALTERA
- Fregni, E. & Saraiva, A.M., "Engenharia do Projeto Lógico Digital", Ed. Edgard Blücher Ltda.
- Tocci, J. R., "Sistemas Digitais- Princípios e Aplicações