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ABSTRACT

This article deals with a very simple issue: if we have grouped data with a binary
dependent variable and want to include fixed effects (group specific intercepts)
in the specification, is Ordinary Least Squares (OLS) in any way superior to a
(conditional) logit form? In particular, what are the consequences of using OLS
instead of a fixed effects logit model in respect to the latter dropping all units
which show no variability in the dependent variable while the former allows for
estimation using all units. First, we show that the discussion of fixed effects logit
(and the incidental parameters problem) is based on an assumption about the
kinds of data being studied; for what appears to be the common use of fixed effect
models in political science the incidental parameters issue is illusory. Turning to
linear models, we see that OLS yields a perhaps odd linear combination of the
estimates for the units with variation in the dependent variable and units without
such variation, and so the coefficient estimates must be carefully interpreted. The
article then compares two methods of estimating logit models with fixed effects,
and shows that the Chamberlain conditional logit is as good as or better than
a logit analysis which simply includes group specific intercepts (even though the
conditional logit technique was designed to deal with the incidental parameters
problem!). Related to this, the article discusses the estimation of marginal effects
using both OLS and logit. While it appears that a form of logit with fixed effects
can be used to estimate marginal effects, this method can be improved by starting
with conditional logit and then using the those parameter estimates to constrain
the logit with fixed effects model. This method produces estimates of sample
average marginal effects that are at least as good as OLS, and better when group
size is small. However, this is based on simulations favorable to the logit setup.
So it can be argued that OLS is not “too bad” and so can be used when its
use simplifies other matters (such as endogeneity). These issues are simple to
understand, but it appears that applied researchers have not always taken note
of these issues.
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1. INTRODUCTION

Many applied researchers include “fixed effects” (unit specific intercepts) to account for
unmodeled heterogeneity in grouped data analyses; these fixed effects lead to interesting
issues.1 This is a well worked area when the dependent variable is continuous (see, any
standard econometrics text, such as Cameron and Trivedi, 2005, ch. 21, or Greene, 2011,
ch. 9). The situation is more complicated when the dependent variable is binary, though
again the theory is well worked out (see Cameron and Trivedi, 2005, ch. 23 or Greene, 2011,
ch. 23). In particular, the group mean centering solution for estimating a model with fixed
effects and a continuous dependent variable does not carry over to non-linear models, such
as logit.2

It is, of course, possible to estimate a logit specification with group specific intercepts
(dummy variables); this method (denoted as “FELOGIT” to keep method and specification
distinct) has not been heavily used, partly for computational reasons and partly because of a
misunderstanding about relevant asymptotics. This misunderstanding is treated in Section 3.
Researchers working with the LOGITFE specification have instead turned to Chamberlain’s
(1980) conditional logit (denoted “CLOGIT” to again keep method and specification dis-
tinct), which does provide consistent estimates under some, perhaps irrelevant for a given
researcher, conditions. Section 3 makes it clear which asymptotics are relevant.

As is well known, either logit approach implies that groups with no variation on the
dependent variable contain no information that help identify the parameters, and these
observation do not enter the likelihood function. Alternatively many researchers resort to
the the simpler linear probability model (hereinafter “LPMFE”) estimated by OLS, which
appears to use observations from all groups to estimate parameters. This article begins by
unpacking the relationship between the LPMFE and LOGITFE models with respect to this
change in the data set used for estimation. Section 4 deals with this issue. Social science data
sets often contain many groups with no variation on the dependent variable, This change in
the data being analyzed is often unremarked upon, but obviously in some research contexts
can be consequential.

Another reason that researchers often turn to LPMFE is that it allows for sample average
marginal effects, which require the estimation of the various effects. Since CLOGIT just con-
ditions out those effects, it cannot provide estimates of sample marginal effects. FELOGIT
can provide such estimates, though many researchers appear to have been reluctant to use it
because of the misunderstood asymptotic issues. Various researchers (Coupé, 2005; Greene,
2004; Katz, 2001) have shown that the bias in using FELOGIT to estimate substantive pa-
rameters of interest is small in practical situations, that is when group size is at least twenty.

1Researchers using data with a temporal component often also include temporal effects. These typically
do not cause the problems of group fixed effects, since the number of temporal effects is usually small and
the number of observations per temporal effect is usually quite large. Thus fixed effects in this article are
only group specific intercepts and not time specific intercepts.

2Most work in this area uses logit and at least some results, such as those of Chamberlain (1980), do not
carry over to probit and so this article only considers the logit specification; many results carry over to the
probit specification but this is of little interest. To keep specification and estimation distinct I refer to the
generic logit specification with fixed effects as “LOGITFE” regardless of how it is estimated.
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However, on the way to discussing the estimation of sample marginal effects, this article
reexamines the issue of the accuracy of FELOGIT and GLOGIT in terms of mean squared
error and not bias; in Section 5 it is shown that CLOGIT is more accurate than FELOGIT
even in situations where FELOGIT is essentially unbiased.

Section 6 returns to the estimation of sample average marginal effects. Is FELOGIT
sufficiently accurate so that the estimated sample marginal effects are meaningful, or more
correctly, how large do group sizes have to be before such estimates are meaningful.This
section discussed an improvement on FELOGIT which builds on the previous section’s com-
parison of FELOGIT AND CLOGIT and then compares this improved estimator to the OLS
estimates of sample marginal effects implied by the LPMFE, showing that, at least in one
case, the improved estimator of the LOGITFE specification is superior to OLS estimation
of the LPMFE specification.

Since this article only deals with data where the group size is large enough to make the
estimation of fixed effects at least plausible, is this argument relevant to political science as
practiced? Similarly, are researches mixing the LOGITFE model with the LPMFE model
without sufficiently considering the consequences? The answer to both question is yes. Large
but not huge group sizes (20-100) are common in political science; the issue of fixed effects is
also common in such models. While much research involves continuous dependent variables
(for which this article is irrelevant), there is a non-trivial amount of research where the
dependent variable is dichotomous. Evidence of this is provided by a search of JSTOR.

From 2000-2015 (June), a search on “linear probability” and “fixed effects” found 1158
articles, of which 87 were in political science or international relations (the majority, 798
articles, were in economics). When “conditional logit” was added to the search term, the total
number of articles fell to 86 (with only 7 in political science or international relations). Many
research articles, for whatever reason, fit a linear probability model when the specification
includes fixed effects. Interestingly, this is about half of all articles that use the term “linear
probability;” there were 2180 articles returned with just this one search term; for political
science and international relations the corresponding figure is about one third of the 276
articles which used the term “linear probability.”3 Finally, at least amongst the political
science articles, I did not find articles which estimated the LPMFE specification on large
behavioral panels, that is, ones with many respondents (groups) and very few waves (group
size). Such may exist, but they are at best uncommon in political science.

Many authors do not clarify why they chose to use the linear probability model. One
reason is for simplicity in dealing with endogenous regressors where the linear probability
model is much simpler to estimate (Angrist, 2001) ; 836 articles using the linear probability
model also used the term endogeneity; somewhat more than half (495) also included fixed

3For completeness, a similar search found 449 articles with the search terms “fixed effects” and “condi-
tional logit,” with 49 of those being in political science or international relations. But researchers refer to
both the Chamberlain procedure and McFadden’s conditional (multinomial) logit; 147 of the 449 articled
cited McFadden (but not Chamberlain) whereas 100 cited Chamberlain but not McFadden. Alas, that leaves
202 articles citing neither. Political scientists were even less likely to cite either McFadden or Chamberlain,
with the 16 who did cite one or the other evenly split between them. Based on this, it does appear that re-
searchers fitting a model with a binary dependent variable and fixed effects gravitate to the linear probability
model rather than the Chamberlain conditional logit model.
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effects; in political science and international relations the corresponding article counts are
73 and 38. This leaves many articles which estimate linear probability models (both with
and without fixed effects) where there are no endogeneity issues.

I had hoped that a portion of articles which estimated linear probability models with
fixed effects would also have mentioned issues related to either not having to drop group due
to lack of variability in the dependent variable or because of a desire to estimate marginal
effects. But having read some of the more prominent articles in major journals, I find that
authors tend to either report both LMPFE and CLOGIT results, simply remarking that the
results are not much different, or make the same remark but put the second set of results in
an group of “robustness checks” or report only one set of results.

To get more detail, take the three most recent pieces using the LPMFE model in the
American Political Science Review. Hainmueller and Hangartner (2013) provides an estimate
of the probability of an application for naturalization in Switzerland being rejected as a
function of individual characteristics and a municipality fixed effect; there are about fifty
applications per municipality. Their specification is the LPMFE with no discussion of non-
linear alternatives.4 Besley and Reynal-Querol (2011) studies whether democracies provides
more educated leaders by estimating models, for example, of the probability of a leader
having a graduate degree in a large number of countries, where the specification includes
country fixed effects. This article provides both OLS estimates of the LPMFE specification
and CLOGIT estimates of the LOGITFE specification. Besley and Reynal-Querol (2011,
559) only mentions the non-linear estimate by noting that “[In the LOGITFE specification],
we estimate a conditional logit model to recognize the discrete nature of the lefthand-side
variable. The core finding of [the LPMFE model] remains.” This is clearly correct if we
only care about the sign and significance of a coefficient, but, as we shall see, the difference
between the two estimations is not trivial albeit not enormous. Finally, Petrova (2011)
estimates a LPMFE specification for newspaper independence as a function of profitability
over a half decade in the 1880’s, sometimes grouping the observations by newspaper (so
about 5 observations per group) and sometimes by county (with a much larger number of
observations per group); this article is relevant to the latter specification. As in the Besley
and Reynal-Querol (2011) piece, the only methodological discussion of this is in a footnote (p.
796) which states “[t]he results of estimating the fixed-effect conditional logit are consistent
with the results of fixed-effects OLS, as discussed in the robustness check section.”5 In
short, real articles in top journals use methods discussed here, and use them without much
methodological justification. This article seeks to provide some methodological clarity. It
begins by laying out the notation used.

4In fairness, this analysis is secondary to an analysis of the proportion voting to reject the naturalization
petition. However, they fit a linear model to the proportion voting to reject which is only consistent with a
linear probability model.

5This discussion is then well hidden.
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2. NOTATION

Let yg,i be a binary dependent variable with the exogenous covariates being xxxg,i, where g
indexes groups and i indexes particular units in a group. It simplifies notation to assume that
all groups are of the same size, and dropping this one extra subscript has no consequences
for the argument: let this be group size be N , with G being the number of groups. Let the
number of covariates be k; in this article everything holds even when k = 1 and it is does
not matter whether we think of the covariates as a vector or a scaler. fg refers to the fixed
effect for group g, that is the group specific intercept.

What is critical for this article is that G is fixed; asymptotics are in terms of N . In the
articles cited in the previous section, neither the number of municipalities, the number of
countries nor the number of counties can be thought of as going to infinity; the number of
groups may be large (counties), but the critical thing is that the number of groups is fixed,
so that the asymptotic properties of estimators considered here are in terms of N , not G.

The data may take any grouped form, such as time-series–cross-section or simply ob-
servations grouped by some unit (village, tribe, state, country); even where the data has
a structure so that observation i means the same thing in different groups, this structure
is orthogonal to the arguments of this article (though obviously researchers would need to
take account of that structure in their analyses). The article distinguishes groups that have
variation on the dependent variable from those that do not. For convenience it is assumed
that groups with no variation (“ALL0”) have yg,i = 0.6 these are denoted “ALL0” groups.
Assuming exogeneity of the covariates, the generic model with fixed effects is

P (yg,i = 1) = H(xxxg,iβββ + fg′Ig′=g) (1)

where H is some (possibly stochastic) function which needs to be specified; different H’s lead
to different specifications. I is the usual indicator function which in this case indicates group
membership.

The LMPFE is obtained by setting H so that

yg,i = xxxg,iβββ + fg′Ig′=g + εg,i (2)

P (yg,i = 1) = E(xxxg,iβββ + fg′Ig′=g) + εg,i) = xxxg,iβ̂ββ + f̂iIg=k.

This can be estimated by OLS and it is assumed that εg,i satisfies the Gauss-Markov as-
sumptions. Of course these “probabilities” need not be between zero and one, and this
specification suffers from all the standard issues related to the linear probability model in
general. The LOGITFE specification is obtained by choosing H so that

Pr(yg,i = 1) =
1

1 + e−(xxxg,iβββ+fg′Ig′=g)
(3)

where the use of xxxg,iβββ indicates that the covariates combine to affect y through a single-
index model (Cameron and Trivedi, 2005, 123). The estimation of this model has been the

6It is trivial to extend the argument to data sets which contain some all failure and some all success
groups. In the LPMFE specification the estimates for the all successes groups are identical to those for the
all failures group except for a constant term. 0 is used interchangeably with failure and 1 with success.
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subject of much theoretical discussion sparked by Neyman and Scott’s (1948) discussion of
the “incidental parameters problem” almost 70 years ago.

3. THE INCIDENTAL PARAMETERS “PROBLEM”

In both specifications the number of parameters is G+ k, whereas the number of obser-
vations if NG. Now while it may not be advisable to estimate any model where the number
of parameters is a sizable fraction of the number of observations (which happens when N
is small), there is no violation of any standard assumptions in this situation. Of course
parameter estimates may be inaccurate for small N , and we know that logit models do not
produce unbiased estimators in finite samples. As we shall see, estimating logit models with
a large number of parameters (relative to the number of units) is problematic, but this issue
is orthogonal to the issue that G of the parameters are group specific intercepts.

There are situations where the asymptotics are in G, not N . This would be the case
for “behavioral panel” data, where, there are a few, and fixed, number of interview waves
and asymptotics are in terms of the number of people interviewed. It is hard in political
science to find such studies when the dependent variable is binary; if one has such data, the
conclusions of this article are irrelevant. The distinction between the type of data considered
here (fixed G) and the behavioral panel data has, however, led to confusion.

In particular, if the number of intercepts to be estimated goes to infinity as the number
of observations goes to infinity, as in the behavioral panel case, we get the “incidental
parameters” problem; in this situation standard maximum likelihood results do not hold
and maximum likelihood estimators may not even be consistent. Neyman and Scott showed,
however, that if one could estimate parameters of interest conditional on the incidental
parameters that the parameters of interest would then be consistently estimated. For the
fixed effects with a continuous dependent variable situation and a linear specification, this
conditioning consists of group mean centering all observations. The standard texts mentioned
in the introduction easily show that, because of the linearity of the specification, estimating
the linear model with the fixed effects using OLS is identical to this conditional estimation.
Alas, this result depends heavily on linearity and when we move to the non-linear world
things get more complicated. In particular, standard logit estimation of the LOGITFE
specification are inconsistent for behavioral panel data with asymptotics in G.

For the types of data considered here, there is literally no incidental parameters problem,
and one could simply estimate the LOGITFE specification by standard logit (FELOGIT).
While the LOGITFE specification may contain a large number of parameters, this number
does not grow with N . This is, again, not to say that the large number of parameters to be
estimated is not problematic, but the issue is the large number of parameters relative to the
number of observations in non-linear models and unrelated to the fact that these parameters
are group specific intercepts.

Chamberlain (1980) showed that βββ can be consistently estimated for the behavioral panel
case (where incidental parameters are an issue) by conditioning on the number of successes
in any group, that is, given a group with k successes, estimate βββ by finding the value that
best predicts which units in that group are successes (CLOGIT). There is nothing wrong
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with doing this for the types of data considered here, but there is no need to do so in terms
of asymptotic theory.7

Because of the non-linearity of the logit specification, CLOGIT and FELOGIT are not
identical. Note that CLOGIT conditions on a known number, the number of ones in a group;
FELOGIT estimates all the fixed effects, and the imprecision of those estimates “leaks” into
the estimation of the parameters of interest. As we shall see, CLOGIT may well outperform
FELOGIT, but this is because of the imprecisely estimated parameters in the FELOGIT
model, not the Neyman-Scott issue. This is dealt with in Section 5. The article now begins
with a comparison of LOGITFE and LPMFE in terms of which observations are dropped in
the estimation of βββ.

4. DIFFERENCES BETWEEN WHAT IS ESTIMATED WITH LPMFE AND LOGITFE

As noted, any of the methods used to estimate a LOGITFE specification drop all the
ALL0 groups (or, alternatively, these groups do not enter into the likelihood). The LPMFE
model estimated by OLS does use information on all the groups. To see the consequences
of this, note that the OLS estimate of βββ is a weighted average of the estimates in the ALL0
and the other (“NOTALL0”) groups.8 For the ALL0 groups, yg,i = 0 so the OLS estimate of

βββ is zero.9 Let X̃̃X̃X and ỹ̃ỹy be the group mean centered analogues of XXX and yyy so we can avoid
worrying about the fixed effects in the OLS estimations. Let X̃0X̃0X̃0 be the covariate matrix
for the ALL0 groups with X̃̃X̃X1 being the corresponding matrix for the NOTALL0 groups.
Similarly, ỹ̃ỹy1 is the group mean centered vector of observations on y for the NOTALL0
group with the corresponding vector for the ALL0 group being 000. Thus the OLS estimate
of βββ for the entire data set (βββ01) are given by

β̂ββ01 = (X̃′1X̃1 + X̃0
′
X̃0)

−1(X̃′1ỹ1)(X̃′1X̃1 + X̃0
′
X̃0)

−1(X̃′1ỹ1)(X̃′1X̃1 + X̃0
′
X̃0)

−1(X̃′1ỹ1) (4)

whereas the corresponding estimate for the NOTALL0 groups (βββ1) is given by

β̂ββ1 = (X̃′1X̃1)
−1(X̃′1ỹ1)(X̃′1X̃1)
−1(X̃′1ỹ1)(X̃′1X̃1)
−1(X̃′1ỹ1). (5)

7An excellent discussion of this issue, including various mis-applications of the Neyman-Scott argument
may be found in Greene (2004) written over a decade ago. This article, which is surely under-cited in political
science, points out, as pointed out here, that finite and non-growing G makes the Neyman-Scott problem
irrelevant. The article also points out that some of the received wisdom on fixed effects and non-linear models
overstates the problem. The issues considered in this article are somewhat different from those considered
by Greene, though the finite sample queries are similar in spirit.

8Any estimator can be seen as a combination of estimators for subgroups of data; this is a long standing
idea in econometrics, with perhaps the best known and long standing example being the the Chow test of
the equality of regression lines in two subsets of data (Chow, 1960). The calculations here are even simpler
because of the nature of the dependent variable in the ALL0 group.

9All group intercepts in the ALL0 group are also zero, and the fit appears to be perfect. This of course
follows simply because the group mean centered yg,i’s in the ALL0 groups are also always zero. It is also

necessary to assume some variation in the covariates for the ALL0 groups so that X̃′X̃X̃′X̃X̃′X̃ is not singular for
the ALL0 groups.
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We can also compare the variance covariance matrix of the two estimates. For the entire
data set this matrix is

(X̃′1X̃1 + X̃′0X̃0)
−1(X̃′1X̃1 + X̃′0X̃0)
−1(X̃′1X̃1 + X̃′0X̃0)
−1σ̂2

01 (6)

whereas the corresponding estimate for the NOTALL0 groups (βββ1) is given by

(X̃′1X̃1)
−1(X̃′1X̃1)
−1(X̃′1X̃1)
−1σ̂2

1 (7)

where σ̂2
01 and σ̂2

1 refer to estimates of the standard error of the regression in the full and
restricted data sets respectively.

It is immediately obvious that the two equations only differ by the X̃′0X̃X̃′0X̃X̃′0X̃0 portion of the
XXX ′01XXX01XXX ′01XXX01XXX ′01XXX01 matrix that is being inverted. Alternatively, it is obvious that the OLS estimates
for all the data is a weighted average of 0 and the βββ1; βββ01 shrinks βββ1 towards 0. The amount
of shrinkage is a somewhat complicated function that depends on the relative scale of X̃′0X̃0X̃′0X̃0X̃′0X̃0

and X̃′1X̃1X̃′1X̃1X̃′1X̃1. The difference between β̂ββ1 and β̂ββ01 is similar.10

The variance covariance matrix of the estimates has two components which move in
different directions as we move from the entire data set to the NOTALL0 data set. The
estimated σ2 will get smaller, since we are eliminating non-homogenous cases; however the
X̃′1X̃1X̃′1X̃1X̃′1X̃1 matrix in the NOTALL0 data will also be smaller in scale than the corresponding

X̃′X̃X̃′X̃X̃′X̃ matrix used to estimate the variance covariance matrix of of β̂ββ01. Note however that
the estimated standard error of the regression will be limited in how much it changes since
the variance of ỹ̃ỹy is limited by it being a binary variable; the X̃′X̃X̃′X̃X̃′X̃ matrix is not similarly
limited by any scaling, and so could shrink considerably as the ALL0 cases are dropped
(depending of course on how many ALL0 groups there are and the scale of the X̃′X̃X̃′X̃X̃′X̃ matrix

for those groups.). In general, the estimated standard errors of β̂ββ1 will be smaller than the

corresponding estimates for β̂ββ01 The change in β̂ββ and its estimated standard error offset
(in general), and so we usually see smaller impacts on the t-ratio associated with βββ01 as
compared to βββ1, even though both components of the ratio may change more markedly; this
may be one reason that authors are content to conclude that the substantive results from
LOGITFE are similar to those of LPMFE. But we should go beyond simply inquiring as to
the sign of a coefficient and whether its “significance” is beyond some standard threshold.

It is very simple to see what is going on by looking at the scalar x case, where once again
ỹ and x̃ have been group mean centered. The OLS estimate of β01 for the entire data set is
given by

β̂01 =

∑
NOTALL0

x̃g,iỹg,i∑
ALLDATA

x̃2g,i
(8)

whereas the corresponding estimate for the NOTALL0 groups (β1) is given by

β̂1 =

∑
NOTALL0

x̃g,iỹg,i∑
NOTALL0

x̃2g,i
. (9)

10I use the term scale here because there is no simple measure of the “size” of X̃′0X̃0X̃′0X̃0X̃′0X̃0 in general.
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These two equations differ only by an extra
∑

ALL0

x̃2g,i in the denominator of Equation 8; this

extra term so β̂01 < β̂1. The standard error for ĝb01 for the entire data set is given by√√√√√ σ̂2
01∑

All Data

x̃2g,i
(10)

whereas the corresponding standard error for the NOTALL0 groups (β̂1) is given by√√√√ σ̂2
1∑

NOTALL0

x̃2g,i
(11)

where again the extra summation terms in the denominator must be positive.
For the scalar case it is obvious that including the ALLO groups shrinks β̂1 towards

zero, where the amount of shrinkage depends on how many ALL0 groups there are and
the variation of the centered x’s in those groups. The estimated standard error of β1 also
gets smaller (in general), since the larger denominator due to

∑
ALL0

x̃2g,i will almost always

offset the increase in the estimate of the standard error of the regression due to the greater
heterogeneity of y of the full data set. This again leads to offsetting effects in changing
t-ratios.

To see how this works in practice, we can look at the regression results of both Besley and
Reynal-Querol (2011) and Hainmueller and Hangartner (2013).11 The Besley and Reynal-
Querol estimate for the effect of democracy on whether a leader had a graduate degrees (Table
1, Column 1) was 0.22 with a standard error of .048 using all 1146 observations. When
limiting the analysis to the 956 observations in the NOTALL0 groups, the corresponding
estimates are 0.26 and 0.051.

The corresponding change for Hainmueller and Hangartner is similar. Using the results
of 2429 applications for naturalization in Switzerland, their estimate for the effect of being
from the former Yugoslavia on rejection of a naturalization claim (Table 3, Column 2) was
about 0.30 with a standard error of .05; this figure rises to about 0.36 with a standard error
of .06 when the 408 ALL0 municipalities are dropped.

In both cases marginal effects including ALL0 countries understates marginal effects by
about 15–20% with a change in t-ratio of under 10%. While the effect is far from enormous,
such changes are not trivial when we consider the complicated methods we use to get small
increases in efficiency of estimation. And, of course, the effects may be much larger if the
number of ALL0 groups is larger than in these two cases.12

11The published results in both articles were trivial to replicate. Here I focus on one important variable
in each study.

12The largest number of cases dropped due to ALL0 groups in published analysis is the Green, Kim and
Yoon (2001) fixed effects analysis of Militarized Interstate Disputes, where 93% of the data does not enter
the likelihood function. Whether it makes any sense to include fixed effects for data like this is discussed in
Beck and Katz (2001) and this issue is not discussed further here.
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To correctly compare LOGITFE results with LPMFE results, clearly the latter specifi-
cation should be estimated dropping the ALL0 groups. But one can make a case that the
the LPMFE results using all groups, which average zero with the LPMFE on the restricted
data set, make sense in that the marginal effect of the covariates on y could be thought of as
being zero in the ALL0 groups. After all, if P ((yg,i = 1) = 0|g ∈ ALL0), then then marginal
effect of any x in the ALL0 groups is indeed zero. Alternatively, we can think of this as
a meaningless exercise, since some change in an x in an ALL0 group member will change
a failure to a success and thus its marginal effect cannot be zero. Researchers can report
both numbers and their interpretation; what is clear is that researchers must understand
the difference between the two estimates, and understand how to compare LOGITFE and
LPMFE results.

5. CLOGIT VS FELOGIT

As noted in the previous section, researchers have typically estimated the LOGITFE
specification using CLOGIT out of fear that FELOGIT is inconsistent. To repeat what was
shown there, if G is fixed, and asymptotics are in N , there is literally no incidental parameters
problem, and FELOGIT is consistent (as N →∞), as of course is CLOGIT.Note that, unlike
the continuous y case, conditioning on the fixed effects is not identical to including them in
the specification. Both methods drop ALL0 groups, but FELOGIT does allow for estimating
sample marginal effects (which required estimation of the fixed effects). But before looking
at FELOGIT estimates of the marginal effects, it is necessary to compare the finite sample
properties of FELOGIT vs. CLOGIT for estimating the parameters of interest, βββ. CLOGIT
may well outperform FELOGIT because it conditions on the known number of successes in
a group, rather than (imprecisely) estimating the fixed effect for that group. As N →∞ the
two estimators must converge (they are both consistent in N), but how do the two estimators
compare in finite samples. To answer this we must turn to Monte Carlo simulations. These
simulations will consider various values for G in situations observed in actual research (mid
to high two figures) and vary N .

Katz (2001) and Coupé (2005) show that the bias in FELOGIT is small when N > 16
though when N is small the bias is large (100% when N = 2); CLOGIT is essentially unbiased
in all their reported results. However, even though FELOGIT may become unbiased for
relatively small N , this does not mean it is as accurate as CLOGIT for such N . What is
important is not unbiasedness, that is, whether the average of the β̂ββ over the simulations is
close to the known βββ, but rather accuracy, that is, how close are each of the β̂ββ to the known
βββ.13 The simulations have only a single parameter of interest, β (nothing changes if there are
a few parameters of interest). To compare the accuracy of FELOGIT and CLOGIT, we look

at the ratio of the root mean squared errors (RMSEs) of β̂ββ from FELOGIT and CLOGIT.

13Those with a touching faith in unbiasedness can skip this section, since the various simulation studies
cited above tell us that bias is not an issue for FELOGIT for group size much above 20, and that CLOGIT is
essentially always unbiased. And for those, like me, who find unbiased uninteresting, it must be remembered
that RMS error is the sum of squared bias plus variation centering on the estimated parameter, so bias
contributes, sometimes non-trivially, to inaccuracy. Also note that I use the term accuracy rather than
efficiency since the latter often refers only to the class of unbiased estimators.
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To be precise, the RMSE of a scalar estimator (in R simulation runs) is√∑R
r=1(β̂r − β)2

R
. (12)

Data were simulated according to Eq. 3 using a scalar x. G was taken as either 20, 50
or 100 and N was varied between 3 and 100 as in Table 1. Fixed effects were drawn from
a standard normal distribution; x was generated to be correlated with the fixed effects by
adding together a standard normal and some fraction of the group fixed effects (yielding a
R2 of the regression of x on the fixed effects of about .20); β was set to one and there was no
overall constant term (so the expected value of the latent for y was zero); after probabilities
were generated according to Eq. 3, a realized value of 0 or 1 was drawn for each observation
using the Bernoulli distribution. Given these parameter values, the average probability of
success was 0.5 with the individual probabilities of success distributed symmetrically around
this value.14

Results are in Table 1. I begin with 50 groups since that size corresponds to much
analysis. CLOGIT is noticeably (20%) more accurate for N = 20 and even when N = 50
CLOGIT is still 10% more accurate for J = 50; CLOGIT continues to be more accurate,
even though minimally so, even for N = 100. In other words, even though the bias of
FELOGIT becomes small (under 5% when N reaches 20), there is still a non-trivial loss
of accuracy in using FELOGIT instead of CLOGIT. Not surprisingly, these results become
more pronounced when the number of fixed effects estimated is larger (G = 100) and less
pronounced when the number of fixed effects estimated is smaller (G = 20). But CLOGIT
is always more accurate than FELOGIT, and substantially more accurate when N is small
(say 20 or under).

Intuition honed on the continuous dependent variable case would tell us that only N , not
G, matters. This is because in the continuous variable case all that matters is the quality of
the estimate of the individual fixed effects, which is only a function of N . But because of the
non-linearity of the logit model, models with more parameters estimate those parameters
less accurately; this is true for all logit models, not just models with fixed effects. Thus,
for example, when G = 20 and N = 20 the relative advantage of CLOGIT over FELOGIT
decreases to 14%, but for the same N , when G = 100, the relative accuracy of CLOGIT over
FELOGIT increases to 40%. I stress that this is not an incidental parameters problem, since
the number of observations is proportional to the number of fixed effects (which is governed
by N).

To see how poorly logit handles a huge number of covariates, we can compare the im-
pact of including many covariates using both OLS and LOGIT specifications where there is
literally no group structure (so no chance of an incidental parameters problem), but where

14All simulations were done using Stata 14. For the computationally interested, both the CLOGITs and
FELOGITs take between a tenth and half a second each on a well equipped iMac. All simulation results
were based on 1000 simulations; in cases where one of the maximum likelihood routines did not converge,
another data set was drawn so all results average 1000 analyses. Different parameter values were tried but
all yielded qualitatively similar results and so these numerous simulation results are not shown.
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N Relative Accuracy1

G = 20 G = 50 G = 100
3 2.19 2.51 3.04
5 1.72 1.96 2.38
7 1.47 1.64 2.01
10 1.29 1.45 1.66
20 1.14 1.21 1.40
30 1.09 1.17 1.27
50 1.06 1.10 1.15
75 1.04 1.08 1.12
100 1.03 1.04 1.08
1 RMSE(β̂ββFELOGIT)

RMSE(β̂ββCLOGIT)

Table 1: Relative accuracy of CLOGIT vs LOGIT with fixed effects

the number of parameters estimated is large. Since the linear and logit models are different,
there is no sensible way to compare estimates for the same model. But it is easy to com-
pare the relative performance of logit and OLS separately, with the comparison being to a
specification with a small and large number of covariates; this comparison is over a correct
specification with a single covariate and an incorrect one that also includes a large number
of irrelevant covariates.

Results are shown in Table 2. Data were either generated with a linear or logit speci-
fication with literally no group structure.15 The data generation process was as simple as
possible. For the logit comparison, a random normal x was generated, this was used to
generate a probability of success using a standard inverse logit transform (β = 1) and then
a binary y was generated as a Bernoulli random variable. The continuous y was simply
the latent used to generate the binary y with a normal error added. The incorrect, overly
large, specification added G normal variates to the specifications; these normal variates were
generated independently of x and did not enter the process for generating the latent y. The
table presents the relative RMS error in estimating β in in the logit and linear specifications
with and without the G extraneous variables.16

Clearly the impact of adding many extraneous irrelevant variables is much more costly
for logit than for OLS, with this cost, of course, becoming less as the ratio of observations
to parameters increases. Note that as G goes from 20 to 100 the number of observations
entering both the logit and OLS estimations grows by a similar factor of five, so that the

15To keep notation comparable to the previous table, results are given in terms of N and G , but in
this data generation process all that is relevant is the total number of observations, NG, the number of
extraneous parameters, G and the ratio of observations to parameters (≈ N).

16Because of the high variability of the logit estimates with some parameter combinations. Table 2 reports
root median square errors. As in previous analyses, data sets were generated anew if they led to non-
convergent logit results. In addition, the logit with superfluous variables often dropped observations due to
perfect separation; to keep comparability, the same observations were also dropped for the univariate logit.
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N G=20 G=50 G=100
Logit OLS Logit OLS Logit OLS

3 4.85 1.26 6.77 1.34 9.15 1.29
5 2.03 1.07 2.78 1.09 4.21 1.08
7 1.68 1.05 2.12 1.11 2.87 1.09

10 1.41 1.04 1.66 1.04 2.21 1.08
20 1.15 1.02 1.36 1.05 1.55 1.02
30 1.11 1.03 1.21 1.02 1.32 1.01
50 1.07 1.03 1.09 1.03 1.22 0.99
75 1.06 1.02 1.07 1.01 1.16 1.03

100 0.99 1.02 1.05 0.99 1.12 0.99

Table 2: Comparison of effect of inclusion of G irrelevant covariates in logit and
OLS with NG observations on relative accuracy of logit and regression respectively
RMedianSE(β̂ββG irrelevant covariates)

RMedianSE(β̂ββno irrelevant covariate)

ratio of observations to parameters is constant over the values of G. In spite of this, and
in spite of our intuition honed on linear models, logit is much more sensitive to irrelevant
covariates as the number of such covariates grows, even if the number of observations also
grows proportionally. With 20 irrelevant variables the accuracy of logit is only really bad
until the number of irrelevant parameters is above about 5% of the number of observations;
with 100 irrelevant variables logit is similarly bad when the number of irrelevant parameters
is over about 1% of the number of observations. We usually do not run analyses with so
many covariates, but fixed effects is an exception to this. The problem, to say it again, has
nothing to do with grouped data or the incidental parameters problem or fixed effect per
se and everything to do with the fact that non-linear models such as logit are simply more
inaccurate as the number of parameters increases. Obviously this is an issue with OLS, but
to a vastly smaller degree.

With intuition formed on linear models, we often forget how poor non-linear models
estimate parameters when there is either a small amount of data or a relatively large number
of parameters. It is interesting that CLOGIT does not have the same problem as FELOGIT,
because CLOGIT conditions on the actual number of successes in a group rather than an
estimated group specific intercept. It is interesting that a method designed to avoid the
incidental parameters problem also has good finite sample properties for estimating a logit
with fixed effects.

It appears clear that CLOGIT is superior to FELOGIT until the number of observations
per group is quite large, and the superiority of CLOGIT increases monotonically with the
number of groups. CLOGIT is about as fast to estimate as is FELOGIT, so for estimation
of the parameter of interest, β, it would seem as though there should be a clear preference
for CLOGIT. The only case where this might not be correct is where group sizes are very
large (well into the hundreds), where the CLOGIT model runs into serious numerical issues.
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But in such a case FELOGIT will be fine. Researchers can stick to CLOGIT until their
program simply stops working; at that point, FELOGIT will be fine. Such situations are
rare in published research.

So why the interest in FELOGIT in this article. This gets back to the issue of estimating
marginal effects. As noted several times, CLOGIT simply cannot do this. Hence the many
researchers interested in sample marginal effects often resort to the LPMFE, with its atten-
dant mis-specification issues. The FELOGIT specification deals with the misspecification.
But does the inaccuracy of FELOGIT in practical situations make FELOGIT a less attrac-
tive alternative to LPMFE when a researcher needs to compute sample average marginal
effects? We turn to this issue in the next section.

6. FELOT VS. LPMFE FOR ESTIMATING MARGINAL EFFECTS

To summarize what we have seen so far, CLOGIT is superior to FELOGIT in general,
but CLOGIT does not allow for the estimation of sample marginal effects. In addition,
LPMFE on the entire data set is a weighted average of zero and the βββ in the NOTALL0
groups. Thus if we want to compare marginals estimated using LPMFE (estimated by
OLS) and LOGITFE estimated by FELOGIT, we should restrict the OLS observations to
the NOTALL0 group (leaving it to analysts whether they then want to average in 0 for
the ALL0 groups). Obviously the LPMFE suffers the defect that it is not data admissible
with a binary dependent variable, but we have also seen that FELOGIT has poor accuracy
properties unless there are either a very large number of observations per group or a relatively
small number of groups.17

There is a third estimation strategy available which should improve on FELOGIT. This
consists of first estimating β̂ββ by CLOGIT, and then running the FELOGIT specification con-
straining the estimate of β̂ββ to be that estimated by CLOGIT. This should improve FELOGIT
a bit, since the estimate of β̂ββ from CLOGIT is more accurate than the corresponding esti-
mate in the FELOGIT estimation. This procedure, while it should help, does not solve the
problem of FELOGIT estimating a large number of parameters.

Simulations to compare the three estimators of sample average marginal effects were run,
generating the data using a logit model, that is, the best case for FELOGIT over LPMFE;
a real world (but unknowable) comparison would be less favorable to FELOGIT. Data were
simulated as in the previous section, with N and G varied; as noted for other results, the
results reported here did not vary greatly as other parameters were varied. Relative accuracy
is as in the previous sections, that is the RMS error of the estimated sample marginal
effect around the true (known from the DGP) marginal effects. For the OLS estimates the
estimated marginal effect is just ˆβOLS using the NOTALL0 groups while for the FELOGIT

estimates it is the average of the ˆβLOGIT × ̂P (yg,i = 1)× ̂P (yg,i = 0) in the same NOTALL0

17The bible for causally oriented econometricians, Angrist and Pischke (2009, 107), states “[t]he upshot
of this discussion is that while a nonlinear model may fit the [conditional expectation function] for [limited
dependent variables] more closely than a linear model, when it comes to marginal effects, this probably
matters little. This optimistic conclusion is not a theorem, but, as in the empirical examples [in the book],
it seems to be fairly robustly true.” This section tries to add a bit of extra information on this issue in the
context of fixed effects.
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N G=20 G=50 G=100
3 1.54 2.00 2.45
5 1.36 1.62 1.97
7 1.16 1.28 1.48

10 1.11 1.13 1.11
20 1.00 0.99 0.91
30 0.99 0.95 0.93
50 0.99 0.97 0.95
75 1.00 0.98 0.94

100 0.99 0.99 0.96

Table 3: Relative accuracy of unconstrained and constrained FELOGIT for estimating
marginal effects
(RMSE(Sample Average Marginal via unconstrained logit

RMSE(Sample Average Marginal via constrained logit
)

groups (with the true marginal effect being the latter term with the known values replacing
the estimated ones); in this section accuracy is always used to mean accuracy of sample
average marginal effects.

In Table 3 FELOGIT and the constrained FELOGIT are compared for accuracy. This
table shows that constrained FELOGIT is almost always more accurate and never much less
accurate than the unconstrained FELOGIT. Thus this article only compares constrained
FELOGIT estimates of marginal effects with their the LPMFE/OLS counterparts. The
advantage of constraining the FELOGIT estimator is only relevant for small N , so researchers
might choose to estimate the simpler unconstrained estimator when N is, say, 10 or more;
this also make estimation of standard errors much simpler. But for the purposes of this
article it is only necessary to compare the constrained FELOGIT estimator with OLS.

Table 4 contains the comparison of the accuracy of constrained FELOGIT and OLS
(stressing that the OLS estimates are only on the NOTALL0 groups). While there are a
few parameter combinations (large G, large N and successes not being rare) where OLS was
slightly better than constrained FELOGIT, the difference in accuracy in these cases was less
than 5%. On the other hand, constrained FELOGIT is substantially more accurate than
OLS when N is small with OLS and FELOGIT providing similar levels of accuracy by the
time N reaches about 20. Constrained FELOGIT’s advantage is also stronger as the number
of groups grows larger. Hence we can say that constrained FELOGIT is essentially always as
good or better than OLS for estimating sample average marginals (given the DGP studied)
with the advantage being non-trivial for small N or large G. But this can also be turned
around to say that Angrist and Pischke’s “folk theorem” cited above is mostly correct; OLS
does a pretty good job at estimating sample average marginal effects even when the DGP
is logit. Hence, if there is a good reason to use OLS (perhaps because it makes it simpler
to deal with endogeneity), there is no evidence in this study that this is a bad strategy, at
least so long at the number of observations per group is not “too small” (under ten).
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N G=20 G=50 G=100
3 1.30 1.73 2.10
5 1.19 1.44 1.73
7 1.08 1.19 1.36

10 1.08 1.10 1.06
20 1.03 1.00 0.92
30 1.01 0.96 0.95
50 1.01 0.99 0.96
75 1.02 1.01 0.96

100 1.02 1.00 0.98

Table 4: Relative accuracy of OLS and constrained FELOGIT for estimating marginal effects
( RMSE(Sample Average Marginal via OLS
RMSE(Sample Average Marginal via constrained logit

).

One issue that must be borne in mind is that when reporting marginal effects analysts
should also report their uncertainty. This is trivial in the OLS context. It is only a bit
less trivial in the constrained FELOGIT context, since the second logit in that context
assumes the estimated β̂ is the true β. It is easy correct this using simulation or resampling
methods. Alternatively, since it is likely that the uncertainty of estimating the fixed effects
substantially dominates the uncertainty of estimating β, the FELOGIT based estimate of
the marginals should not be very anti-conservative.

7. CONCLUSION

The takeaway from this article is fairly simple. Researchers often require fixed effects
specifications to treat unmodeled heterogeneity which is correlated with the covariates. Such
researchers often either choose CLOGIT or OLS without justification, or present the results
of both. While in many cases both CLOGIT and OLS yield the same sign and crossing of
the p < .05 level, we have seen that the appropriate comparison for CLOGIT is regression
dropping groups that do not vary on the dependent variable.

We have also seen that much social science data involves fixed effects where the number
of groups is fixed (whatever the number of observations per group). While the discussion
of estimators has been dominated by the inconsistency of FELOGIT given the incidental
parameters problem, the type of data discussed in this article have literally nothing to do with
the issues originally raised by Neyman and Scott (1948). This is not to say that FELOGIT
performs well when the number of effects estimated is large (compared to group size), but
rather the issues have everything to do with the complications of non-linear estimation and
nothing to do with asymptotics in G (which, while perhaps large, is fixed).

It is the case, however, that CLOGIT yields better estimates of β than does FELOGIT.
This is because ClOGIT is conditioning on a known quantity, the number of successes in a
group, whereas FELOGIT suffers from estimating a large number of extra parameters (as
many extra parameters as there are groups). Thus even though the theoretical argument
for the superiority of CLOGIT in the types of data under discussion here is not correct,
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CLOGIT is still the preferred alternative for estimating such models.
One reason that researchers may prefer OLS to CLOGIT is the former allows for the

computation of sample average marginal effects. But, while CLOGIT does not allow for
such computation, FELOGIT does allow for such computations. Researchers may not have
considered FELOGIT due to a misunderstanding of the incidental parameters problem.

But we have seen that FELOGIT can be improved by constraining the estimate of β to the
superior estimate which is yielded by CLOGIT. This generally improves the accuracy, often
non-trivially, of estimating marginal effects (and almost never hurts). Thus researchers can
use this procedure if the estimation of sample marginal effects is required. Such a procedure
is superior to OLS when the number of observations per group is small or the number of
groups is large; in addition, there is little computational cost to always using constrained
CLOGIT over OLS. However, there may be costs to fitting a non-linear specification into
a more complicated setup (typically involving endogeneity) and the simulations show that
unless group sizes are really small, the linear approach may well be a low cost compromise.

Does this advice generalize to other ways of simulating data? Of course this is impossible
to know in general. Playing with a variety of such processes, it has been hard to find any
where OLS is superior to a version of logit. Has it been shown that a variant of logit is
much better for estimating marginal effects? No. Thus the final takeaway is that researchers
should use a variant of FELOGIT for estimating marginal effects unless the complications
of so doing (say for issues related to endogeneity) are great. This is a slight amendment to
the advice due to Angrist and Pischke cited earlier.
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