Introdução a Ciência da Computação Comando *for*

- 1) Reimplemente o programa do seno/série de Taylor usando o comando *for* para controlar o laço de execução.
- 2) Escreva um programa que leia dois números inteiros: número de capítulos e número de seções. Usando esses valores o programa deve produzir uma saída como a de um a lista de capítulos e seções de um livro. Por exemplo, se as entradas forem 3 (capítulos) e 2 (seções), a saída deve ser:

Use o comando *for* para implementar os laços de controle. Observe a indentação da saída.

3) Escreva (usando o comando *for*) programas que mostrem as seguintes árvores, com qualquer número de linhas (o número de linhas deve ser fornecido pelo usuário):

```
a)

*

**

***

***

****

b)

*

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**
```

- 4) Escreva um programa que verifica se um número inteiro é primo. A maneira mais simples de se fazer isso é verificando se o número não possui divisores.
- 5) Escreva um programa que computa o fatorial de um número inteiro dado.

6) Escreva um programa que imprime a "tabuada" de 2 até 9, no formato mostrado a seguir:

Tabuada do 2	Tabuada do 3	Tabuada do 4	Tabuada do 5
$2 \times 1 = 2$	3 x 1 = 3	$4 \times 1 = 4$	$5 \times 1 = 5$
$2 \times 2 = 4$	$3 \times 2 = 6$	4 x 2 = 8	5 × 2 = 10
$2 \times 3 = 6$	$3 \times 3 = 9$	$4 \times 3 = 12$	5 × 3 = 15
$2 \times 4 = 8$	$3 \times 4 = 12$	$4 \times 4 = 16$	5 x 4 = 20
2 x 5 = 10	3 x 5 = 15	$4 \times 5 = 20$	5 x 5 = 25
2 x 6 = 12	3 x 6 = 18	$4 \times 6 = 24$	5 x 6 = 30
$2 \times 7 = 14$	3 x 7 = 21	4 x 7 = 28	5 x 7 = 35
2 × 8 = 16	3 x 8 = 24	$4 \times 8 = 32$	5 x 8 = 40
2 x 9 = 18	3 x 9 = 27	4 x 9 = 36	5 x 9 = 45
2 × 10 = 20	3 x 10 = 30	4 x 10 = 40	5 × 10 = 50
Tabuada do 6	Tabuada do 7	Tabuada do 8	Tabuada do 9
6 x 1 = 6	7 x 1 = 7	8 x 1 = 8	$9 \times 1 = 9$
6 x Z = 12	$7 \times 2 = 14$	8 x 2 = 16	9 × 2 = 18
$6 \times 3 = 18$	$7 \times 3 = 21$	8 x 3 = 24	9 x 3 = 27
$6 \times 4 = 24$	7 x 4 = 28	8 x 4 = 32	$9 \times 4 = 36$
6 x 5 = 30	7 x 5 = 35	8 x 5 = 48	$9 \times 5 = 45$
6 x 6 = 36	7 x 6 = 42	$8 \times 6 = 48$	$9 \times 6 = 54$
6 x 7 = 42	$7 \times 7 = 49$	8 x 7 = 56	9 x 7 = 63
6 x 8 = 48	7 x 8 = 56	8 x 8 = 64	9 x 8 = 72
6 x 9 = 54	$7 \times 9 = 63$	8 x 9 = 72	$9 \times 9 = 81$
6 x 10 = 60	7 x 10 = 70	$0 \times 10 = 00$	$9 \times 10 = 90$

- 7) Cada um dos caracteres que são mostrados na saída do seu programa é representado internamente por um número, que varia entre 32 e 127. Faça um programa que mostre qual caractere corresponde a cada número.
- 8) Reescreva o programa anterior na forma de uma tabela, semelhante à mostrada abaixo.

	0	1	2	3	4	5	6	7	8	9
30				!	"	#	\$	%	&	•
40	()	*	+	,	-		/	0	1
50										