
A Model-Driven Development for GWT-Based Rich Internet Applications
with OOH4RIA

Santiago Meliá, Jaime Gómez Sandy Pérez, Oscar Díaz

 IWAD Group, University of Alicante ONEKIN Group, University of Basque Country
 Alicante, Spain San Sebastián, Spain
 {santi,jgomez}@dlsi.ua.es sandy-perez@ikasle.ehu.es, oscar.diaz@ehu.es

Abstract

Traditionally, Web applications have had great
limitations in the usability and interactivity of their
user interfaces. To overcome these limitations, a new
type of Web applications called Rich Internet
Applications (RIAs) has recently appeared providing
richer and more efficient graphical components similar
to desktop applications. However, RIAs are rather
complex and their development requires the designing
and implementation tasks which are time-consuming
and error-prone. Moreover, RIA development is a new
challenge for the Web engineering methodologies
requiring their modification and the introduction of
other concerns. In this context, we propose a new
approach called OOH4RIA which proposes a model-
driven development process that extends OOH
methodology. It introduces new structural and
behavioural models in order to represent a complete
RIA and to apply transformations that reduce the effort
and accelerate its development. This RIA will be
implemented on the promising Google Web Toolkit
(GWT) framework.

1. Introduction

Traditional Web applications developers have
focused all their activity around a client-server
architecture where all processing is done on the server
side and a thin client which is only used to display
static contents. This approach has suffered significant
drawbacks and limitations, especially due to the
richness of the application interfaces and the overall
sophistication of the solutions that could be built and
delivered.

These old-fashioned Web applications are being
replaced by the so-called Rich Internet Applications
(RIAs) [3] which provide richer and more interactive
user interfaces, similar to desktop applications.
Moreover, RIAs provide a new client-server
architecture that reduces significantly network traffic
using more intelligent asynchronous requests that send
only small blocks of data.

However, RIAs are complex applications and their
development requires designing and implementation
which are time-consuming and error-prone. In fact, the
technological advances of RIAs require from the
developer (1) to represent a rich user interface based on
the composition of Graphical User Interface (GUI)
widgets, (2) to define an event-based choreography
between these widgets and (3) to establish a fine-
grained communication between the client and the
server layers.

The Web engineering community is well-aware that
the RIA development is a new and difficult challenge
that requires modifying the traditional methodologies.
On the one hand, it must introduce new models in
order to represent the interactive user interface and on
the other hand, it needs to improve the development
process using automation techniques that accelerate it
and reduce errors.

In this context, the paper presents a new approach
called OOH4RIA based on the MDE (Model Driven
Engineering) paradigm [8] that proposes a complete
development process based on a set of models and
transformations allowing to obtain the implementation
of Rich Internet Applications. The process uses the
well-known Web design method called OOH [5] that
defines the domain and navigation models allowing us
to generate a CRUD server side of the RIA (defined by
[5]). Both OOH models are the starting point of model-
to-model transformations which establish the skeleton
of the presentation and orchestration models that
represent the client side of RIA. They are platform-
specific because they contain widgets and properties of
one of the most promising RIA frameworks: Google
Web Toolkit (GWT) [6]. GWT is an AJAX
framework, developed by Google, which permits us to
create RIAs by writing the browser-side code in Java,
thus gaining all the advantages of Java (e.g. compiling,
debugging, etc.) and generating a generic Javascript
and HTML code that can be executed in any browser.
Moreover, GWT makes every attempt to be flexible
allowing us to integrate with other client AJAX
frameworks (e.g. Script.aculo.us, Dojo, Yahoo! UI, and
so on) and with server Java frameworks such as Struts,
EJB, etc.

Eighth International Conference on Web Engineering

978-0-7695-3261-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWE.2008.36

13

In order to understand this approach, this paper
presents a new model-driven development process
applied to a case study called GWT Mail Application
[7]. In section 2, we give an overview of the process
using the model-driven specific SPEM notation. The
subsequent sections detail the different artefacts of this
process. Section 3 presents the OOH domain and
navigation models that specify the RIA server side. In
sections 4 and 5, we introduce the main contribution of
this work namely the presentation and orchestration
models. Once all models are defined, we propose the
specification of the transformation models used for
accelerating this process, as we can see in section 6.
Finally, sections 7 and 8 outline the relevant related
work and the future lines of research.

2. The Model-Driven development process
of OOH4RIA

We propose a model-driven development process
allowing to specify an almost complete Rich Internet
Application (RIA), through the extension of the
traditional Web methodologies like OOH with two
new RIA presentation models which will be introduced
in this paper.

Figure 1 is a graphical representation of the model-
driven development process with definition of models
and transformations that permit to obtain a RIA
implementation. A notation proposed by the OMG
standard SPEM represents this process. This diagram
introduces a set of stereotypes specific for model-
driven processes. It includes an actor stereotype able to
represent a transformation engine called Model
Transformer and defines a set of stereotypes of the
metaclass activity to represent different MDA
transformations such as PIMToPIM, PIMToPSM,
PIMToCode, PSMToCode, etc.

The process starts with the OOH designer defining
the OOH domain model to represent the domain
entities and the relationships between them. From this
model, the OOH designer represents the navigation
through the domain concepts and establishes the
visualization constraints using the navigation model.
With the definition of both OOH models begins the
part of the process that constitutes the main
contribution of this work.

It first transforms the navigation model into the
presentation model by means of the PIM2PSM
transformation called Nav2Pres. This presentation
model is specifically defined for the GWT platform
allowing us to capture clearly the different widgets that
constitute a GWT interface. The Nav2Pres is a model-
to-model transformation defined in QVT that

establishes the different screenshots of the model
presentation.

After obtaining the container screenshots of the
presentation model, the User Interface designer
completes them placing the widgets, defining the style
and establishing the spatial configuration by means of
Panels. It is worth pointing out that these widgets can
be related to a navigational element thereby showing
the dynamic content coming from the server side into
the user interface.

OOH Designer Model
Transformer

UI Designer Orchestration
Designer

Define OOH
Domain Model

Define OOH
Navigational

Model

<<PIMToPSM>>
Nav2Pres

Presentation
Model skeleton

Orchestation
Model skeleton

OOH
Domain
Model

<<PIMToPSM>>
Pres&Nav2Orch

Presentation
Model

Orchestation
Model

Define Complete
Orchestation

Model

Define
Complete

Presentation
Model

OOH
Navigation

Model

Rich Internet
application

<<PSMToCode>>
GWT Client side

<<PIMToCode>>
GWT Server side

<<WorkDefinition>>
Model-Driven Development Process of OOH4RIA

Figure 1. The OOH4RIA model-driven

development process

Since the RIA possesses a rich interactive user
interface similar to desktop applications, we must
complete the static features of widgets with a model
that will allow us to specify the interaction between
these widgets and the rest of the system. This model
has been called orchestration model and is represented
as a UML profile of state machine diagram. The
orchestration model does not have to be defined from
scratch because a model-to-model transformation
called Pres&Nav2Orch allows us to obtain the
skeleton of the orchestration model from the navigation
and presentation models.

The model-to-model transformation starts by
establishing the screenshots behavioural states and
their transitions from the navigational nodes and the
associations respectively. It also defines the widget
behavioural states corresponding to the widgets
represented in the presentation model. At this point, the

14

designer completes the orchestration model introducing
the events, operations and triggers of different states.

The last step consists in defining the model-to-text
transformations that will grant us the RIA
implementation. The GWT Server Side transformation
generates the server code from the OOH domain and
the navigation models, while the GWT client side
transformation generates the client side code using a
specific GWT framework. Both transformations are
written in the MOFScript language which follows the
OMG ModelToText RFP for the representation of
model-to-text transformations.

In the following sections we present the different
artefacts generated during this process applying them
to a clear and simple case study: the GWT Mail
application [7]. In essence, this case study
demonstrates how to construct a relatively complex
user interface, similar to many common email
applications, and how a traditional Web methodology
like OOH must be extended in order to support the
representation of a richer and more interactive Web
User Interface

3. The RIA server with OOH

The OOH (Object-Oriented Hypermedia) method
[5] is based on the object-oriented paradigm which
provides the designer with the semantics and notations
necessary for the development of the traditional Web
applications. The OOH defines a set of models: (1) the
domain model, (2) the navigation model, and (3) the
presentation model. The latter one is defined by a set of
HTML elements and is represented in a non-visual
XML notation. This model does not satisfy the
graphical and interactive requirements of the RIA
applications. Therefore, in this paper, we define a more
complete presentation that aims at solving this
problem. This section is focused on the domain and
navigation models that give the possibility to represent
the functional concepts of the GWT Mail server side.

Message

ID

create
remove

Folder

create
remove

name

MailUser

create
remove

1..1

subject
nameSender
emailSender
date

1..1

Content

send

update

emailAddressee

name
email

imagepassword

signin
signout

* *

Message

ID

create
remove

Folder

create
remove

name

MailUser

create
remove

1..1

subject
nameSender
emailSender
date

1..1

Content

send

update

emailAddressee

name
email

imagepassword

signin
signout

* *

Figure 2. Domain model of the GWT Mail

application

Figure 2 depicts the domain model for the Mail
application example. As you can see, this model
represents the most important domain entities, free

from any technical or implementation details, thus
representing an ideal class model. The MailUser
accesses the application in order to send and receive
different mails. He stores the messages in one or more
elements of the Folder allowing him to classify the
mails (Messages) according to his own criteria. Finally,
in Message, the MailUser can find all the information
about an e-mail, namely attributes such as subject,
nameSender, emailSender, date, etc. as well as the
operations that allow him to create, remove and send a
Mail.

After specifying the domain model, the designer
must design the navigation model which defines the
navigation and visualization constraints. The
navigation model is formalized by a MOF metamodel
which establishes a set of different types of
navigational elements. It is important to point out that
the navigation model establishes the most relevant
semantic paths through the information space filtering
the domain elements that can be seen in the client side.

When defining the navigation model, the designer
must take into account some orthogonal aspects such
as the desired navigation behaviour, the object
population selection, and the order in which objects
should be navigated, or the cardinality of the access.
Furthermore, this navigation model indicates whether
the information is shown in a different Web page
called “target link” (if the link arrow has a filled
arrowhead) or in the same page called “origin link” (if
the link arrow has an empty arrowhead). Thus, it
allows us to infer the set of the screenshots that have
the RIA application. These features are captured by
means of different navigation elements defined by the
navigation metamodel (it can be seen [2]).

Figure 3 depicts the navigation model for the GWT
Mail case study. The navigation starts with the Login
NavigationalClass where a MailUser has to identify the
system in order to obtain access. The signIn operation
activates a ServiceAssociation also called signInLink.
If the user has introduced a valid email and password,
the system navigates to the User NavigationalClass. If
the signIn operation is incorrect, the application goes
back to the same page. The main page is made up of
the navigationalClass called MailReader containing the
name and email of the MailUser and shows him
automatically a set of his own Folders (SelectFolder).

15

SelectedFolder: Folder
HeadMessage: Message

MailReader: MailUser

seeFolde
rs

name
getMails

subject
nameSender
emailSender image

CompleteMessage: Message

Content

showContent

name
email

Login: MailUser

signin

signInLink OK

En
try

po
int

Use
r

non OK

date

signout

signOutLink

emailSender

emailAddressee

subject

MailSender: Message

send
sendLink

to
S
en

d

toForw
ard

toReplay

SelectedFolder: Folder
HeadMessage: Message

MailReader: MailUser

seeFolde
rs

name
getMails

subject
nameSender
emailSender image

CompleteMessage: Message

Content

showContent

name
email

Login: MailUser

signin

signInLink OK

En
try

po
int

Use
r

non OK

date

signout

signOutLink

emailSender

emailAddressee

subject

MailSender: Message

send
sendLink

to
S
en

d

toForw
ard

toReplay

Figure 3. Navigation model of the GWT Mail
application

He must now select a specific folder in order to see

the messages presented by the HeadMessage
NavigationalClass. By selecting a HeadMessage he
will see the CompleteMessage. Also, he can navigate
from the HeadMessage to the MailSender using some
of the links (such as toSend, toReply, ToForward) in
order to create a new message. Finally, this message is
sent by the user using the ServiceAssociation called
sendLink and the application comes back to the main
page.

The next step in this process is to execute the
Nav2Pres transformation. This model-to-model
transformation permits us to obtain a skeleton of the
presentation model creating the different container
screenshots where the UI designer must represent the
different RIA widgets. The Nav2Pres transformation is
detailed in section 6.

The next section illustrates how to design the static
features of a RIA user interface by means of the
presentation model

4. The presentation model

The presentation model proposes a structural
representation of the different GUI widgets that

constitute the complete layout features of a RIA user
interface. The presentation is defined by a specific-
domain model mainly focused on obtaining similarity
with the look and feel of a RIA application, thus
allowing developers with a low formation in
programming to specify a complete RIA interface. At
the same time, this model keeps the model-driven
approach being formalized by a MOF metamodel that
represents the topology of GUI widgets, their
properties and constraints. Using a MOF metamodel
offers us three important advantages: (1) it establishes
the relationships with other concerns allowing to
associate GUI widgets with choreography and
navigational functionality in order to establish a
complete communication between the client and server
layers and (2) it allows us to establish model
transformations thus reducing the modelling and
implementation tasks. (3) Finally, it also permits us to
use frameworks like GMF to realize a graphical
representation of this model in a CASE tool in a short
period of time. For the sake of clarity, Figure 4
represents a simplified MOF presentation metamodel
that shows the most important elements of Presentation
model.

Unlike the traditional Web applications, a RIA
usually follows the “simple page application” [12]
where only a page with a set of stateful widgets
constitutes the user interface. However, a RIA
application could be very complex and these widgets
are not shown at the same time and with the same
appearance. Thus, a RIA user interface could be split
into different screenshots containing only the widgets
rendered at that moment. Following this assumption, a
PresentationModel is made up of a set of ScreenShot
elements.

 A ScreenShot is used like a container that allows
the UI designer to realize a spatial distribution of
different Widget elements rendered at a given moment.
The Widget is the central element of the presentation
model. It permits to build a graphical user interface by
means of the composition, reusability and extensibility
of these components. The Widget establishes a
relationship with a NavigationalElement providing
dynamic information from the server side (e.g.
NavigationalClass, NavigationalAttribute, etc.). Also, a
Widget has an isCoordinable attribute indicating if the
widget has a relevant behaviour (isCoordinable with
true value) and it will be represented in the
orchestration model.

16

Figure 4. Simplified presentation metamodel

A widget is an abstract metaclass that could be
specialized in the GWTWidget representing a concrete
widget of GWT framework (e.g. TextBox, ListBox,
Image, Button, Tree, etc.) or a CustomWidget. There
are two subtypes of the GWTWidget: (1) the
SimpleWidget which is a generic simple UI component
that adds support for sending input and/or receiving
output data (e.g. Button, TextBox, Label, Image, etc.).
(2) A container that represents a composite component
which by applying the Composite Pattern [4] can
contain other widgets (simple or composite). A
container can specialize in Grid and Tree widgets
which propose a predefined spatial distribution and
functionality. Alternatively, a container can specialize
in Panel which is a generic widget that allows the UI
designer to define a personalized spatial distribution of
the widgets it contains. A Panel can specialize in a
SimplePanel when it only contains one widget (e.g.
AbsolutePanel) or a ComplexPanel when it permits to
contain a set of widgets (e.g. HorizontalPanel,
VerticalPanel, etc.). There is a greater variety of type
of panels but for the sake of clarity the paper will only
present the most relevant ones.

In order to avoid the possible limitations of widgets
provided by the GWT framework, this metamodel
incorporates an UI extension mechanism using the
component called CustomWidget allowing the UI

designer to personalize a GWTWidget introducing new
graphical and functional characteristics.

Once the presentation elements have been
formalized by the presentation metamodel, we are
going to apply these concepts to the case study GWT
Mail application. Figure 5 depicts the main ScreenShot
of Mail application allowing to visualize the different
mails of the user. The spatial configuration of this state
is made up a root panel of the DockPanel type that
divides it into three parts: the NORTH side that has the
heading, the WEST side that has the menu and the
CENTER side that has the mails. Starting from the
heading, it locates its widgets horizontally with a
HorizontalPanel which is associated with the User
NavigationalClass in order to show the name and email
user using two Label widgets. Furthermore, the
heading also contains a Hiperlink widget called signout
that sends an event to exit the application.

The menu is made up of an HTMLWidget
containing a heading with an Image and a Label
carrying the name of the application. At the bottom
part, it has a Tree widget that contains a root element
represented by a TreeItem showing an image and the
email of the MailUser. This Tree also has a TreeItem
associated with the Folder NavigationalClass
representing a set of TreeItems with the image and
name of each Folder of a MailUser.

17

Figure 5. Presentation model of the GWT Mail application

The CENTER part contains the widgets that display
the mails. On the top side, a CustomWidget called
NavigationalGrid shows the message headings using a
paging mechanism. To do that, we have extended the
Grid widget to a CustomWidget called
NavigationalGrid which has a set of properties able to
realize the paging such as size, previous and next.
Moreover, the NavigationalGrid is associated with the
HeadMessage NavigationalClass obtaining the
messages, viewing the fields for each headmessage
(such as nameSender, emailSender and Subject) and
providing a set of buttons (Reply, Forward and New)
to create new messages. On the botton side, there are
two HTMLWidget elements that show all the contents
of a selected e-mail associated with a
CompleteMessage NavigationalClass, the widget
above shows the heading of the selected message and
the widget below shows the Content of the mail.

To complete the information needed by an
interactive user interface, the next section presents the
Orchestration model that incorporates the dynamic
behaviour of the GUI widgets that has been defined by
the presentation model

5. The Orchestration model

The Orchestration model is a profile of the UML
state diagram which captures interaction patterns from
presentation widgets as well as the navigation between

screenshots of a RIA. The orchestration model allows
us to indicate how different widgets receive the events
from the user or from other widgets and how these
widgets react by sending other events to one or more
widgets or by invoking a service offered by the server
side. However, not all widgets are liable to be tighted
together. Widgets can play different roles in the
presentation model. Some widgets just render some
static content (e.g. Image, DockPanel), others can
realize navigation (e.g. TreeItem, Button). This model
has focused on GWT widgets that support a functional
unit of interaction (e.g. displaying mail) liable to be
orchestrated with other widgets (when its Coordinable
attribute has true value). An Orchestral Widget
provides a unit of interaction with the user to achieve a
meaningful task (e.g. sending a mail). Orchestral
widgets are the subject matter of the orchestration
model.

Figure 6 shows the orchestration model for the
GWT Mail case study. We can see that the Mail
application has three different screenshots: Login,
MailReader and MailSender. In this case, the designer
has opt to keep these three Screenshots in only one
page. In other cases, the designer could opt to split it
into different pages. This model also represents the
navigation between these screenshot using transition
relationships which are activated by widgets events.

18

Figure 6. Orchestration model of the GWT Mail application

The orchestration model also defines how widgets
interact between each other. For example, MailReader
screenShot contains three Orchestral Widgets
(MailBoxesTree, MailList and MailDetails) that send
and receive events between each other. For lack of
space, we can only explain the interaction that occurs
between MailBoxesTree and MailList widgets. When a
user clicks on a TreeItem, it fires a user interface event
called onTreeItemSelected. This event is captured and
only if the clicked TreeItem corresponds to a mail
folder (i.e. if the TreeItem is not the root of the Tree,
item.getParentItem()!=null), an onSelectBox signal is
fired. OnSelectBox signal has an attribute called
boxName containing the name of the selected mail
folder. At this point, the MailList widget captures this
onSelectBox signal and calls the getMails business
logic operation sending, as a parameter, the name of
the selected folder. GetMails method then returns the
list of mails contained in a folder, which is passed on
as a parameter. Finally, the result of getMails
invocation is processed by a callback method that
gathers the mail list and updates it in the MailList
widget.

6. The Transformation model

Following a Model-Driven approach, this RIA
development process (see Figure 1) has formalized part
of its mapping activities using model transformations.
We have selected a metamodel mapping approach to
specify these transformations because it allows us to
get the information of the different models with just
their MOF metamodel. The model transformations are
sorted into two different types: (1) model-to-model
transformations which obtain the information from one
or more models and convert them into one or more
models and (2) model-to-text transformations which
establish a mapping from the models to the
implementation.

In this process, the model-to-model transformations
have been defined vertically aiming at merging and
lowering the level of abstraction of the models. They
reduce the modelling effort while keeping the
consistency between models of different levels of
abstraction. There are two model-to-model
transformations and they are defined by means of the
standard transformation language QVT [14]:

Nav2Pres: This transformation defines the different
screenshots that make up the presentation of a RIA
application. The navigation model is queried in order
to identify the links that require navigating to a new
page (that is, their isSamePage attribute with true

19

value). Then, the transformation will create the
screenshot elements in the presentation Model.

key ScreenShot {name};
top relation NavigationModel2PresentationModel {

nc1, nc2: String;
checkonly domain nm: NavigationalModel {

entryNode = n1:NavigationalNode {
name = nc1,
source = na:navigationalAssociation {}

}
 };

enforceable domain pm: PresentationModel {
p:ScreenShot { name = nc1, isEntry = true}

};
where{

 if (na.samePage = true) NavNodeInSameScreenshot (na, p);
 else NavNodeInNewScreenshot (na, pm);
}

 }

Figure 7. The
NavigationModel2PresentationModel QVT

relation

Figure 7 shows an example of rule defined in QVT
called NavigationModel2PresentationModel. This is
the top relation of the Nav2Pres transformation. In the
checkonly domain, the relation checks whether there is
at least one instance of the NavigationalModel element
which has an entryNode pointing to a
NavigationalNode with a name and a source link
defined by a NavigationalAssociation. Only if all these
conditions are satisfied the transformation rule will
create a PresentationModel containing a ScreenShot
with the same name that the NavigationalNode and its
isEntry attribute with true value.

Nav&Pres2Orch: This transformation merges the
information of the navigation and presentation models
and generates an orchestration model skeleton, thus
reducing the modelling effort. To be specific, the
transformation obtains two different elements: (1) the
transformation gathers the information for creating a
screenshot behavioral element for each Navigational
Node and (2) a Transition element for each
Navigational Association. Finally, from the
Presentation Model are obtained the Orchestral Widget
elements establishing default behaviour for each GUI
widget which has an isCoordinable attribute with true
value.

 Figure 8. The NavAssociation2Transition

QVT relation

Figure 8 shows an example of rule defined in QVT
called NavAssociation2Transition. This relation checks
whether there is at least one instance of the
NavigationalAssociation element which has the
SamePage attribute with false value and has target
collection with a size > 1. Only if all these conditions
are satisfied will the transformation rule create a
transition whose target is a Pseudostate that has the
kind attribute with “Choice” value.

Finally, the model-driven development process
defines two activities that represent model-to-text
transformations, allowing to generate the
implementation of a RIA. To specify these model-to-
text transformations, we have selected the MOFScript
language which follows the RFP Model to Text (M2T)
of the OMG [13].

GWT Server Side: this transformation converts the
OOH domain and navigation model into the RIA
Server side. This process focuses on the GWT
platform, and proposes the conversion to the Java
platform. Basically, from the domain model we can
generate the relational database and the business logic
offering the CRUD methods (create, read, update and
delete) gathered from the domain model and the
presentation logic, that is, the server side of the
navigation is obtained by the navigation model. We
would like to point out that the work is focused on the
client side, and that the mapping from OOH to code, is
based on previous works [5]. However, our approach
defines the transformation rules in MOFScript instead
of in Python.

20

om.OrchestralWidget::mapSignalSenderTransitions2GWTEvent){

 var transitions = self.getTransitions()

 transitions->forEach (trans){

 var transParams = trans.convertParameters2Java()

 <% public void %> trans.getName() <%(%> transParams<%){%>

 if (trans.hasGuard() == true)

 <% if (trans.transformOCLGuardToJava()) {%>

 var signal = trans.getSignal()

 var signalParams = signal.convertParameters2Java()

 signal.getName() <%signal new %> signal.getName()

<%(%> signalParams <%);%>

 <%MessageBroker msg = MessageBroker.getInstance();%>

 <%Event event = new Event (%> signal.getNameSpace

<%,%> signal.getName()<%);%>

 <%msg.publishEvent (event);%>

 if (trans.hasGuard() == true) <%}%>

<%}%>

}}

Figure 9. The mapSignalSenderTransition2-
GWTEvent MOFScript rule

GWT Client Side: it establishes a transformation
from the presentation and orchestration model to the
GWT code in order to define a RIA. So that from the
presentation model we will obtain the widget
composition that makes up the user interface of RIA,
and from the orchestration model we will gather the
events between these widgets and the invocations to
the server. Figure 9 shows a MOFScript rule example
of this transformation which generates the events
associated with a GWT widget from a Transition
element of the orchestration model.

7. Related Work

This section compares our work with related
research in the area of Web Engineering where MDE
has been applied to the development of RIAs. To do
that, we have defined a comparative table (see Table 1)
that compares two approaches (OOHDM [15] and
RUX+WebML [9]) with the present work and how
they apply or not to a set of characteristics belonging to
the model-driven Web engineering and RIA
disciplines.

Characteristic OOHDM RUX+
WebML

OOH4RIA

Domain Conceptual
Model

Data Model
(WebML)

Conceptual
Model

Navigation Navigation
Model

Hypertext
Model
(WebML)

Navigation
Access
Diagram

Structural RIA
Presentation

Interface
Model

Abstract,
Concrete

Presentation
Model

Model (Spatial
Presentatio
n) and
Final
Interface

Behaviour RIA
Presentation

ADV-Chart

Concrete
interface
(Temporal
and
Interaction
Presentatio
n)

Orchestration
Model

Metamodelling None Partial
(WebML)

Complete

Transformation
Model-to-model

None Code
generator

QVT

Transformation
Model-to-text

None code
generator

MOFScript

OMG Standards None UML UML, MOF,
QVT, OCL

Tool None WebRatio
&
RUX Tool

Eclipse GMF
Tool (In
development)

Table 1. Comparative table of RIA approaches

According to the order established in table 1, we
will start with models that represent the different views
of a RIA. As we can see, every approach defines or
reuses the Domain and Navigation models coming
from traditional Web applications in order to obtain the
data and business logic. On the one hand, OOHDM
and OOH4RIA have been extended their previous
models reusing and introducing new models for RIA.
On the other hand, RUX gathers the WebML models
as an initialization mechanism to start its RIA
methodology.

From here, we compare the models proposed for
gathering the structural and behavioural aspects of
RIA. The structural RIA models are represented in an
Abstract Interface stage by OOHDM and RUX,
whereas a concrete interface RIA is tackled by RUX
and OOH4RIA.

The RIA behavioural presentation is also dealt with
by these approaches but in a different manner. RUX
proposes the temporal and interaction presentation
models which allow to capture the behaviours that
require temporal synchronization and user interactions.
OOHDM, on the other hand, defines a ADV-Charts
indicating how ADVs are affected when the user
interacts. The OOH4RIA Orchestration model is
similar to the OOHDM ADV-Charts both allowing to
represent GUI widgets interactions. However, the
orchestration model introduces a novelty consisting in
defining the navigation established between different
screenshots and pages allowing us to obtain a multi-
page RIA.

At this point, the comparative table shows how the
three approaches deal with model-driven issues. As

21

previously mentioned, metamodelling is used by the
OOH4RIA for formalizing RIA models. However,
OOHDM and RUX do not define any known
metamodel. Another model-driven issue is the vertical
mappings aimed at obtaining the RIA implementation.
While OOH4RIA proposes a set of model-to-model
and model-to-text transformations in order to establish
a traceable process. RUX uses code generators to
obtain the final implementation.

Another important aspect to take into consideration
is the usage of OMG standards, thus accelerating the
development of a tool and obtaining better
interoperability with other approaches. OOHDM does
not follow any standard and RUX only uses UML for
WebML models, whereas we use UML, MOF, QVT
and OCL languages.

The final row of the comparative table tackles the
tool support of different approaches. Up to now, only
RUX+WebRatio provides a complete tool, while the
OOH4RIA tool based on the Eclipse Graphical
Modelling framework (GMF) is currently in a
development process and it will be completed in a few
months.

For lack of space, other important approaches with
RIA extensions like WebML [1] and USIXML [10]
cannot be compared in the previous table. These
approaches also introduce modelling concepts
necessary to generate code of RIA applications.

8. Conclusions

We have focused our study in the OOH4RIA
model-driven development process that introduces
models and transformations to obtain a complete RIA
for the GWT framework. To do that, we have extended
a traditional Web methodology like OOH, using its
domain and navigation models to define the data and
the business logic in order to recover and store this
data. From these models, we establish a set of model-
to-model transformations obtaining the skeletons of the
presentation and orchestration models and reducing
human effort and errors.

The presentation and orchestration models are one
of the most important contributions of this work. They
represent the structural and the behavioural aspects of
the RIA user interface, allowing to define both simple
and multi-page applications.

However, the evolution of this approach is not
finished at all. We started by defining a process aimed
at obtaining a promising framework like GWT.
However, we are currently working on the definition of
an abstract presentation model to represent generic
widgets for generating any RIA framework. On the

other hand, we are also working on the introduction of
the WebSA architectural models [11] into the RIA
process, allowing the designer to establish a layer
distribution and its different components and
connectors.

9. Acknowledgements

This work is co-supported by the Spanish Ministry
of Education, and the European Social Fund under
contracts TIN2005-05610 (WAPO) and TIN2007-
67078 (ESPIA). Perez enjoys a doctoral grant from the
Basque Government under the “Researchers Training
Program”.

10. References

[1] Bozzon, A.; Comai,,S.; Fraternali,P; Toffetti Carughi, G.
Conceptual Modeling and Code Generation for Rich Internet
Applications. ICWE 2006, Menlo Park, California, USA,
2006.
[2] Cachero C., Melia S., Genero M., Poels G., Calero C.
Towards improving the navigability of Web applications: a
model-driven approach. European Journal of Information
Systems, 16, 420-447. ISSN 0960-085X/07, 2007.
[3] Driver M., Valdes R., Phifer G. Rich Internet
Applications are the next evolution of the Web. Technical
Report, Gartner, 2005.
[4] Gamma E., Helm R., Johnson R., Vlissides J. Design
patterns: elements of reusable object-oriented software.
Reading Mass: Addison-Wesley, 1995.
[5] Gómez J., Cachero C., Pastor O. Conceptual Modeling of
Device-Independent Web Applications. IEEE Multimedia,
8(2), 26–39, 2001.
[6] Google Web Toolkit. http://code.google.com/webtoolkit/
overview.html.
[7] GWT Mail Application. http://code.google.com/
webtoolkit/examples/mail/.
[8] Kent S. Model Driven Engineering. IFM 2002, LNCS
2335, pp.286 –298, 2002.
[9] Linaje M., Preciado J.C., Sánchez-Figueroa F.,
"Engineering Rich Internet Application User Interfaces over
Legacy Web Models," IEEE Internet Computing, vol.11,
no.6, pp.53-59, Nov.-Dec, 2007.
[10] Martinez-Ruiz, F. J., Arteaga, J. M., Vanderdonckt, J.,
Gonzalez-Calleros, J. M., and Mendoza, R. 2006. A first
draft of a Model-driven Method for Designing Graphical
User Interfaces of Rich Internet Applications. In Proceedings
of the Fourth Latin American Web Congress. LA-WEB.
IEEE Computer Society, Washington, DC, 32-38, 2006.
[11] Meliá S., Gomez J. The WebSA Approach: Applying
Model Driven Engineering to Web Applications. Journal of
Web Engineering ©Rinton Press. Vol. 5, No. 2, pp. 121-149.
ISSN: 1540-9589. http://www.rintonpress.com/journals/jwe,
2006.
[12] Mesbah A., and van Deursen A., “Migrating Multi-page
Web Applications to Single-page Ajax Interfaces”, Delft

22

University of Technology SERG, Netherlands, TUDSERG-
2006-018, 2007.
[13] OMG. MOF to Text Transformation Language Final
Adopted Specification. OMG doc. ptc/06-11-01.
[14] OMG. MOF Query/Views/Transformations Draft
Adopted Specification: OMG doc. ptc/05-11-01.
[15] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.
Designing the Interface of Rich Internet Applications. In
Proceedings of the 2007 Latin American Web Conference,
2007.

23

