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SUMMARY

This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-
sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The
method is based on an extension of classical dg transformation that makes it possible to write a vectorial
model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the
application of that transformation in the classical machine per-phase model. That transformation can be
applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave
back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed
vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the
use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine,
considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs
a classical six-step mode as a converter. Copyright © 2011 John Wiley & Sons, Ltd.

KEY worps: electrical drives; brushless DC motor; permanent magnet synchronous machine; vectorial
control; copper losses; electromagnetic torque ripple

1. INTRODUCTION

Surface-mount permanent magnet synchronous machines (SM-PMSM) are widely used in special
applications as high-precision positioning systems or in applications where efficiency is a primary
need. SM-PMSMs present a low rotor inertia momentum, a high dynamic performance, and a high
relation between power and weight [1,2].

It is possible to classify this kind of electrical machine into two general groups, if the back-
electromagnetic force (EMF) shape is considered: sinusoidal and non-sinusoidal machines. The latter
are machines which present different types of back-EMF shape, other than sinusoidal shape, and most
common types are the trapezoidal wave shape followed by the square wave shape [3].

The sinusoidal machines are built with windings distributed sinusoidally around the stator to
produce a sinusoidal back-EMF wave shape. This is also possible with a pseud-sinusoidal distribution
combined with a proper magnetization of rotor magnets. On the other hand, non-sinusoidal machines
are simpler than sinusoidal ones, due to a simpler stator winding and a constant magnetization of
rotor magnets. This fact is responsible for two major effects: non-sinusoidal machines can have a
lower cost than their sinusoidal counterparts and a higher power/weight relation [2,3]. It is common to
denote this kind of machine together with its power converter by “‘brushless DC motor’” (BLDC motor)
[4,5].

In the same way, sinusoidal machines together with their power converter are denoted by “‘brushless
AC motor” (BLAC motor) [6]. They are used in high-precision positioning systems, due to their low
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electromagnetic torque ripple (about 2-8%, depending on the machine, against 7-30% of BLDC
motors [7]). These characteristics are a limitation for high-performance and high-precision BLDC
motor systems application, therefore such systems commonly employ a BLAC motor [4].

The power converter which is commonly used in BLDC motors is the traditional tri-phase inverter
in six-step 120° mode of operation, and its frequency is locked with electrical rotor frequency (the
state of any inverter bridge transistor is rotor-position dependent). Therefore, the inverter acts as an
“electronic commutator” [2]. Considering only the electrical machine, i.e., the mechanical
rotating element of a BLDC motor, it consists of a surface-mount permanent magnet synchronous
machine, with a non-sinusoidal back-EMF waveform, more commonly a trapezoidal or square
waveform [3,8].

More often, SM-PMSM used in BLDC motors are considered to have a trapezoidal back-EMF
waveform, so control strategies are used in order for squarewave stator current to be produced in stator
windings (Figure 1). Therefore, PWM current regulators or hysteresis current regulators are used to
produce a rectangular stator current pattern [4,5].

There is a wide range of methods for electromagnetic torque ripple reduction in BLDC motors,
where their electrical machines are commonly an SM-PMSM with trapezoidal back-EMF waveform
[9-12]. For example, in Ref. [13], a machine with a non-ideal trapezoidal waveform is considered and
its asymmetries are treated. An equivalent method is also explained in Ref. [9].

There are waveforms that are different from the trapezoidal one presented by SM-PMSMs. Some
other wave shapes can be found in Refs. [2,3,14,15].

The main objective of this work is to present a variation of dg transformation, called here *“dg,
transformation,” which is an extension of the classical dg transformation. It can be applied to SM-
PMSM with any type of back-EMF waveform and not only to sinusoidal, trapezoidal, or squarewave
machines. The resulting mathematical machine model differs from the model shown in Ref. [14], as it
presents a new coordinate system of axes that is superposed to the classical dq axes. These new axes are
called “dg, axes.” They have both a different angle and magnitude from dg axis. This new coordinate
system permits writing the electromagnetic torque equation as being directly proportional to the
quadrature projected stator current, which is also the same of the sinusoidal electromagnetic torque
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Figure 1. Ideal electromagnetic torque, back-EMF, and phase current waveforms for a SM-PMSM motor.

Copyright © 2011 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2011)
DOIL: 10.1002/etep



TORQUE RIPPLE AND COPPER LOSSES REDUCTION IN PMSM

i 10.0v 2 10.0v 3 10V F0.00s 10,087 2 RUN

Figure 2. Measured back-EMF wave shapes of a non-sinusoidal SM-PMSM, which are approximately as
trapezoidal as in Figure 1. Channel 1: e,; channel 2: e,; channel 3: e..

equation, except for the fact that this equation for sinusoidal machines is written over dg axes and not
over dq, axes, as is the case of non-sinusoidal ones. This model has already been shown in a short form
in Refs. [16,17], but here, it is shown in details together with the results of its practical implementation
as well as of its simulation.

The used machine for implementation have the back-EMF waveform shown in Figure 2. It can be
seen that its back-EMF waveform is not purely trapezoidal, as it was desired like Figure 1. The stator
windings are full pitch coils arranged in 60 electrical degrees span, with 3 slots per pole per phase [3].

Section 2 shows a general vectorial model that can be applied to SM-PMSM with any type of back-
EMF waveform. Using this model and considering a perfectly sinusoidal back-EMF machine, the
vectorial model for sinusoidal machines is shown in Section 3. This section is included here only for
comparison purposes, the electromagnetic torque equation of sinusoidal machines is used only as a
reference to the deduction of a similar electromagnetic torque equation for non-sinusoidal machines.

Finally, Section 4 displays a specific vectorial model for non-sinusoidal back-EMF machines, which
is obtained using the proposed dg, transformation. This section also shows the expression for
electromagnetic torque, and the torque equation is written as being directly proportional to the direct
component of the stator current, in dg, coordinate axes, which is equivalent to the same equation for
sinusoidal machines. It is possible to apply the vectorial model shown in Section 4 in a drive
system without machine stator current measurement, it is shown in Section 5. In Section 7, practical
results of a real positioning system with the implemented vectorial model are shown. Eventually,
these results are compared to the same machine driven by the classical six-step 120°. Once the
proposed vectorial model permits the application of vectorial control without the necessity of
measuring the stator phase currents, the application of both methods differs only by the use of a
microcontroller.

2. GENERAL VECTORIAL MODEL

For the development of all SM-PMSM model equations, the following hypotheses are considered
together with the schematic diagram shown in Figure 3 [18]:

e the machine is a symetrical tri-phase machine;

e the variation of reluctance of rotor magnetic circuit, due to the rotor position, is not worthy of
notice;

e there is no saturation in iron, considering the machine’s normal operating region.
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Figure 3. Schematic diagram of a surface-mount permanent-magnet synchronous machine.

Considering such hypotheses and Figure 3, phase voltages, the back-EMF waveform of each phase
and the machine’s electromagnetic torque are given by (1), (2) and (3), respectively. Regarding such
equation deductions, they can be found in literature [18].

Uy L M, M Iy Iy e, Up
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where e,, ey, and e.: induced voltage of stator phases a, b, and c, respectively, due to rotor magnets
movement, as in Equation (2); i,, iy, and i.: stator phase currents a, b, and c, respectively; Lg: stator
phase self-inductance; Mj: stator phases mutual inductances; Ry: stator phase resistance; u,, uy, and u,:
a, b, and c stator phases applied voltages, respectively (Figure 3); u,: stator neutral terminal voltage
(this terminal is not normally connected, Figure 3).

€, q D, (I)ia
€p | — & Dy, | = o (I);b (2)
e D, D

where @, Dy, and D,.: linked magnetic fluxes between rotor magnets and stator winding phases a, b,
and c, respectively; w,: electrical rotor speed.

Tor = npp (Prfa + Pryiy + i) 3)

where Tg: machine-generated electromagnetic torque; 7,,: number of machine’s pole pairs.
From (2), it is possible to derive:

el [P

P | =—— |, 4
ib w; dr b ( )

(Drc Dy

Applying «B0 transformation, as given by (5) and (6), to (1), (2), and (3), the electrical machine
equations are obtained, (7) and (8), as well as the electromagnetic torque equation, (9), in the
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coordinate axes «f0.
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where x,4: quantities written over «f8 axes (complex number); xoxp: zero component; x,, Xp, and x.:
quantities of a, b, and ¢ phases, respectively.

The machine equations in dg, coordinate axes are obtained by applying the dg, transformation (10)
to (7) and (9). The zero component will not be considered from this point as the neutral terminal
connection is not used, as is most cases, S0 ig=0.

Xap = are’” e xy, (10)

where a,: dq, size of axes, relatively to dg axes, which are considered equal to the unity (Figure 5); 6,:
angle of dq, axes, relatively to dg axes (Figure 5).

The dgq, transformation is presented in Figure 4 for a better understanding. This transformation can
be decomposed into two ordinary transformations: a dg transformation, with its angle equal to the
machine’s electrical rotor angle (6,), followed by another transformation composed of a pair of
orthogonal axes of an arbitrary size a, and an arbitrary angle 6,, in relation to the dq axes. In that figure,
X4q stands for quantities in dg axes.

The relations between «af, dg, and dq, axes are shown in Figure 5. It is also observed that dg,
transformation consists of a new axes rotation (6, rotation), and a resize of a,, since dg and o8 axes
magnitudes are equal to unity. Therefore, the new dg, axes are orthogonal and have a variable length
and angle as a function of electrical rotor angle (6,).
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Figure 4. dg, transformation represented by blocks.
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Figure 5. Relation between o, dg, and dq, coordinate axes.
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The relation between only dg and dg, axes is shown by (11).

Xag = axe"xq, (11)

By the application of dg, transformation (10) in the machine’s electrical (7) and electromagnetic
torque (9) equations, the same equations for dg, axes are obtained, (12) and (13).

Udg, = Rsidqx + (LS_MS) %idqx""

(LM, (%451 +6))+ (12)
a)rfl);dqx
T = npa? (ia, P}y, + 14,9, ) (13)
where
da
=S 14
aA der ( )
do
o =~ 15
<= 38, s5)

3. SINUSOIDAL MACHINE VECTORIAL MODEL

The vectorial model for a sinusoidal SM-PMSM is obtained by considering the magnetic fluxes linked
with a stator phase and rotor magnets, given by (17) and applying dg transformation (16) to (1) and (3),
which is equivalent to (10) with a, =1 and 6, =0. Considering the dq axes angle (Figure 5) equal to
rotor angle (6,), equations (18)—(21) are obtained.

Xap = €% x4, (16)

where x4, dg axes quantities, as a complex number; 0,,: dg axes angle (arbitrary value).

D, cost;
Dy, | = Dy | cos(6,—F) (17)
D, cos (6, + )

where @,: maximum value of magnetic fluxes linked with a stator phase produced only by rotor
magnets.

@, =0 (18)
P, = %qam (19)

Udqg = Rsidq + (LS_MS) %idq

+](Ls _Ms)a)ridq +]a)r \/%(I)m

3.
Te = npp \/;q)mlq (2D

The main characteristic of the vectorial sinusoidal model is seen in Equation (21): the produced
electromagnetic torque is directly proportional to the quadrature component of stator current (i,). This

(20)
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is due to the fact that the magnetic flux projected in direct axis () is constant while the one projected in
quadrature axis (¢g) is null, so @;d is null and quq is constant, (18) and (19).

4. NON-SINUSOIDAL MACHINE VECTORIAL MODEL

For a non-sinusoidal SM-PMSM model, the electromagnetic torque equation is desired to be as simple
as the one for sinusoidal machine (21). Thus, similarly to the sinusoidal machine (although over dg,
axes), there is a condition where @idv is null. This condition is given by (22) and (23), which are derived
from (13) and (21). '

Sinusoidal (trapezoidal)

P, =0 22)

3
2 —
2P, = \@bm (23)

If the above conditions are satisfied, the electromagnetic torque equation for any type of machine,
i.e., with any type of back-EMF wave shape, is written by (24).

3.
Te) = npp \/;(I)mqu (24)

By (24), the electromagnetic torque is directly proportional to the stator current projected in ¢, axis,
which is similar to the same equation for sinusoidal machine, except for the fact that the g axis current
projection is used there (21). For (24) to be possible, a, and 6, must be defined by (25) and (26).l

3 @,
ay = \@7 (25)
Do+ O
_ /
6, = tan~ ' — " ¢, (26)
@],

Such results also show that if a classical dg transformation, without any modification, is applied to a
non-sinusoidal SM-PMSM, this machine will present harmonic components in its electromagnetic
torque, as in non-sinusoidal back-EMF waveforms, 6, =0 and a,=1 are not valid.

Using (11), (20), (25), and (26), the electric machine equation in complex form (27) is obtained for
any type of back-EMF waveform.

. i
Uag, = Rsiag, + (Ly—M;) =g +

(Le=My) (wriag, (£+7(1+6)) )+ @7

- /3 1
J\ﬁ‘bm;zwr

Considering different back-EMF wave shapes, there will be different values for a, and 6,,
remembering that both are functions of electrical rotor angle 6,.

For a perfect trapezoidal back-EMF, a, and 6, are shown in Figure 6. In Figure 7, a, and 6, are shown
for back-EMF waveforms of Figure 2.

'See Appendix for equation deductions.
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Figure 6. Parameters a,(6,) and 6,(6,) for an ideal trapezoidal back-EMF waveform (6, and 0, in electrical
degrees).
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Figure 7. Parameters a,(6,) and 6,(6,) for a back-EMF waveform as presented in Figure 2 (6, and 6, in
electrical degrees).

5. CURRENT OPEN-LOOP VECTORIAL CONTROL

This section shows that it is possible to apply the proposed vectorial control without the need of stator
current measurement. The model equations are manipulated to allow it. The resulting control system
relies in the previous knowledge of machine parameters as stator resistance, inductances, and back-
EMF waveforms. The resulting control block for this current open-loop control is shown in Figure 8.
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Model u, " ! g A
=
2 | Br
Ly rer
?:'Iref 1
—
T\ |IfT rpm

i

Figure 8. Block diagram of a BLDC motor drive system, using the control based on the vectorial model, in
stator current open-loop.
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The obtained non-sinusoidal SM-PMSM electrical equation is more complex than the sinusoidal
one, (20) and (27), but the electromagnetic torque equation for non-sinusoidal machine (24) is as
simple as the one for sinusoidal machine (21). In order to produce a ripple free electromagnetic torque,
it is necessary to keep i,, constant, therefore di,, /dr must be equal to zero.

In the case of a control system for machine electromagnetic torque, using (24),

. 2 1
lgref = Telref\/;m (28)
pp ' m

where T,..r is the reference for machine electromagnetic torque and iy, f is the reference current for g,
axis projected stator current component.

If iy, is held constant, too, diy, /df must be zero and it is possible to write iy r (project d, axis
reference stator current component) as proportional to iy, ref:

id,ref = kix iq_,(ref (29)

where k;, is constant and limited to the interval [—1,1]. For negative values of k;,, the machine is under
field weakening and, for positive values, the machine is under field enhancement. For k;, =0, the
copper loss is at its minimum value, as only the portion of current which is responsible for torque
production is applied to the stator.

Considering i,, = igref and ig, = igref, the electrical machine equations are written as follows:

/
Ug, = (Rsk[x + (Ls _Ms)a)r (% kix_(l + 9;)) ) iqxref (30)

X

Ug, = (Rs + (Ls_Ms)wr (% + (1 + Qx’)kix))iqxref""

3 1
iq)m o Wy
X

By observing (28)—(31), it is not necessary to measure the stator currents, so the employment of
current sensors, signal isolators and analog-to-digital converters is not necessary either. Those
equations are not part of transformations, they consist of an integrated controller and estimator for
stator currents. Electric drive positioning systems usually have high-resolution optical encoders for
rotor position sensing, so there is no need to use additional components to the system, except for a
higher capacity processor, whether all machine parameters are known.

Figure 8 shows a control block diagram of the complete drive system. The diagram is a stator current
open-loop control, so it refers to Equations (30) and (31). All the system works in an open-loop control,
since all machine parameters are known. The reference torque is used to determine the reference
current in g, axes by (24) and using (24) and (12), u4, and u,, are determined. Parameters a, and 0, are
determined by (26) and (25), in Section 4. These quantities, which are projected in dg, axes, are
then transformed to oS axes, by (10), and then to u,, uy,, and u,, using (5). In Figure 8, the “T” block
corresponds to the inverse of «fB0 transformation, (5) and (6), and ‘“Machine Model” block
corresponds to (30) and (31).

6. CURRENT CLOSED-LOOP VECTORIAL CONTROL

Considering a control system where stator phase currents are directly measured by current transducers
(Figure 9), since there are no need of stator current estimation, the computation time will be reduced, if
compared to the current open-loop schema which needs (28)—(31). In that Figure, dq, to o and o8 to
abc transformations will be necessary in order to transform the applied stator voltage from dg, axes to
abc. Also, the inverse of those transformations will be necessary to transform stator currents from abc
to dg, axes.

The use of current transducers will allow a slower processor, if compared to the current open-loop
schema, and also will improve electromagnetic torque transient response. It is possible to use three (one
for each stator phase) or two current sensors. In the last case, the third current phase will be given by
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Figure 9. Block diagram of a BLDC motor drive system, using the control based on the vectorial model,
with current sensors (stator current closed-loop). Note that 6, = 6, + 0,.

(32), once neutral connection is not used. Figure also shows d, current component control loop. It can
be used as field weakening/enhancement or, for copper losses minimization, k;, can be set to O (and
consequently iy, = 0; Section 8). Figure also shows G(s) as a generic controller and it consists of a
system of two inputs and two outputs (u,, and u,,). There are several possibilities for the controller
topology, from simple classical control topologies to intelligent algorithms.

ia+ip+ic=0 (32)

7. BLDC MOTOR DRIVE SYSTEM IMPLEMENTATION USING VECTORIAL MODEL

The block diagram of the hardware used for the implementation of BLDC motor drive is shown in
Figure 10. This hardware was used for both classical six-step 120° and control based on vectorial model
implementation, in stator current open-loop control, as described in Section 5 (Figure 8). The
microcontroller used has an ARM7TDMI core. The optical encoder for rotor position sensing has
10 bits of resolution. The parameters of the used SM-PMSM machine are shown in Table I and its back-
EMF waveform is in Figure 2. The control software was entirely developed in a GNU/Linux
environment, using C language (GCC configured as a cross compiler).

Some results obtained from implementation are shown in Figures 11 and 12, where one-stator phase
current of BLDC motor is presented. The PWM frequency switching is 6 kHz and the electrical power
converter fed the machine in current open-loop, as in Section 5. In Figure 11, the machine’s

Power Electric Converler
SM-PMSM
AG
,\/ | FReclifier | ey m p  Load
Bridge
A A
Rs232 Encader

Microprocessad Hall .

» [+ 10bit
Control Gircuit Sensors L

Figure 10. Schematic diagram of hardware used for BLDC motor drive system.
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Table I. BLDC motor parameters used in this work.

Parameter Value Units

R, 2.3 Q

(Lq—M,) 12.5 mH

Npp 3

D 0.12 Wb
1.00¥ 0,008

e Ll LT T—

— —
Auto Lvl  Auto Normal [ ] ™

Figure 11. Stator phase current for SM-PMSM with its electric power converter employing control based on
the presented vectorial model (current: 2.13 A/div, oy, = 107.9rpm, T = 2.0 Nm).

5
1
-
s

—
Auto Lvl  Auto Normal v

Figure 12. Stator phase current for SM-PMSM with control based on the vectorial model (current: 1.06 A/
div, oy, = 645.6rpm, Te) = 1.2 Nm).

electromagnetic torque is about 2Nm and the mechanical rotor speed is about 11.3rd/second
(107.9 rpm). In Figure 12, the machine’s electromagnetic torque is about 1.2 Nm and the mechanical
rotor speed is about 67.6 rd/second (645.6 rpm).

The performance of a positioning drive system, using a BLDC motor with its electrical converter
based on the presented vectorial model, and another drive system, using a BLDC motor with classical
six-step 120° electric power converter, was analyzed.
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The simplified block diagrams for each system are shown in Figures 13 and 14. The former refers to
the conventional BLDC motor, using conventional six-step 120° power converter and the latter refers to
BLDC motor with power converter using control based on the non-sinusoidal vectorial model. Both
systems were tested under the same operational conditions and in stator current open-loop, i.e., with no
current measurement in both cases.

The results for mechanical rotor position (6,,) are shown in Figures 15-17, for six-step mode of
operation, and in Figures 18-20, for the vectorial mode of operation. According to those figures, by
using the presented vectorial model, it is possible to significantly reduce the ripple in rotor position, due
to the ripple reduction in rotor electromagnetic torque. Figures also show a interesting result regarding
cogging torque. This machine has 36 slots in its stator, and was constructed employing some
techniques in order to minimize cogging torque as skewing and and reasonably small stator slots
openings [2,3,9]. So, if cogging torque was a significant source of ripple for this machine, a position
disturbance in each 10 electrical degrees (3.33 mechanical degrees) would be expected.

HALL sensors signals

—

i i Mechanical
Numeric Six-step 120°
> > -P . . .
Command Pl Converter > SM-PMSM |  Positioning
System
7Yy L

Encoder
10bits

Rotor angle position |

Figure 13. Simplified block diagram for conventional six-step 120° BLDC motor electric power converter.
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e

Numaric Powar Cormvarier Machanical
Bmand  a uzing | SK-PMSM B Posiating
Vactorial Modsl System
-~ F 3 ¢
Encoder
100s

Fiotor angle posiion

Figure 14. Simplified block diagram for BLDC motor with electric power converter using the vectorial

model.
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Figure 15. Mechanical angular rotor position for a positioning drive system using BLDC motor with
conventional six-step 120° electric power converter.
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Figure 16. Figure 15 zoomed. It can be seen, by machine position, that torque ripple occurs each 20
mechanical degrees, or 60 electrical degrees.
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Figure 17. Figure 16 zoomed, for position ripple detail, due to machine produced torque ripple.
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Figure 18. Angular rotor position for a positioning drive system using BLDC motor with electric power
converter employing control based on the presented vectorial model.
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Figure 19. Figure 18 zoomed, as Figure 16 is from Figure 15.
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Figure 20. Figure 19 zoomed, for position ripple detail, like Figure 17 is from Figure 16.

8. STATOR COPPER LOSSES

With respect to copper losses, it is possible to minimize it by controlling i, current component, once it
is only i, current component that produces electromagnetic torque, according to (24). Figure 21 shows
ideal squarewave current for one stator phase together with its projections on dg, axes, direct (iy, ) and
quadrature (i,,) components.

Figure 22 shows the stator current which is the resulting of current i,, of Figure 21 with its d,
component equal to zero. Also, for comparison purposes, the ideal squarewave is shown. Both stator

2
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Figure 21. Ideal squarewave stator phase current and its d, and ¢, components as a function of rotor
position.
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Figure 22. Ideal squarewave stator phase current and stator phase current that produces the same
electromagnetic torque but with no d, component.
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Table II. RMS values for stator phase current waveforms of Figure 22.

Waveform RMS value Unit
Squarewave \/2=0.81649 ... A
Vectorial 0.777722 +5.10 x 107° A

currents produce a constant electromagnetic torque (in an ideal situation), with no ripple, although they
are quite different. Also, they have distinct RMS values, as shown in Table II.

As copper losses are given by (33) and squarewave RMS value is greater than vectorial waveform
RMS value, the copper losses for the vectorial waveform is lower than for square waveform current.
Thus, considering an ideal SM-PMSM with ideal trapezoidal back-EMF waveforms, if a square current
waveform, such as shown in Figure 21, is applied in its stator phases, its copper losses will be 10.2%
higher than the same machine with vectorial current waveforms in its stator phases, producing the same
electromagnetic torque in both cases.

Pcy = 3Ryl (33)

where Ixys is the RMS current value for one phase.

Nonetheless, it is important to point out that in practice, it is very hard to produce an ideal
squarewave stator current, due to its high di/ds values, and also, back-EMF waveform is not a pure
trapezoidal function. Those facts cause stator copper losses to be even higher than vectorial case, once
it is possible to produce stator currents like the vectorial waveform of Figure 22, and in the case of
back-EMF distortions, it is even possible to produce an adapted stator current waveform for that kind of
machine, with a specific back-EMF waveform.

9. CONCLUSIONS

A vectorial model for surface-mount permanent magnet synchronous machines has been presented in
this work, obtained by using an extension of dq transformation, called here by *“dg, transformation,” It
allows applying vectorial control to SM-PMSM with any type of back-EMF waveform. Practical
results have shown the model can improve the machine’s performance, reducing its electromagnetic
torque ripple and copper losses, in comparison to the conventional use of classical six-step 120°
electric power converter, commonly applied to this type of machines. This performance improvement
is achieved even in open-loop current control, as in the six-step converter case.

The use of dg, transformation allows for the application of vectorial control to non-sinusoidal SM-
PMSMs (any type of back-EMF waveforms), without the need of measuring stator currents.
Considering the positioning drive systems using conventional BLDC motors (composed of SM-PMSM
with electrical power converter in six-step operation mode) coupled with an optical encoder for rotor
angle measurement, the difference between the hardware used in this case and the hardware used in the
case of vectorial model consists only in the processor used for the vectorial control implementation.
Although vectorial control can be implemented without the need of stator current measurement, with
stator current information, the system performance can be highly increased, i.e., dynamical
electromagnetic torque response is increased, and there is no need of some machine parameters: stator
resistance (R,), self and mutual inductances (L, — M,).

Also considering positioning systems, they must have acceptable performance mainly at lower
speed operation, where they must have a low level of electromagnetic torque ripple. At high operation
speed, the torque ripple produced by the machine is filtered by the inertia of the mechanical system.
Nonetheless, even at high speed operation, the control based on the presented vectorial model allows
for a low electromagnetic torque ripple. The stator phase current does not require high values of di/df to
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produce smooth electromagnetic torque, so with the same inverter bus voltage, the squarewave current
path is harder to obtain than the vectorial current path (Figures 21 and 22).

As well as for positioning systems applications, the vectorial method also shows to be valuable for
traction applications, due to its better energy efficiency, i.e., it allows a reduction in stator copper
losses.

10. LIST OF SYMBOLS

a, dq, size of axes, relatively to dg axes, which are considered equal to the unity
(Figure 5)

e, ey, and e, induced voltage of stator phases a, b, and c, respectively, due to rotor magnets
movement, as in Eqaution (2)

G(s) generic multiple input, multiple output controller

Iy, Iy, and i stator phase currents a, b, and c, respectively

lag stator phase currents projected in dg axes (in complex form: iy + ji,)

Idgy stator phase currents projected in dg, axes (in complex form: iy, + jiz,)

id,ref is the reference current for d, axis projected stator current component

Igyref is the reference current for ¢, axis projected stator current component

Irms RMS current value for one stator phase

iap stator currents in «f axes (in complex form: i, +jig)

kis flux enhancing/weakening constant

L stator phase self-inductance

M stator phases mutual inductances

Tpp number of machine’s pole pairs

Pcy total stator copper losses

R, stator phase resistance

T a0 to abc matrix transformation

T, machine-generated electromagnetic torque

Tetret machine electromagnetic torque reference

Uy, Up, and 1, a, b, and c stator phases applied voltages, respectively (Figure 3)

Ugq stator voltages in dq axes (in complex form: u,+ ju,)

Udg, stator voltages in dg, axes (in complex form: ug, + jug,)

iy, stator neutral terminal voltage (this terminal is not normally connected, Figure 3)

Uap stator voltages in o8 axes (in complex form: u, + jug)

Xa» Xp, and x. arbitrary quantities in a, b, and ¢ phases, respectively

Xagq dq axes quantities, as a complex number: x,;+ jx,

Xagq dq, axes quantities, as a complex number: x4, + jx,,

X0 arbitrary quantity zero component

Xap arbitrary quantities written over «f axes (complex number)

D maximum value of magnetic fluxes linked with a stator phase produced only by

rotor magnets

Doy P, and @, linked magnetic fluxes between rotor magnets and stator winding phases a, b, and
¢, respectively

@, @, and @/, back-EMF waveforms of phases a, b, and c, respectively, due only to rotor
magnets

D, g back-EMF waveforms due only to rotor magnets, projected in dg axes (complex

form: &,y + jPyy)
idqx back-EMF waveforms due only to rotor magnets, projected in dg, axes (complex

form: @y, + jPyy,)

@ 5 back-EMF waveforms due only to rotor magnets, projected in o3 axes (complex
form: @r, + jDyp)

Oaq dq axes angle (arbitrary value)

Odgy dq, axes angle (arbitrary value)
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Om mechanical rotor angle

0, electrical rotor angle

0, angle of dq, axes, relatively to dg axes (Figure 5)
; electrical rotor speed
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APPENDIX

This appendix shows how (25) and (26) are obtained.

From (10):

a0+ 02 = /02 + F (A1)
As &, =0:
a0, = /B + D (A2)

Substituting (A.2) in (23), (25) is obtained.
In the same way, (26) can be derived from (10):

D], 5 = e jOy, = aelereliD] (A3)
Then:
an1 2 _ 16,47 (A.4)
¥, 2 |
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