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Equation (3.65) is referred to as the additive decomposition of the dis-
placement gradient ∇u into its symmetric part − the infinitesimal strain
tensor − and into its skew part W − the infinitesimal rotation tensor.

Example 3.5
Consider the cylinder shown in Figure 3.32. Suppose that the transverse

sections rotate without deformation in the plane yz around the cylinder’s
axis by an angle θ(x) with the constant rate of rotation dθ

dx
= α. Calculate,

assuming infinitesimal displacement conditions:

(i) The displacement field.
(ii) The strain tensor within the cylinder.

Fig. 3.32. Cylinder under study

Solution
(i) We obtain by integration

θ(x) = αx + C.

Since the rotation at x = 0 is prevented

θ(0) = 0 ⇒ C = 0

and therefore the rotation of a generic section is given by

θ(x) = αx.

Since the section rotations are infinitesimal, we can use directly the results
derived in Example 3.4. Therefore, considering x1 ≡ y, x2 ≡ z, x3 ≡ x, we
obtain
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u = 0

v = −θz = −αxz

w = θy = αxy.

(ii) The strain components are

εxx =
∂u

∂x
= 0, εyy =

∂v

∂y
= 0, εzz =

∂w

∂z
= 0

εxy =
1
2
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)
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(
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=

1
2

(−αx + αx) = 0.

Therefore

E =

⎡⎢⎢⎢⎣
0 − 1

2αz 1
2αy

− 1
2
αz 0 0

1
2αy 0 0

⎤⎥⎥⎥⎦
and the engineering shear strains are

γxy = −αz

γxz = αy

γyz = 0.

In Figure 3.33 a geometrical interpretation of γxz is given. Referring to Figure
3.33 we can calculate γxz for a point of coordinates x, y = R, z = 0 as the
ratio

γxz =
dθR

dx
= αR

which is in accordance with the derived expression.

�

3.3 Stresses

In Section 2.1.3 we introduced the concept of stress, see Figure 2.3. In this
figure, a field of forces per unit area − the field of stresses − is acting on the
internal surface of the part ΔtV .
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