Equation (3.65) is referred to as the additive decomposition of the displacement gradient $\nabla \mathbf{u}$ into its symmetric part - the infinitesimal strain tensor - and into its skew part \mathbf{W} - the infinitesimal rotation tensor.

Example 3.5

Consider the cylinder shown in Figure 3.32. Suppose that the transverse sections rotate without deformation in the plane $y z$ around the cylinder's axis by an angle $\theta(x)$ with the constant rate of rotation $\frac{d \theta}{d x}=\alpha$. Calculate, assuming infinitesimal displacement conditions:
(i) The displacement field.
(ii) The strain tensor within the cylinder.

Fig. 3.32. Cylinder under study

Solution

(i) We obtain by integration

$$
\theta(x)=\alpha x+C .
$$

Since the rotation at $x=0$ is prevented

$$
\theta(0)=0 \Rightarrow C=0
$$

and therefore the rotation of a generic section is given by

$$
\theta(x)=\alpha x
$$

Since the section rotations are infinitesimal, we can use directly the results derived in Example 3.4. Therefore, considering $x_{1} \equiv y, x_{2} \equiv z, x_{3} \equiv x$, we obtain

$$
\begin{aligned}
u & =0 \\
v & =-\theta z=-\alpha x z \\
w & =\theta y=\alpha x y .
\end{aligned}
$$

(ii) The strain components are

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial u}{\partial x}=0, \quad \varepsilon_{y y}=\frac{\partial v}{\partial y}=0, \quad \varepsilon_{z z}=\frac{\partial w}{\partial z}=0 \\
\varepsilon_{x y} & =\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=-\frac{1}{2} \alpha z \\
\varepsilon_{x z} & =\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)=\frac{1}{2} \alpha y \\
\varepsilon_{y z} & =\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)=\frac{1}{2}(-\alpha x+\alpha x)=0
\end{aligned}
$$

Therefore

$$
\mathbf{E}=\left[\begin{array}{ccc}
0 & -\frac{1}{2} \alpha z & \frac{1}{2} \alpha y \\
-\frac{1}{2} \alpha z & 0 & 0 \\
\frac{1}{2} \alpha y & 0 & 0
\end{array}\right]
$$

and the engineering shear strains are

$$
\begin{aligned}
\gamma_{x y} & =-\alpha z \\
\gamma_{x z} & =\alpha y \\
\gamma_{y z} & =0 .
\end{aligned}
$$

In Figure 3.33 a geometrical interpretation of $\gamma_{x z}$ is given. Referring to Figure 3.33 we can calculate $\gamma_{x z}$ for a point of coordinates $x, y=R, z=0$ as the ratio

$$
\gamma_{x z}=\frac{d \theta R}{d x}=\alpha R
$$

which is in accordance with the derived expression.

3.3 Stresses

In Section 2.1.3 we introduced the concept of stress, see Figure 2.3. In this figure, a field of forces per unit area - the field of stresses - is acting on the internal surface of the part $\Delta^{t} V$.

