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SUMMARY

This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-
sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The
method is based on an extension of classical dq transformation that makes it possible to write a vectorial
model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the
application of that transformation in the classical machine per-phase model. That transformation can be
applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave
back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed
vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the
use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine,
considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs
a classical six-step mode as a converter. Copyright # 2011 John Wiley & Sons, Ltd.

key words: electrical drives; brushless DC motor; permanent magnet synchronous machine; vectorial
control; copper losses; electromagnetic torque ripple

1. INTRODUCTION

Surface-mount permanent magnet synchronous machines (SM-PMSM) are widely used in special

applications as high-precision positioning systems or in applications where efficiency is a primary

need. SM-PMSMs present a low rotor inertia momentum, a high dynamic performance, and a high

relation between power and weight [1,2].

It is possible to classify this kind of electrical machine into two general groups, if the back-

electromagnetic force (EMF) shape is considered: sinusoidal and non-sinusoidal machines. The latter

are machines which present different types of back-EMF shape, other than sinusoidal shape, and most

common types are the trapezoidal wave shape followed by the square wave shape [3].

The sinusoidal machines are built with windings distributed sinusoidally around the stator to

produce a sinusoidal back-EMF wave shape. This is also possible with a pseud-sinusoidal distribution

combined with a proper magnetization of rotor magnets. On the other hand, non-sinusoidal machines

are simpler than sinusoidal ones, due to a simpler stator winding and a constant magnetization of

rotor magnets. This fact is responsible for two major effects: non-sinusoidal machines can have a

lower cost than their sinusoidal counterparts and a higher power/weight relation [2,3]. It is common to

denote this kind of machine together with its power converter by ‘‘brushless DCmotor’’ (BLDCmotor)

[4,5].

In the same way, sinusoidal machines together with their power converter are denoted by ‘‘brushless

AC motor’’ (BLAC motor) [6]. They are used in high-precision positioning systems, due to their low
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electromagnetic torque ripple (about 2–8%, depending on the machine, against 7–30% of BLDC

motors [7]). These characteristics are a limitation for high-performance and high-precision BLDC

motor systems application, therefore such systems commonly employ a BLAC motor [4].

The power converter which is commonly used in BLDC motors is the traditional tri-phase inverter

in six-step 1208 mode of operation, and its frequency is locked with electrical rotor frequency (the

state of any inverter bridge transistor is rotor-position dependent). Therefore, the inverter acts as an

‘‘electronic commutator’’ [2]. Considering only the electrical machine, i.e., the mechanical

rotating element of a BLDC motor, it consists of a surface-mount permanent magnet synchronous

machine, with a non-sinusoidal back-EMF waveform, more commonly a trapezoidal or square

waveform [3,8].

More often, SM-PMSM used in BLDC motors are considered to have a trapezoidal back-EMF

waveform, so control strategies are used in order for squarewave stator current to be produced in stator

windings (Figure 1). Therefore, PWM current regulators or hysteresis current regulators are used to

produce a rectangular stator current pattern [4,5].

There is a wide range of methods for electromagnetic torque ripple reduction in BLDC motors,

where their electrical machines are commonly an SM-PMSM with trapezoidal back-EMF waveform

[9–12]. For example, in Ref. [13], a machine with a non-ideal trapezoidal waveform is considered and

its asymmetries are treated. An equivalent method is also explained in Ref. [9].

There are waveforms that are different from the trapezoidal one presented by SM-PMSMs. Some

other wave shapes can be found in Refs. [2,3,14,15].

The main objective of this work is to present a variation of dq transformation, called here ‘‘dqx
transformation,’’ which is an extension of the classical dq transformation. It can be applied to SM-

PMSM with any type of back-EMF waveform and not only to sinusoidal, trapezoidal, or squarewave

machines. The resulting mathematical machine model differs from the model shown in Ref. [14], as it

presents a new coordinate system of axes that is superposed to the classical dq axes. These new axes are

called ‘‘dqx axes.’’ They have both a different angle and magnitude from dq axis. This new coordinate

system permits writing the electromagnetic torque equation as being directly proportional to the

quadrature projected stator current, which is also the same of the sinusoidal electromagnetic torque

Figure 1. Ideal electromagnetic torque, back-EMF, and phase current waveforms for a SM-PMSM motor.
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equation, except for the fact that this equation for sinusoidal machines is written over dq axes and not

over dqx axes, as is the case of non-sinusoidal ones. This model has already been shown in a short form

in Refs. [16,17], but here, it is shown in details together with the results of its practical implementation

as well as of its simulation.

The used machine for implementation have the back-EMF waveform shown in Figure 2. It can be

seen that its back-EMF waveform is not purely trapezoidal, as it was desired like Figure 1. The stator

windings are full pitch coils arranged in 60 electrical degrees span, with 3 slots per pole per phase [3].

Section 2 shows a general vectorial model that can be applied to SM-PMSM with any type of back-

EMF waveform. Using this model and considering a perfectly sinusoidal back-EMF machine, the

vectorial model for sinusoidal machines is shown in Section 3. This section is included here only for

comparison purposes, the electromagnetic torque equation of sinusoidal machines is used only as a

reference to the deduction of a similar electromagnetic torque equation for non-sinusoidal machines.

Finally, Section 4 displays a specific vectorial model for non-sinusoidal back-EMFmachines, which

is obtained using the proposed dqx transformation. This section also shows the expression for

electromagnetic torque, and the torque equation is written as being directly proportional to the direct

component of the stator current, in dqx coordinate axes, which is equivalent to the same equation for

sinusoidal machines. It is possible to apply the vectorial model shown in Section 4 in a drive

system without machine stator current measurement, it is shown in Section 5. In Section 7, practical

results of a real positioning system with the implemented vectorial model are shown. Eventually,

these results are compared to the same machine driven by the classical six-step 1208. Once the

proposed vectorial model permits the application of vectorial control without the necessity of

measuring the stator phase currents, the application of both methods differs only by the use of a

microcontroller.

2. GENERAL VECTORIAL MODEL

For the development of all SM-PMSM model equations, the following hypotheses are considered

together with the schematic diagram shown in Figure 3 [18]:

� the machine is a symetrical tri-phase machine;

� the variation of reluctance of rotor magnetic circuit, due to the rotor position, is not worthy of

notice;

� there is no saturation in iron, considering the machine’s normal operating region.

Figure 2. Measured back-EMF wave shapes of a non-sinusoidal SM-PMSM, which are approximately as
trapezoidal as in Figure 1. Channel 1: ea; channel 2: eb; channel 3: ec.
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Considering such hypotheses and Figure 3, phase voltages, the back-EMF waveform of each phase

and the machine’s electromagnetic torque are given by (1), (2) and (3), respectively. Regarding such

equation deductions, they can be found in literature [18].
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where ea, eb, and ec: induced voltage of stator phases a, b, and c, respectively, due to rotor magnets

movement, as in Equation (2); ia, ib, and ic: stator phase currents a, b, and c, respectively; Ls: stator

phase self-inductance;Ms: stator phases mutual inductances; Rs: stator phase resistance; ua, ub, and uc:

a, b, and c stator phases applied voltages, respectively (Figure 3); un: stator neutral terminal voltage

(this terminal is not normally connected, Figure 3).
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where Fra, Frb, andFrc: linked magnetic fluxes between rotor magnets and stator winding phases a, b,

and c, respectively; vr: electrical rotor speed.
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raia þF0
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(3)

where Tel: machine-generated electromagnetic torque; npp: number of machine’s pole pairs.

From (2), it is possible to derive:
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Applying ab0 transformation, as given by (5) and (6), to (1), (2), and (3), the electrical machine

equations are obtained, (7) and (8), as well as the electromagnetic torque equation, (9), in the

Figure 3. Schematic diagram of a surface-mount permanent-magnet synchronous machine.
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where xab: quantities written over ab axes (complex number); x0x0: zero component; xa, xb, and xc:

quantities of a, b, and c phases, respectively.

The machine equations in dqx coordinate axes are obtained by applying the dqx transformation (10)

to (7) and (9). The zero component will not be considered from this point as the neutral terminal

connection is not used, as is most cases, so i0¼ 0.

xab ¼ axe
juxejurxdqx (10)

where ax: dqx size of axes, relatively to dq axes, which are considered equal to the unity (Figure 5); ux:

angle of dqx axes, relatively to dq axes (Figure 5).

The dqx transformation is presented in Figure 4 for a better understanding. This transformation can

be decomposed into two ordinary transformations: a dq transformation, with its angle equal to the

machine’s electrical rotor angle (ur), followed by another transformation composed of a pair of

orthogonal axes of an arbitrary size ax and an arbitrary angle ux, in relation to the dq axes. In that figure,

xdq stands for quantities in dq axes.

The relations between ab, dq, and dqx axes are shown in Figure 5. It is also observed that dqx
transformation consists of a new axes rotation (ux rotation), and a resize of ax, since dq and ab axes

magnitudes are equal to unity. Therefore, the new dqx axes are orthogonal and have a variable length

and angle as a function of electrical rotor angle (ur).

Figure 5. Relation between ab, dq, and dqx coordinate axes.

Figure 4. dqx transformation represented by blocks.
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The relation between only dq and dqx axes is shown by (11).

xdq ¼ axe
jux xdqx (11)

By the application of dqx transformation (10) in the machine’s electrical (7) and electromagnetic

torque (9) equations, the same equations for dqx axes are obtained, (12) and (13).
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(14)
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3. SINUSOIDAL MACHINE VECTORIAL MODEL

The vectorial model for a sinusoidal SM-PMSM is obtained by considering the magnetic fluxes linked

with a stator phase and rotor magnets, given by (17) and applying dq transformation (16) to (1) and (3),

which is equivalent to (10) with ax¼ 1 and ux¼ 0. Considering the dq axes angle (Figure 5) equal to

rotor angle (ur), equations (18)–(21) are obtained.

xab ¼ ejurxdq (16)

where xdq: dq axes quantities, as a complex number; udq: dq axes angle (arbitrary value).
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where Fm: maximum value of magnetic fluxes linked with a stator phase produced only by rotor

magnets.
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The main characteristic of the vectorial sinusoidal model is seen in Equation (21): the produced

electromagnetic torque is directly proportional to the quadrature component of stator current (iq). This
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is due to the fact that the magnetic flux projected in direct axis (d) is constant while the one projected in

quadrature axis (q) is null, so F0
rd is null and F0

rq is constant, (18) and (19).

4. NON-SINUSOIDAL MACHINE VECTORIAL MODEL

For a non-sinusoidal SM-PMSMmodel, the electromagnetic torque equation is desired to be as simple

as the one for sinusoidal machine (21). Thus, similarly to the sinusoidal machine (although over dqx
axes), there is a condition whereF0

rdx
is null. This condition is given by (22) and (23), which are derived

from (13) and (21).

Sinusoidal (trapezoidal)

F0
rdx

¼ 0 (22)

a2xF
0
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¼
ffiffiffi
3

2

r
Fm (23)

If the above conditions are satisfied, the electromagnetic torque equation for any type of machine,

i.e., with any type of back-EMF wave shape, is written by (24).
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3

2

r
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By (24), the electromagnetic torque is directly proportional to the stator current projected in qx axis,

which is similar to the same equation for sinusoidal machine, except for the fact that the q axis current

projection is used there (21). For (24) to be possible, ax and ux must be defined by (25) and (26).1
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Such results also show that if a classical dq transformation, without any modification, is applied to a

non-sinusoidal SM-PMSM, this machine will present harmonic components in its electromagnetic

torque, as in non-sinusoidal back-EMF waveforms, ux¼ 0 and ax¼ 1 are not valid.

Using (11), (20), (25), and (26), the electric machine equation in complex form (27) is obtained for

any type of back-EMF waveform.
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Considering different back-EMF wave shapes, there will be different values for ax and ux,

remembering that both are functions of electrical rotor angle ur.

For a perfect trapezoidal back-EMF, ax and ux are shown in Figure 6. In Figure 7, ax and ux are shown

for back-EMF waveforms of Figure 2.

1See Appendix for equation deductions.
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5. CURRENT OPEN-LOOP VECTORIAL CONTROL

This section shows that it is possible to apply the proposed vectorial control without the need of stator

current measurement. The model equations are manipulated to allow it. The resulting control system

relies in the previous knowledge of machine parameters as stator resistance, inductances, and back-

EMF waveforms. The resulting control block for this current open-loop control is shown in Figure 8.

Figure 6. Parameters ax(ur) and ux(ur) for an ideal trapezoidal back-EMF waveform (ur and ux in electrical
degrees).

Figure 7. Parameters ax(ur) and ux(ur) for a back-EMF waveform as presented in Figure 2 (ur and ux in
electrical degrees).

Figure 8. Block diagram of a BLDC motor drive system, using the control based on the vectorial model, in
stator current open-loop.
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The obtained non-sinusoidal SM-PMSM electrical equation is more complex than the sinusoidal

one, (20) and (27), but the electromagnetic torque equation for non-sinusoidal machine (24) is as

simple as the one for sinusoidal machine (21). In order to produce a ripple free electromagnetic torque,

it is necessary to keep iqx constant, therefore diqx=dt must be equal to zero.

In the case of a control system for machine electromagnetic torque, using (24),

iqxref ¼ Telref

ffiffiffi
2

3

r
1

nppFm

(28)

where Telref is the reference for machine electromagnetic torque and iqxref is the reference current for qx
axis projected stator current component.

If idx is held constant, too, didx=dt must be zero and it is possible to write idxref (project dx axis

reference stator current component) as proportional to iqxref :

idxref ¼ kixiqxref (29)

where kix is constant and limited to the interval [�1,1]. For negative values of kix, the machine is under

field weakening and, for positive values, the machine is under field enhancement. For kix¼ 0, the

copper loss is at its minimum value, as only the portion of current which is responsible for torque

production is applied to the stator.

Considering iqx ¼ iqxref and idx ¼ idxref , the electrical machine equations are written as follows:

udx ¼ Rskix þ Ls�Msð Þvr
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By observing (28)–(31), it is not necessary to measure the stator currents, so the employment of

current sensors, signal isolators and analog-to-digital converters is not necessary either. Those

equations are not part of transformations, they consist of an integrated controller and estimator for

stator currents. Electric drive positioning systems usually have high-resolution optical encoders for

rotor position sensing, so there is no need to use additional components to the system, except for a

higher capacity processor, whether all machine parameters are known.

Figure 8 shows a control block diagram of the complete drive system. The diagram is a stator current

open-loop control, so it refers to Equations (30) and (31). All the system works in an open-loop control,

since all machine parameters are known. The reference torque is used to determine the reference

current in qx axes by (24) and using (24) and (12), udx and uqx are determined. Parameters ax and ux are
determined by (26) and (25), in Section 4. These quantities, which are projected in dqx axes, are

then transformed to ab axes, by (10), and then to ua, ub, and uc, using (5). In Figure 8, the ‘‘T’’ block

corresponds to the inverse of ab0 transformation, (5) and (6), and ‘‘Machine Model’’ block

corresponds to (30) and (31).

6. CURRENT CLOSED-LOOP VECTORIAL CONTROL

Considering a control system where stator phase currents are directly measured by current transducers

(Figure 9), since there are no need of stator current estimation, the computation time will be reduced, if

compared to the current open-loop schema which needs (28)–(31). In that Figure, dqx to ab and ab to

abc transformations will be necessary in order to transform the applied stator voltage from dqx axes to

abc. Also, the inverse of those transformations will be necessary to transform stator currents from abc

to dqx axes.

The use of current transducers will allow a slower processor, if compared to the current open-loop

schema, and alsowill improve electromagnetic torque transient response. It is possible to use three (one

for each stator phase) or two current sensors. In the last case, the third current phase will be given by
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(32), once neutral connection is not used. Figure also shows dx current component control loop. It can

be used as field weakening/enhancement or, for copper losses minimization, kix can be set to 0 (and

consequently idx ¼ 0; Section 8). Figure also shows G(s) as a generic controller and it consists of a

system of two inputs and two outputs (udx and uqx). There are several possibilities for the controller

topology, from simple classical control topologies to intelligent algorithms.

ia þ ib þ ic ¼ 0 (32)

7. BLDC MOTOR DRIVE SYSTEM IMPLEMENTATION USING VECTORIAL MODEL

The block diagram of the hardware used for the implementation of BLDC motor drive is shown in

Figure 10. This hardware was used for both classical six-step 1208 and control based on vectorial model

implementation, in stator current open-loop control, as described in Section 5 (Figure 8). The

microcontroller used has an ARM7TDMI core. The optical encoder for rotor position sensing has

10 bits of resolution. The parameters of the used SM-PMSMmachine are shown in Table I and its back-

EMF waveform is in Figure 2. The control software was entirely developed in a GNU/Linux

environment, using C language (GCC configured as a cross compiler).

Some results obtained from implementation are shown in Figures 11 and 12, where one-stator phase

current of BLDC motor is presented. The PWM frequency switching is 6 kHz and the electrical power

converter fed the machine in current open-loop, as in Section 5. In Figure 11, the machine’s

Figure 9. Block diagram of a BLDC motor drive system, using the control based on the vectorial model,
with current sensors (stator current closed-loop). Note that udqx¼ urþ ux.

Figure 10. Schematic diagram of hardware used for BLDC motor drive system.
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electromagnetic torque is about 2Nm and the mechanical rotor speed is about 11.3 rd/second

(107.9 rpm). In Figure 12, the machine’s electromagnetic torque is about 1.2Nm and the mechanical

rotor speed is about 67.6 rd/second (645.6 rpm).

The performance of a positioning drive system, using a BLDC motor with its electrical converter

based on the presented vectorial model, and another drive system, using a BLDC motor with classical

six-step 1208 electric power converter, was analyzed.

Table I. BLDC motor parameters used in this work.

Parameter Value Units

Rs 2.3 V
(Ls�Ms) 12.5 mH
npp 3
Fm 0.12 Wb

Figure 11. Stator phase current for SM-PMSMwith its electric power converter employing control based on
the presented vectorial model (current: 2.13A/div, vm ¼ 107:9 rpm, Tel ¼ 2:0Nm).

Figure 12. Stator phase current for SM-PMSM with control based on the vectorial model (current: 1.06A/
div, vm ¼ 645:6 rpm, Tel ¼ 1:2Nm).
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The simplified block diagrams for each system are shown in Figures 13 and 14. The former refers to

the conventional BLDCmotor, using conventional six-step 1208 power converter and the latter refers to
BLDC motor with power converter using control based on the non-sinusoidal vectorial model. Both

systems were tested under the same operational conditions and in stator current open-loop, i.e., with no

current measurement in both cases.

The results for mechanical rotor position (um) are shown in Figures 15–17, for six-step mode of

operation, and in Figures 18–20, for the vectorial mode of operation. According to those figures, by

using the presented vectorial model, it is possible to significantly reduce the ripple in rotor position, due

to the ripple reduction in rotor electromagnetic torque. Figures also show a interesting result regarding

cogging torque. This machine has 36 slots in its stator, and was constructed employing some

techniques in order to minimize cogging torque as skewing and and reasonably small stator slots

openings [2,3,9]. So, if cogging torque was a significant source of ripple for this machine, a position

disturbance in each 10 electrical degrees (3.33 mechanical degrees) would be expected.

Figure 13. Simplified block diagram for conventional six-step 1208 BLDC motor electric power converter.

Figure 14. Simplified block diagram for BLDC motor with electric power converter using the vectorial
model.

Figure 15. Mechanical angular rotor position for a positioning drive system using BLDC motor with
conventional six-step 1208 electric power converter.
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Figure 16. Figure 15 zoomed. It can be seen, by machine position, that torque ripple occurs each 20
mechanical degrees, or 60 electrical degrees.

Figure 17. Figure 16 zoomed, for position ripple detail, due to machine produced torque ripple.

Figure 18. Angular rotor position for a positioning drive system using BLDC motor with electric power
converter employing control based on the presented vectorial model.

Figure 19. Figure 18 zoomed, as Figure 16 is from Figure 15.
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8. STATOR COPPER LOSSES

With respect to copper losses, it is possible to minimize it by controlling idx current component, once it

is only iqx current component that produces electromagnetic torque, according to (24). Figure 21 shows

ideal squarewave current for one stator phase together with its projections on dqx axes, direct (idx ) and

quadrature (iqx ) components.

Figure 22 shows the stator current which is the resulting of current iqx of Figure 21 with its dx
component equal to zero. Also, for comparison purposes, the ideal squarewave is shown. Both stator

Figure 20. Figure 19 zoomed, for position ripple detail, like Figure 17 is from Figure 16.

Figure 21. Ideal squarewave stator phase current and its dx and qx components as a function of rotor
position.

Figure 22. Ideal squarewave stator phase current and stator phase current that produces the same
electromagnetic torque but with no dx component.
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currents produce a constant electromagnetic torque (in an ideal situation), with no ripple, although they

are quite different. Also, they have distinct RMS values, as shown in Table II.

As copper losses are given by (33) and squarewave RMS value is greater than vectorial waveform

RMS value, the copper losses for the vectorial waveform is lower than for square waveform current.

Thus, considering an ideal SM-PMSMwith ideal trapezoidal back-EMFwaveforms, if a square current

waveform, such as shown in Figure 21, is applied in its stator phases, its copper losses will be 10.2%

higher than the samemachinewith vectorial current waveforms in its stator phases, producing the same

electromagnetic torque in both cases.

PCu ¼ 3RsI
2
RMS (33)

where IRMS is the RMS current value for one phase.

Nonetheless, it is important to point out that in practice, it is very hard to produce an ideal

squarewave stator current, due to its high di/dt values, and also, back-EMF waveform is not a pure

trapezoidal function. Those facts cause stator copper losses to be even higher than vectorial case, once

it is possible to produce stator currents like the vectorial waveform of Figure 22, and in the case of

back-EMF distortions, it is even possible to produce an adapted stator current waveform for that kind of

machine, with a specific back-EMF waveform.

9. CONCLUSIONS

A vectorial model for surface-mount permanent magnet synchronous machines has been presented in

this work, obtained by using an extension of dq transformation, called here by ‘‘dqx transformation,’’ It

allows applying vectorial control to SM-PMSM with any type of back-EMF waveform. Practical

results have shown the model can improve the machine’s performance, reducing its electromagnetic

torque ripple and copper losses, in comparison to the conventional use of classical six-step 1208
electric power converter, commonly applied to this type of machines. This performance improvement

is achieved even in open-loop current control, as in the six-step converter case.

The use of dqx transformation allows for the application of vectorial control to non-sinusoidal SM-

PMSMs (any type of back-EMF waveforms), without the need of measuring stator currents.

Considering the positioning drive systems using conventional BLDCmotors (composed of SM-PMSM

with electrical power converter in six-step operation mode) coupled with an optical encoder for rotor

angle measurement, the difference between the hardware used in this case and the hardware used in the

case of vectorial model consists only in the processor used for the vectorial control implementation.

Although vectorial control can be implemented without the need of stator current measurement, with

stator current information, the system performance can be highly increased, i.e., dynamical

electromagnetic torque response is increased, and there is no need of some machine parameters: stator

resistance (Rs), self and mutual inductances (Ls�Ms).

Also considering positioning systems, they must have acceptable performance mainly at lower

speed operation, where they must have a low level of electromagnetic torque ripple. At high operation

speed, the torque ripple produced by the machine is filtered by the inertia of the mechanical system.

Nonetheless, even at high speed operation, the control based on the presented vectorial model allows

for a low electromagnetic torque ripple. The stator phase current does not require high values of di/dt to

Table II. RMS values for stator phase current waveforms of Figure 22.

Waveform RMS value Unit

Squarewave
ffiffi
2
3

q
¼ 0:816496 . . . A

Vectorial 0.777722� 5.10� 10�6 A
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produce smooth electromagnetic torque, so with the same inverter bus voltage, the squarewave current

path is harder to obtain than the vectorial current path (Figures 21 and 22).

As well as for positioning systems applications, the vectorial method also shows to be valuable for

traction applications, due to its better energy efficiency, i.e., it allows a reduction in stator copper

losses.

10. LIST OF SYMBOLS

ax dqx size of axes, relatively to dq axes, which are considered equal to the unity

(Figure 5)

ea, eb, and ec induced voltage of stator phases a, b, and c, respectively, due to rotor magnets

movement, as in Eqaution (2)

G(s) generic multiple input, multiple output controller

ia, ib, and ic stator phase currents a, b, and c, respectively

idq stator phase currents projected in dq axes (in complex form: idþ jiq)

idqx stator phase currents projected in dqx axes (in complex form: idx þ jiqx )

idxref is the reference current for dx axis projected stator current component

iqxref is the reference current for qx axis projected stator current component

IRMS RMS current value for one stator phase

iab stator currents in ab axes (in complex form: iaþ jib)

kis flux enhancing/weakening constant

Ls stator phase self-inductance

Ms stator phases mutual inductances

npp number of machine’s pole pairs

PCu total stator copper losses

Rs stator phase resistance

T ab0 to abc matrix transformation

Tel machine-generated electromagnetic torque

Telref machine electromagnetic torque reference

ua, ub, and uc a, b, and c stator phases applied voltages, respectively (Figure 3)

udq stator voltages in dq axes (in complex form: udþ juq)

udqx stator voltages in dqx axes (in complex form: udx þ juqx)

un stator neutral terminal voltage (this terminal is not normally connected, Figure 3)

uab stator voltages in ab axes (in complex form: uaþ jub)

xa, xb, and xc arbitrary quantities in a, b, and c phases, respectively

xdq dq axes quantities, as a complex number: xdþ jxq
xdq dqx axes quantities, as a complex number: xdx þ jxqx
x0 arbitrary quantity zero component

xab arbitrary quantities written over ab axes (complex number)

Fm maximum value of magnetic fluxes linked with a stator phase produced only by

rotor magnets

Fra, Frb, and Frc linked magnetic fluxes between rotor magnets and stator winding phases a, b, and

c, respectively

F0
ra, F

0
rb, and F0

rc back-EMF waveforms of phases a, b, and c, respectively, due only to rotor

magnets

F0
rdq back-EMF waveforms due only to rotor magnets, projected in dq axes (complex

form: Frd þ jFrq)

F0
rdqx

back-EMF waveforms due only to rotor magnets, projected in dqx axes (complex

form: Frdx þ jFrqx)

F0
rab back-EMF waveforms due only to rotor magnets, projected in ab axes (complex

form: Fra þ jFrb)

udq dq axes angle (arbitrary value)

udqx dqx axes angle (arbitrary value)
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um mechanical rotor angle

ur electrical rotor angle

ux angle of dqx axes, relatively to dq axes (Figure 5)

vr electrical rotor speed
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APPENDIX

This appendix shows how (25) and (26) are obtained.

From (10):

ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

02
rdx

þF
02
rqx

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

02
ra þF

02
rb

q
(A.1)

As F0
rdx

¼ 0:

axF
0
rqx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

02
ra þF

02
rb

q
(A.2)

Substituting (A.2) in (23), (25) is obtained.

In the same way, (26) can be derived from (10):

F0
rab ¼ axe

juxejur jFrqx ¼ axe
juxejur ej

p
2F0

rqx
(A.3)

Then:

tan�1
F0

rb

F0
ra

¼ ux þ ur þ p

2
(A.4)
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