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The 3-D elasticity model is of great importance, since it is our highest or-
der hierarchical model assuming linear elastic behavior. Therefore, it provides
a conceptual reference model from which other specific and frequently more
effective models can be derived. The solutions of these models can then be
compared with the solution of the full 3-D model giving good insight into the
modeling of physical problems − all within the objective of using hierarchical
mathematical modeling in engineering analysis.

Before we close this chapter, we present two illustrative cases of analytical
solutions of the 3-D elasticity model which are important for structural anal-
ysis: the pure bending of a prismatic bar of rectangular cross-section (given
in Example 3.7) and the uniform torsion of a prismatic bar (given in Section
3.6).

Example 3.7
Consider the undeformed configuration of a solid as shown in Figure 3.60.

Fig. 3.60. Definition of the solid under study

Let the displacement field be given by

u = − M

EI
xz (3.119)

v = ν
M

EI
yz (3.120)

w =
M

2EI

[
x2 + ν

(
z2 − y2

)]
. (3.121)

where M is a positive constant, E and ν are Young’s modulus and Poisson’s
ratio of the material and I is the moment of inertia about the y axis, I = bh3

12
(see Section 4.2.2).

(i) Find the stress field associated with the given displacement field.
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(ii) Identify the problem for which the given displacement field represents
the exact solution of the 3-D elasticity model.

Solution

(i) The strains are given as

εxx =
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∂x
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z
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z
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)
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)
= 0.

The stresses can be obtained using the generalized Hooke’s law (see equa-
tion (3.112))

τxx =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εxx +

ν

1 − ν
(εyy + εzz)

]
.

Noting that for our problem

εyy = εzz = −νεxx (3.122)

we obtain

τxx = Eεxx = −M

I
z.

We also have

τyy =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εyy +

ν

1 − ν
(εxx + εzz)

]

τzz =
E (1 − ν)

(1 + ν) (1 − 2ν)

[
εzz +

ν

1 − ν
(εxx + εyy)

]
and considering (3.122) we obtain

τyy = τzz = 0.

Of course, since γxy = γxz = γyz = 0, we have

τxy = τxz = τyz = 0.
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This completes part (i) of the problem.

(ii) To identify the 3-D problem actually solved, we need to determine which
fields of body forces and surface tractions are in equilibrium with this
stress field. Considering the differential equilibrium equations and intro-
ducing this stress field, we have

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fB

x = 0 ⇒ fB
x = 0

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
+ fB

y = 0 ⇒ fB
y = 0

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ fB

z = 0 ⇒ fB
z = 0.

Therefore, there should be no body forces. Since the only nonzero stress
component is τxx, the surface tractions should be zero on all four lateral
surfaces. Further, for the surface defined by x = L

Tn = fS ⇒ τxxex = fS ⇒ fS = −M

I
zex

and for x = 0

Tn = fS ⇒ -τxxex = fS ⇒ fS =
M

I
zex.

If we reduce the surface tractions at the section given by x = L to its
center of gravity we obtain for the force resultant

R =
∫

A

fS dA =
∫

A

−M

I
zex dA = 0

and for the moment resultant with respect to the center of the section,
represented by C

MC =
∫

A

(yey + zez) × fS dA

=
∫

A

(
M

I
yzez − M

I
z2ey

)
dA = −M

I

∫
A

z2dA ey = −M ey.

Hence the applied surface tractions at x = L correspond to a bending
moment, see Figure 3.61. Analogously, for the end section defined by
x = 0 we obtain R = 0 and Mey leading to a self-equilibrated force
system.
Note also that the displacement field given in (3.119) − (3.121) satisfies
u = 0 for x = 0, and u = v = w = 0 for x = y = z = 0.
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Fig. 3.61. Problem summary. Body forces are zero

We can conclude that the displacements given in (3.119) to (3.121), the
derived strains and stresses correspond to the exact solution of the cantilever
beam subjected to a pure bending moment at the tip, as summarized in
Figure 3.61, as long as the bending moment at x = L is introduced by the
surface traction field fS = −M

I zex and the displacement restrictions at the
“built-in section” x = 0 are as shown in Figure 3.61.

In Figure 3.62, we show the deformed and undeformed configuration of the
solid. We see that a line parallel to the y axis in the undeformed configuration
is deformed into an arc, whose curvature is opposite to the curvature of the
deformed axis. This transverse curvature is known as anticlastic curvature
and it is due to the Poisson effect.

Fig. 3.62. Deformations for selected planes. a) Plane given by x = 0; b) Plane
given by y = 0. The magnitude of the displacements is chosen for visualization
purposes; the shown displacements are much larger than those for which the linear
model would be adequate

�
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3.6 Torsion of a prismatic bar

We present below the exact solution of a 3-D elasticity problem − the Saint
Venant torsion solution for a prismatic bar − which is of considerable prac-
tical importance. It is also a classical example of the so-called semi-inverse
method for deriving solutions. In this method, some assumptions on the func-
tional form of the displacements are made, either motivated by experimental
observations or by intuition. These displacement assumptions are the starting
point towards obtaining a solution.

Fig. 3.63. Generic prismatic bar which will be subjected to torsion. Solid section
with no holes

Consider a prismatic bar with a generic cross-section as shown in Figure
3.63. Suppose that the bar is subjected to self-equilibrated torsional moments
at the end sections, i.e., Mt = Mtex at x = L and −Mt at x = 0. It is an
experimental observation that for a bar subjected to such loading the cross-
sections rotate as rigid bodies in their own plane (see Example 3.5 for the
in-plane displacements). However, these sections do not remain plane, they
display some warping. Motivated by these observations, we will seek a solution
of the 3-D elasticity mathematical model of this problem using the following
displacement assumptions

u = θ′ψ(y, z) (3.123)

v = −θ′xz (3.124)

w = θ′xy (3.125)

where θ′ is the rate of rotation of the cross-sections with respect to the x
axis which is assumed to be constant. Hence, denoting by θ(x) the angle of
rotation of a generic section, we have
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