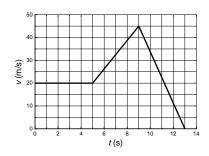
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 4323101 - Física I

LISTA 2

Cinemática e dinâmica


Observe os diferentes graus de dificuldade para as questões: (*), (**), (***)

- 1. (*) O gráfico da figura abaixo mostra a velocidade da motocicleta de um policial em função do tempo.
 - (a) Calcule a aceleração instantânea para $t=3\ s,\,t=7\ s$ e $t=11\ s.$

R: $0 \ m/s^2$, $6,25 \ m/s^2$ e $-11,25 \ m/s^2$.

(b) Qual foi o deslocamento do policial nos $5\ s$ iniciais? E nos $9\ s$ iniciais? E nos $13\ s$ iniciais?

R: 100 m, 230 m e 320 m.

- 2. (*) Um atleta dá um salto em distância, fazendo um ângulo inicial de 20° com o solo com uma velocidade de 11 m/s.
 - (a) Qual o alcance do salto?

R: $7,94 \ m$

(b) Qual a altura máxima atingida?

 $R: 0,722 \ m$

3. (*) O movimento de uma partícula, para t>0, é definido pelas equações

$$x(t) = a_x t^2 + c_1$$

$$y(t) = a_u t^2 - c_2$$

(uma partícula carregada, sujeita a uma força gravitacional vertical, movendo-se num campo elétrico horizontal obedeceria a equações desta forma).

- (a) Determine a expressão da velocidade e da aceleração como funções do tempo para um movimento descrito por estas equações.
- (b) Quais as dimensões das constantes a_x , a_y , c_1 e c_2 ?
- (c) Qual o significado físico das constantes c_1 e c_2 ?
- (d) Determine a velocidade e a aceleração da partícula para $t=2\ s.$
- 4. (*) Uma bola é atirada do chão para o alto. A uma altura de 9 m a sua velocidade, em m/s, é dada por $\vec{v} = 7\hat{\imath} + 6\hat{\jmath}$ (x é o eixo horizontal; y o eixo vertical).
 - (a) Até que altura a bola subirá?

R: 10,84 *m*

(b) Qual será a distância horizontal percorrida pela bola?

R: 20,82 *m*

(c) Qual o módulo da velocidade no ponto mais alto da trajetória?

 \mathbf{R} : 7 m/s

(d) Qual o vetor velocidade da bola no instante em que ela toca o solo?

R: $(7\hat{\imath} - 14, 6\hat{\jmath}) \ m/s$

5. (*) Um jogador de futebol inexperiente chamado Alexander D. Uck chuta um pênalti a 9 m do gol, levantando a bola com velocidade inicial de 15 m/s. A altura da trave é de 2,4 m. Ele erra o chute, e a bola passa tocando levemente a trave (apesar disso a trajetória da bola não é alterada). Calcule as distâncias mínima e máxima entre a trave e o ponto em que a bola cai atrás do gol.

R: $d_{max} = 9,68 m e d_{min} = 0,56 m$

6. (*) Um bloco é lançado para cima, com velocidade de 5 m/s, sobre uma rampa de 45° de inclinação. O coeficiente de atrito cinético entre o bloco e a rampa é 0, 3. Determine a distância máxima atingida pelo bloco ao longo da rampa.

R: $d = \frac{25}{12,7\sqrt{2}} \ m$

7. (**) Um método possível para medir a aceleração da gravidade g consiste em lançar uma bolinha, num tubo onde se fez vácuo, e medir com precisão os instantes t_1 e t_2

de passagem da bolinha na subida e na descida, respectivamente, por uma altura z conhecida. Mostre que

$$g = \frac{2z}{t_1 t_2}$$

8. (**) Uma bola A cai do topo de um edifício de altura h no mesmo instante em que uma bola B é lançada do solo, verticalmente para cima. Quando as bolas colidem, as velocidades são opostas e o valor da velocidade de A é o dobro da velocidade de B. A que fração da altura do edifício a colisão ocorre?

R: $\frac{2}{3}$

- 9. (**) Uma partícula move-se no plano xy com uma aceleração $\vec{a} = 4\hat{\imath} \ m/s^2$. A partícula sai da origem em t = 0, com a velocidade inicial $\vec{v}_0 = (20\hat{\imath} 15\hat{\jmath}) \ m/s$.
 - (a) Determine o vetor velocidade da partícula para qualquer instante.

R:
$$\vec{v}(t) = [(20 + 4t)\hat{\imath} - 15\hat{\jmath}] \ m/s$$

(b) Calcule o vetor velocidade da partícula, e o seu módulo para $t=5\ s.$

R:
$$\vec{v}(5) = (40\hat{\imath} - 15\hat{\jmath}) \ m/s \ e \ v = 43 \ m/s$$

(c) Determine o vetor posição da partícula em função do tempo t
 e a posição da partícula para $t=5\ s$

R:
$$\vec{r}(t) = [(20t + 2t^2)\hat{i} - 15t\hat{j}] \ m \ e \ \vec{r}(5) = (150\hat{i} - 75\hat{j}) \ m$$

- 10. (**) Uma pedra amarrada em uma corda move-se no plano xy. Suas coordenadas são dadas em função do tempo por $x(t) = R\cos(\omega t)$ e $y(t) = R\sin(\omega t)$ onde R e ω são constantes.
 - (a) Mostre que a distância da pedra até a origem é constante e igual a R, ou seja, sua trajetória é uma circunferência de raio R.
 - (b) Mostre que em cada ponto o vetor velocidade é perpendicular ao vetor posição.
 - (c) Mostre que o vetor aceleração é sempre oposto ao vetor posição e possui módulo igual a $\omega^2 R$.
 - (d) Mostre que o módulo da velocidade da pedra é constante e igual a ωR .
- 11. (**) Um trem viaja para o norte a 120 km/h. A fumaça da locomotiva forma uma trilha que se estende numa direção 14° ao leste da direção sul, com o vento soprando na direção leste. Qual é a velocidade do vento?

R: 29, 92
$$km/h$$

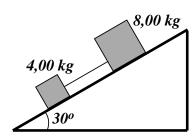
12. (**) Um portuário aplica uma força horizontal constante de 80,0~N em um bloco de gelo sobre uma superfície horizontal lisa. A força de atrito é desprezível. O bloco parte do repouso e se move 11,0~m em 5,00~s.

(a) Qual a massa do bloco de gelo?

R: $90, 9 \ kg$

(b) Se o portuário parar de empurrar o bloco depois de $5,00\ s,$ qual será a distância percorrida pelo bloco nos $5,00\ s$ posteriores?

R: $22,0 \ m$


- 13. (**) Um bloco desliza sobre um plano inclinado de um ângulo θ . O coeficiente de atrito cinético entre o bloco e o plano é μ_k .
 - (a) Se o bloco acelera, descendo o plano inclinado, mostrar que a aceleração é dada por $a = g[sen(\theta) \mu_k \cos(\theta)]$.
 - (b) Se o bloco for projetado plano acima, mostrar que a sua aceleração é $a = -g[sen(\theta) + \mu_k cos(\theta)]$.
- 14. (**) Dois blocos de massas 4,00~kg e 8,00~kg estão ligados por um fio e deslizam para baixo de um plano inclinado de $30,0^{\circ}$ (figura abaixo). O coeficiente de atrito cinético estre o bloco de 4,00~kg e o plano é igual a 0,25; e o coeficiente entre o bloco de 8,00~kg e o plano é igual a 0,35.
 - (a) Qual é a aceleração de cada bloco?

R: $a = 2,21 \ m/s^2$

(b) Qual é a tensão na corda?

R: T = 2,27 N

(c) O que ocorreria se as posições dos blocos fossem invertidas, isto é, se o bloco de 4,00~kg estivesse acima do bloco de 8,00~kg?

- 15. (**) Um ginasta de massa m está subindo em uma corda vertical presa ao teto. O peso da corda pode ser desprezado. Calcule a tensão na corda quando o ginasta está
 - (a) subindo com velocidade constante;

R: *mg*

(b) suspenso em repouso na corda;

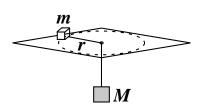
 \mathbf{R} : mg

(c) subindo e aumentando de velocidade com uma aceleração de módulo $|\vec{a}|;$ $\mathbf{R} : m(g + |\vec{a}|)$

(d) descendo e aumentando de velocidade com uma aceleração de módulo $|\vec{a}|$; **R:** $m(g - |\vec{a}|)$

16. (**) Um corpo de massa M é mantido em repouso por uma força aplicada F e por um sistema de polias como mostrado na figura abaixo. As polias são sem massa e sem atrito. Encontre:

(a) a tensão em cada trecho da corda, T_1 , T_2 , T_3 , T_4 e T_5


R: $T_1 = T_2 = T_3 = \frac{Mg}{2}$, $T_4 = \frac{3Mg}{2}$ e $T_5 = Mg$

(b) o módulo de F. (Dica: desenhe um diagrama de corpo livre para cada polia). $\mathbf{R} : F = \frac{Mg}{2}$

17. (**) Um pequeno bloco de massa m repousa sobre o topo de uma mesa horizontal sem atrito a uma distância r de um buraco situado no centro da mesa (figura abaixo). Um fio ligado ao bloco pequeno passa através do buraco e tem um bloco maior de massa M ligado em sua outra extremidade. O pequeno bloco descreve um movimento circular uniforme com raio r e velocidade v. Qual deve ser o valor de v para que o bloco grande permaneça imóvel quando liberado?

$$\mathbf{R}$$
: $v = \sqrt{\frac{grM}{m}}$

- 18. (**) Considere um grande cilindro oco vertical girando ao redor de seu eixo e uma pessoa dentro dele (figura abaixo). Quando a velocidade do conjunto atinge um valor predeterminado o piso do cilindro desce repentinamente, mas a pessoa que está dentro dele não cai, permanecendo presa à parede. O coeficiente de atrito estático entre uma pessoa e a parede é $\mu_e = 0,40$, e o raio do cilindro é R = 2,1~m.
 - (a) Obtenha o valor do período máximo de revolução necessário para evitar que a pessoa caia.

R: 1,84s

- (b) Qual a velocidade escalar mínima do cilindro pra que a pessoa não caia? ${\bf R:}~7,2~m/s$
- (c) Se a massa da pessoa for de 49 kg, qual o módulo da força centrípeta que atuará sobre ela?

R: 1200 *N*.

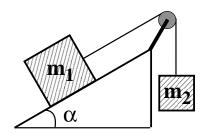
- 19. (***) Um carro da polícia se desloca em linha reta com velocidade constante v_P . Um caminhão que se move no mesmo sentido com velocidade $\frac{3}{2}v_P$ ultrapassa o carro. A motorista que dirige o caminhão verifica que está acelerando e imediatamente começa a diminuir sua velocidade com uma taxa constante. Contudo, ela estava em um dia de sorte e o policial (ainda movendo-se com a mesma velocidade) passa pelo caminhão sem aplicar-lhe a multa.
 - (a) Mostre que a velocidade do caminhão no instante em que o carro da polícia passa por ele não depende do módulo da aceleração do caminhão no momento em que ele começa a diminuir sua velocidade e calcule o valor dessa velocidade.

R: $v_C = \frac{1}{2}v_P$.

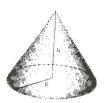
- (b) Faça um gráfico x-t para os dois veículos.
- 20. (***) Um bloco de massa m_1 está sobre um plano inclinado com um ângulo de inclinação α e está ligado por uma corda que passa sobre uma polia pequena a um

segundo bloco suspenso de massa m_2 (figura abaixo). O coeficiente de atrito cinético é μ_C e o coeficiente de atrito estático é μ_S .

(a) Ache a massa m_2 para a qual o bloco de massa m_1 sobe o plano com velocidade constante depois que ele entra em movimento.


R:
$$m_2 = m_1[sen(\alpha) + \mu_C cos(\alpha)]$$

(b) Ache a massa m_2 para a qual o bloco de massa m_1 desce o plano com velocidade constante depois que ele entra em movimento.


R:
$$m_2 = m_1[sen(\alpha) - \mu_C cos(\alpha)]$$

(c) Para que valores de m_2 os blocos permanecem em repouso depois de eles serem liberados a partir do repouso?

R:
$$m_1[sen(\alpha) - \mu_S cos(\alpha)] \le m_2 \le m_1[sen(\alpha) + \mu_S cos(\alpha)]$$

21. **DESAFIO** - Um trabalhador deseja empilhar um monte de areia, em forma de cone, dentro de uma área circular (figura abaixo). O raio do círculo é R e nenhuma areia vaza para fora do círculo. Se μ_e é o coeficiente de atrito estático entre a camada de areia da superfície inclinada e a camada logo abaixo (sobre a qual ela pode deslizar), calcule o maior volume de areia que pode ser empilhado dessa forma (use que o volume de um cone é $\frac{Ah}{3}$, onde A é a a área da base e h a altura do cone).

