
C O V E R F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE36 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

organization capability. In other words, the traditional
solution that software designers adopted—carefully
elicit change requests, prioritize them, specify them,
design changes, implement and test, then redeploy the
software—doesn’t work anymore.

To identify the exact nature of the new problems, we
must first understand past achievements and how we
can build upon them. Indeed, software’s continuous evo-
lution has delivered increasing flexibility. Under closed-
world assumptions, software engineering has produced
methods and techniques to deal with continuous change,
without compromising applications’ overall quality. For
instance, software architectures have evolved from being
static, monolithic, and centralized to dynamic, modu-
lar, and distributed. Driven by technical and economic
forces, this change has occurred both at the process
level—the way software is developed—and the product
level—the way software is structured. However, we must
go beyond these achievements to cope with the new
open-world challenges.

HISTORICAL PERSPECTIVE
Inventors of early approaches to systematic software

development tried to discipline the process by identify-
ing well-defined stages and developing criteria for
advancing from one stage to the next. In doing so, they
hoped to avoid endless iterations of code-and-fix activ-
ities, reduce process costs, and improve predictability
and product quality. They blamed poor software qual-

Traditional software development is based on the closed-world assumption that the

boundary between system and environment is known and unchanging. However, this

assumption no longer works within today’s unpredictable open-world settings, which

demand techniques that let software react to changes by self-organizing its structure

and self-adapting its behavior.

Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi
Politecnico di Milano

D evelopers currently handle environment
changes by eliciting change requests, modify-
ing the software design and implementation,
verifying that the resulting product meets the
changed requirements, and, finally, redeploy-

ing the application. This approach assumes that the
external world changes slowly and that software can
remain stable for long periods. It also assumes a closed
external world, meaning that requirements leading to a
specification for the software system’s interaction with
the external world can capture all phenomena of inter-
est. The software itself is closed since it’s composed of
parts that don’t change while it’s executing.

However, these closed-world assumptions don’t hold
in an increasing number of cases, especially in ubiqui-
tous and pervasive computing settings, where the world
is intrinsically open. Applications cover a wide range of
areas, from dynamic supply-chain management,
dynamic enterprise federations, and virtual endeavors
on the enterprise level, to automotive applications and
home automation on the embedded-systems level. In an
open world, the environment changes continuously.
Software must adapt and react to changes dynamically,
even if they’re unanticipated.

Moreover, the world is open to new components that
context changes could make dynamically available—for
example, due to mobility. Systems can discover and bind
such components dynamically to the application while
it’s executing. The software must therefore exhibit a self-

Toward Open-World
Software: Issues
and Challenges

October 2006 37

ity on continuous change—removing errors,
meeting customers’ expectations, and improv-
ing the implementation.

The waterfall model that Winston W. Royce
proposed in 1970,1 two years after software
engineering was “officially” born,2 represented
an attempt to deliver that much-needed disci-
pline and predictability. Royce thought that
software developers should focus not only on
coding but also on higher-level activities, such
as requirements analysis and specification, soft-
ware design, and verification and validation.

Others later argued that careful requirements
analysis could improve product quality and
avoid costly changes. They viewed software
changes as harmful—a disruption to the disci-
plined development process and the ultimate
cause for schedule slips and cost overruns.

These early approaches shared fundamental
implicit assumptions about software and the
world it would inhabit. They assumed a fixed
(static) world, meaning that the requirements
were supposed to exist, ready to be discovered
and captured by carefully analyzing the world
and eliciting its needs. Such needs were supposed
to be highly stable, as were most organizations
of that time. Under the recommended processes, engi-
neers were guided to delay design and implementation
until after they had exhaustively elicited and specified the
requirements.

Furthermore, since organizations were mostly mono-
lithic, solutions to their needs were accordingly mono-
lithic and centralized. Improving the efficiency of
organizations’ internal activities took precedence over
interactions among organizations, which were minimal
and not perceived as critical.

Waterfall processes were indeed closed and mono-
lithic, as was the structure of software products. Even
though engineers developed complex applications mod-
ularly, all modules were statically bound to each other,
and the resulting frozen application was statically
deployed on a physically centralized architecture.

Since in most practical cases requirements can’t be
fully gathered upfront and frozen, the closed-world
assumption soon proved unrealistic. Furthermore, the exis-
tence of many stakeholders results in conflicting and intrin-
sically decentralized requirements. Stakeholders often don’t
know beforehand what they expect from a system. Thus,
it’s an illusion to exhaustively gather requirements and pre-
plan the process to avoid future changes: Change isn’t a
nuisance to avoid, but an intrinsic factor to address.

The history of software engineering shows a progres-
sive departure from the strict boundaries of the closed-
world assumption toward flexible support of continuous
evolution at both the process and product levels.
Researchers developed methods, techniques, and tools

to support the need for change without compromising
product quality and cost-efficiency. To reduce risks and
better tailor solutions to user needs, they introduced
evolutionary process models, such as incremental and
prototyping-based approaches. More recently, these
approaches evolved into agile methods, such as extreme
programming.

Along the way, product architectures became modu-
lar and distributed, instead of static, centralized, and
monolithic, where changes implied recompilation and
redeployment of applications. Software engineering
researchers discovered design principles and methods to
support architecture changes, such as information hid-
ing, encapsulation, and separation of a module’s inter-
face from its implementation.3 To enforce good design
practices, researchers eventually embedded these prin-
ciples in new programming languages.

In particular, object-oriented programming languages,
like C++ and Java, can safely accommodate certain
anticipated changes in the implementation architecture.
If changes to an existing module (a class) can be cast
into the subclass mechanism, the changes can be made
while the system is running. Thanks to polymorphism
and dynamic binding,4 a client’s invocation of a certain
operation might be bound dynamically to an operation
redefined in a subclass without affecting the client.

As the “Polymorphism and Dynamic Binding” side-
bar describes, these characteristics provide flexibility that
can coexist with the discipline and safety that strong typ-
ing supports. In addition to letting bindings among mod-

Polymorphism and Dynamic Binding

Polymorphism and dynamic binding offer a first step to developing
software that runs in an open world.

As a simple example, suppose that an application is initially designed
to deal with a certain device, such as a fax machine.Through a variable
f of class Fax, you can send a fax by writing f.sendFax(t, n), where t is a
text and n is a fax number.

Suppose that you later add to the system a new device, such as a
fax with phone, which provides its own way of sending faxes. If
FaxWithPhone is a derived class of Fax, which redefines operation
sendFax, variable f can refer to it, and the result of f.sendFax(t, n)
would result in sending the fax using the redefined method of class
FaxWithPhone. More important, the client component that uses
variable f to send faxes isn’t affected by the change.

The compiler checks for correctness by assuming that f ’s type is
defined by class Fax, but the invocation of sendFax is ensured to be
correct even if the dynamic type of the object referred by f is
FaxWithPhone. Indeed, the client continues to work correctly with the
newly defined device as it did earlier.

This simple example shows that the flexibility that polymorphism
and dynamic binding provide can coexist with the discipline and safety
that strong typing supports.

38 Computer

ules become dynamic, the software technology evolution
lets them extend across network boundaries.

With Java, for example, developers can invoke a
method on a remote server object running on a different
network node. The server node might need to dynami-
cally download the code that implements the methods
used to manipulate object parameters, if their class is a
new, dynamically defined subclass of the formal para-
meter’s class.

Component-based software represents another major
advance, moving software development processes to the
open world. Third parties develop and provide compo-
nents and are responsible for their quality and evolution.
Application development thus becomes partly decentral-
ized. At an extreme, application development consists of
gluing components together by using middleware tech-
nology as the integration and coordination infrastructure.

In short, the evolution of software development meth-
ods and tools has made it possible to support seamless evo-
lution of the product structure to incorporate certain
anticipated changes, such as additional or redefined mod-
ule functionalities, and to support decentralization and dis-
tribution. By carefully decoupling modules via well-defined
interfaces, developers can now incorporate changes in
applications without disrupting the overall correctness.

There is now unprecedented demand for software that
continuously evolves for use in an open world. Existing
approaches to software development can’t cope with
these new contexts. Consequently, we must explore new
research directions.

TOWARD THE OPEN-WORLD ASSUMPTION
Learning how to operate under the open-world

assumption becomes more crucial when we look at
emerging domains like ambient intelligence, context-
aware applications, and pervasive computing—all of
which aim to integrate computation into the environment.

For example, the ambient intelligence concept that the
European Union presents in its latest framework pro-
gram envisions that, “People are surrounded by intelli-

gent intuitive interfaces that are embedded in all kinds
of objects. The ambient intelligence environment is capa-
ble of recognizing and responding to the presence of dif-
ferent individuals. Ambient intelligence works in a
seamless, unobtrusive and often invisible way.”5

Implementing this concept requires the underlying
software system to dynamically change its behavior in
response to changes in the environment it’s interacting
with or controlling. If, for example, a person wearing a
device to control vital functions enters a room, the wear-
able device must start “interacting with the room” to
acquire information about environmental conditions
and communicate the person’s needs (for example, dark-
ened lights or particular meals at specific times).

Technically, the wearable device must discover and
communicate with the possibly unknown components
controlling the room. Those components, in turn, must
be able to react to situations that were unforeseen when
the system was developed.

In this setting, component heterogeneity is crucial, in
terms of technical characteristics, size, and purpose. In
fact, we could imagine a software system supporting the
above scenario as composed of RFID tags that provide
information about devices in the room, sensors that
gather information about the environment, small devices
with limited computational capabilities devoted to ded-
icated tasks, and full-fledged components—all connected
through a mixture of ad hoc and traditional networks—
to coordinate the whole system.

We view these as a special case of self-healing systems.
According to David Garland and colleagues,6 these sys-
tems “adapt themselves at runtime to handle such things
as resource variability, changing user needs, and system
faults. In the past, systems that supported self-repair
were rare, confined mostly to domains like telecommu-
nications switches or deep-space control software, where
taking a system down for upgrades wasn’t an option,
and where human intervention wasn’t always feasible.
However, today, more and more systems have this
requirement, including e-commerce systems and mobile
embedded systems.”

In this context, detecting critical situations and recov-
ering to a stable configuration is important. In addition,
the elements composing such systems usually require
proper mechanisms for multicast communication and
maintaining a global knowledge of the whole system state.

Researchers and practitioners are also increasingly
interested in building applications by assembling exist-
ing services executed remotely at the provider site. Such
compositions let them use what exists without concern
about the computational resources needed to execute
selected services. This requires the following:

• Developers and users must trust the services they use
to compose the application. Each service should
clearly describe its nonfunctional characteristics, as

Figure 1. Service-oriented architecture. Components export the

services they provide, and clients can discover the services that

fit their quality requirements.

Service
requestor

Service
provider Service

Interact

PublishFind

Discovery
agencies

Service
description

Service
descriptionClient

October 2006 39

well as its functionality, to let the client under-
stand if the service fits its needs. Moreover,
the client must be assured that the service
meets its description’s promises.

• Developers should define suitable mechanisms
to set up and negotiate service-level agreements
between clients and services.

• Developers should allow applications to set the
bindings to specific services at runtime. This is
necessary when the specific service depends on
context information acquired at runtime (for
example, the user’s physical location) and when
the user needs a replacement because the
service fails or is unavailable. Dynamic bind-
ing also supports optimization of service com-
positions, since rebinding might occur as new
services become available at runtime.

• Service providers should announce and dis-
cover new services at runtime to support
dynamic binding. Furthermore, to cope with
unforeseen syntactic differences, they should
provide features to support the adaptation of
the service interface the client expects to the
one actually offered by the service.

• Because services might change unexpectedly
and because of dynamic binding, their users
(either humans or other applications/services)
need to monitor real behaviors that might
deviate from what’s expected and plan for
strategies to react to them.

The more we move toward dynamic and het-
erogeneous systems, and the more we stress their
self-healing and self-adapting capabilities, the more
we need new approaches to develop these applica-
tions and new ways to structure and program
them. We must shift from the prevailing synchro-
nous approach to distributed programming to a
fundamentally more delay-tolerant and failure-
resilient asynchronous programming approach.7

Global behaviors emerge by asynchronous combi-
nations of individual behaviors, and bindings and
compositions change dynamically.

In such a dynamic setting, however, assuring
the resulting application’s desired quality is a dif-
ficult challenge.

EXISTING SOLUTIONS
Promising new approaches and technologies includ-

ing service-oriented architectures are now emerging that
partially support these application domains.

As Figure 1 shows, in service-oriented architectures,
components export the services they provide and clients
can discover the services that fit their quality requirements.
Once service requests match provisions, point-to-point
interactions occur between clients and service providers.

In support of the matching process, a service-oriented
architecture places service brokers between clients and
providers to collect and advertise available services and
facilitate their interaction. Services can thus be selected
based on their functional capabilities and their promised
quality of service (QoS) or nonfunctional features.

The “Supporting Technology” sidebar lists existing
standards, industrial products, and research proto-
types that support open-world assumptions.

Supporting Technology

The following are some existing standards, industrial products,
and research prototypes that support, to a certain extent, the open-
world assumptions.

Service-oriented technologies

• Jini: www.sun.com/software/jini/index.xml
• Open Services Gateway Initiative (OSGi): www.osgi.org
• SOAP: www.w3.org/TR/soap12-part1
• Web Service Description Language (WSDL): www.w3.org/

TR/wsdl; also www.w3.org/TR/wsdl20
• Universal description, discovery, and integration (UDDI):

www.uddi.org
• Business Process Execution Language (BPEL): www128.

ibm.com/developerworks/library/specification/ws-bpel
• Web Service Security (WS-Security): www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wss
• Web Services Trust Language (WS-Trust): www-128.ibm.com/

developerworks/library/specification/ws-trust

Publish/subscribe middleware systems

• Java Message Service (JMS): www.java.sun.com/products/jms
• Scalable Internet Event Notification Architectures (Siena):

www.cs.colorado.edu/serl/dot/siena.html
• Java Event-Based Distributed Infrastructure (JEDI): G. Cugola,

E. Di Nitto, and A. Fuggetta,“The JEDI Event-Based
Infrastructure and Its Application to the Development of the
OPSS WFMS,” IEEE Trans. Software Eng., vol. 27, no. 9, 2001, pp.
827-858.

• TIBCO Software solutions: www.tibco.com

Grid infrastructures

• Open Grid Services Architecture (OGSA): www.globus.
org/ogsa

• gLite (lightweight middleware): http://glite.web.cern.ch/glite
• Globus toolkit: www.globus.org/toolkit

Autonomic frameworks

• The Anthill Project: www.cs.unibo.it/projects/anthill
• Recovery-Oriented Computing (ROC): roc.cs.berkeley.edu
• Autonomic Replication Management Service (ARMS):

www. almaden.ibm.com/software/projects/arms
• Project AutoMate: http://automate.rutgers.edu

40 Computer

Jini, the Open Services Gateway Initiative, and Web
services are the most widely known implementations of
these concepts. The first two approaches impose tech-
nology-specific programming environments and focus
more on supporting interaction among services in a local
area network.

Web services
At least in principle, Web services require neither par-

ticular programming languages nor dedicated supporting
platforms. Developers encode interfaces and data
in XML and exchange them through
SOAP. Even if many XML-based pro-
posals can tackle the different aspects
of Web services, the available tech-
nology is based on the Web Service
Description Language (WSDL) for
service interface description, and
UDDI for service discovery.

Web services let designers integrate
and remotely use services that differ-
ent providers supply. The Web ser-
vices can also be composed together to form more
complex services. Designers typically use the Business
Process Execution Language for this. BPEL imposes a
workflow-based coordination of involved services and
requires the identification of at least the structure of the
WSDL interface of all parties at design time. In principle,
designers can discover new services at different times.

This affects the degree of dynamism and flexibility
embedded in these applications. If designers perform
discovery at design time, they select the services and
hard-code their addresses into the BPEL workflow. If
they perform discovery at deployment time, they use a
service broker to “configure” the application. In either
case, the set of bound services doesn’t change dynami-
cally, and the binding between service requests and
actual services is established once for all.

Discovery and selection can also occur at runtime.
This enables a context-aware behavior of service com-
positions that can yield beneficial effects: The service
broker can discover different sets of services, and the
composition can dynamically select one of them. How-
ever, the current technology doesn’t support expression,
at design time, of the requirements and constraints to
be fulfilled at runtime in the discovery and selection
phase to identify the services to be bound. This draw-
back makes development of systems exploiting this run-
time binding capability almost impossible in practice.

Publish/subscribe middleware
Researchers have proposed the publish/subscribe par-

adigm as a basis for middleware platforms that support
software applications composed of highly evolvable and
dynamic federations of components. According to this
paradigm, components don’t interact directly with each

other. Instead, an additional “dispatcher” logical layer
mediates their communications. Components declare
the events they’re interested in, and when a component
publishes an event, the dispatcher notifies all compo-
nents that have subscribed.

Publish/subscribe middleware decouples the commu-
nication among components and supports implicit bind-
ings among components. The sender doesn’t know the
identity of the receivers of its messages, but the middle-
ware identifies them dynamically. Consequently, new
components can dynamically join the federation,

become immediately active, and
cooperate with the other compo-
nents without requiring any recon-
figuration of the architecture.

Available commercial products and
advanced research prototypes sup-
port the publish/subscribe paradigm.
They might differ in several aspects,
such as the ability to cope with
mobile environments or the policies
adopted for event delivery. For exam-

ple, event notification might or might not preserve the
same order in which events were published.

Grid computing
Available technological solutions also support grid

computing. They provide facilities to enable the sharing,
selection, and aggregation of resources distributed across
multiple administrative domains based on the resources’
availability, capacity, performance, cost, and QoS
requirements. In a grid, resources are virtualized and
independent of the actual supplier and physical location.

Standardization helps diverse and heterogeneous
resources make up a modern computing environment
that designers can discover, access, allocate, monitor,
and, in general, manage as a single virtual system—even
if different vendors provide the single components and
different organizations operate them. The Open Grid
Services Architecture proposed by the Global Grid
Forum (which recently merged with the Enterprise Grid
Alliance) demonstrates the convergence of the different
initiatives and technological solutions into an integrated
and loosely coupled framework. Interestingly, this
framework implements resources as Web services offer-
ing proper WSDL interfaces.

Autonomic computing
Finally, emerging autonomic computing environ-

ments offer features for self-configuration, self-heal-
ing, self-optimization, and self-protection to cope with
the complexity, heterogeneity, and uncertainty of mod-
ern software systems.8 In this context, among the other
aspects, researchers are studying new interaction and
cooperation paradigms inspired by biological systems.
In particular, they’re modeling the abilities of single

Web services, at least in

principle, require neither

particular programming

languages nor dedicated

supporting platforms.

biological entities (for example, ants) to self-organize
and behave autonomously and together achieve a
common objective. Furthermore, they’re coding these
models into software systems. While we find this
approach interesting and challenging, researchers
need to thoroughly assess these behavioral models’
advantages and applicability to specific autonomic
problems.9

RESEARCH AGENDA
Software engineering research and practice has been

moving to progressively remove the limitations of
closed-world assumptions. Satisfying the goals of open-
world software, however, requires defining a research
agenda that builds on past achieve-
ments and identifies the new chal-
lenges.

Specification
Software engineering research has

always been concerned with soft-
ware specification. Researchers have
made much progress with components’ interface speci-
fications, covering both syntactic aspects and functional
semantics.

Providing formal specification of software components
is mandatory today if components are to provide services
that others can depend upon, retrieve, and use. Although
component specifications have traditionally focused on
functionality, in the open-world context they must spec-
ify other aspects, such as usage protocol, transactional
properties, and nonfunctional properties.

The Semantic Web community, which uses ontologies
to provide formal semantics to service descriptions,
offers a first step in this direction. In the Web Service
Modeling Ontology,10 the ontology-based information
included in a service description concerns a service’s
behavior, the way it interacts with its counterparts, and
its QoS characteristics. We need more research in this
direction, however. Researchers should explore how ser-
vice specifications can support service classification and,
hence, service retrieval. In particular, a notion of sub-
stitutability—to define when a given service might sub-
stitute another—seems important to support dynamic
reconfigurations.

Verification
The services that providers make available should

meet their specification. Service consumers, in fact, select
services based on their specification and then rely on
them to perform some relevant business functions or, in
turn, to provide higher-level composed services.

Service producers’ offline verification of services isn’t
enough in this framework.11 Services need to be verified
when they’re published and even during runtime, since
they might be changed without explicit notice.

Verification in the publishing phase might be done as
part of an admission protocol, whereby the service
undergoes a certification stage. Runtime verification pro-
tects users from unanticipated unacceptable changes.

New methods must be developed to support this new
kind of verification. As an example, consider the idea of
continuous testing. Antonia Bertolino and colleagues
describe initial steps in this direction.12

Monitoring
A highly dynamic and open system necessitates run-

time monitoring to watch for situations that might
require suitable reactions to assure the desired level of
global quality.

Monitoring amounts to inserting
probes in the system, collecting and
analyzing data, and then reacting
according to the results. Analysis
compares the observations with the
specifications. The problem here is to
identify, select, and tune monitoring
strategies, which can have various

degrees of invasiveness.

Trust
In the open world, parties providing and consuming a

service are easily exposed to cheaters. Monitoring can
recognize such situations and trigger some recovery
action. However, it should be possible to prevent the
occurrence of situations that can harm the system.

Within the service-oriented domain, initiatives such as
Web Services-Security, Web Services-Policy, and Web
Services-Trust define protocols that allow some author-
ity to guarantee other parties’ trustworthiness. Others
adopt a more “democratic” approach and base trust on
the parties’ reputation for interacting with others in the
system. Clearly, neither approach is resilient to attacks,
as discussed at O’Reilly’s XML site (www.xml.com/pub/
a/ws/2004/04/14/p2pws2.html?page=1).

The approaches must be clearly complemented with
verification and monitoring, but in most cases they seem
to work under the assumption that the majority of peo-
ple—and the software components they build—are usu-
ally honest.

Implementation
Programming open systems requires new programming

language features. Two features that bear investigation
are introspection mechanisms to get runtime information
about newly encountered services and reflective mecha-
nisms to adapt client applications dynamically.

Self-management
Software must be able to evolve dynamically in an open

world. Although developers can’t foresee all changes, they
must define the boundaries the system can evolve within,

October 2006 41

Software must be able

to evolve dynamically

in an open world.

42 Computer

Supporting Self-Reconfiguration

As part of the service-centric system engineering project
(http://secse.eng.it),we are developing an approach to self-
healing Web services. This approach is based on ideas coming
from design-by-contract and assertions in the Eiffel program-
ming language,which let the user set constraints on program
execution and also identify possible reactions if they’re not
satisfied.1 In our work,we propose monitoring rules and
reaction rules to oversee the execution of Business Process
Execution Language workflows.

The explicit and external definition of monitoring rules
and reaction rules maintains a good separation between
business and control logic, where the former is the BPEL
process that implements the business process and the latter
is the set of rules defined to control and modify the execu-
tion, if needed.

Separating these concerns lets designers produce BPEL
specifications that address only the problem they need to
solve, without intertwining the solution with awkward
pieces of defensive programming. Different rules can be
associated with the same BPEL workflow to tailor the
degree of control to the specific execution context without
reworking the business process. Moreover, a good separa-
tion of concerns allows precise management of monitoring
and reaction rules, and it’s an effective way to find the right
balance between self-healing and performance.

Figure A summarizes our approach. More specifically:

• Designers may conceive rules either in parallel with the
business process or just after it’s designed. Monitoring
rules are associated with specific elements of the busi-
ness process—for example, invocations of external
services. Reaction rules can be process-wide or associ-
ated with specific process elements.

• Users can select the rules to use with a specific execu-
tion anytime before the process is executed. BPEL2
instruments the original BPEL specification to allow
execution of the proper rules.This instrumentation
feeds the monitoring manager, a proxy service that is
responsible for understanding whether a monitoring
rule must be evaluated, and, if that’s the case, for react-
ing as the reaction rules state.

• When the instrumented BPEL process starts its execu-
tion, it calls the monitoring manager whenever a moni-
toring rule must be considered.The actual evaluation
depends on the values of the parameters associated with
the rule and on the context in which it’s executed.For
example,one of these parameters is priority, and the
context comprises the global priority set for the execu-
tion of the workflow at startup time. A rule with priority
lower than the global one would be skipped,and the
monitoring manager would call the actual service directly.

• A special-purpose interface interacts with the monitor-
ing manager and changes its status.This happens when
the designer wants to change the impact of monitoring
at runtime without redeploying the entire process.

• If some constraints aren’t met, the monitoring manager
activates the reaction rules to try to keep the execu-
tion alive. Reaction rules can trigger and control various
actions ranging from dynamic binding to negotiation of
some service level agreement to a partial replanning of
the process itself.

Reference

1. L. Baresi and S. Guinea,“Towards Dynamic Monitoring of
WS-BPEL Processes,” Proc. Int’l Conf. Service-Oriented Computing
(ICSOC 05), 2005, pp. 269-282.

A

B

C

Monitoring
definition file

MM
setup

A

MM
Monitoring
manager

MM
C

WS-BPEL
process

Instrumented
WS-BPEL process

Workstation
B

Workstation
A

Workstation
C

Internet BPEL2

MM
release

Internet

Workstation
A

Workstation
C

Monitor

Workstation
B

Figure A. BPEL workflow. Different rules can be associated with the same BPEL workflow to tailor the degree of control to the

specific execution context without reworking the business process.

and the criteria it will consider in deciding how to evolve.
Without defining these, self-managing systems would
soon go out of control. As a result of monitoring, it should
be possible to handle deviations from the expected behav-
iors and plan for a reconfiguration.

We investigated an approach to supporting self-heal-
ing Web services that relies on workflows that can detect
and react to services’ deviations from expected behav-
iors. The “Supporting Self-Reconfiguration” sidebar
provides an outline of this work.

In the same direction, some autonomic computing
platforms provide programming support to define auto-
nomic rules that each component might execute to
achieve an overall system change. As mentioned, some
of these rules might be built in a way that resembles the
behavior of existing biological systems. The research
community is working on self-managing software, with
significant results expected in the next few years.

T he need for software that can continuously evolve
in an open world is reaching unprecedented levels.
Existing approaches to software development can’t

cope with these new challenges. Consequently, we must
explore new research directions. The more we move
toward dynamic and heterogeneous systems, and the
more we stress their self-healing and self-adapting capa-
bilities, the more we need new approaches to develop
these applications and new ways to structure and pro-
gram them. ■

References
1. W.W. Royce, “Managing the Development of Large Software Sys-

tems,” Proc. IEEE WESCON, IEEE Press, 1970, pp. 1-9.

2. P. Naur and B. Randell, eds., Software Engineering: Report
of a Conference Sponsored by the NATO Science Committee,
NATO Scientific Affairs Division, 1968.

3. D.L. Parnas, “On the Criteria to be Used in Decomposing Sys-
tems into Modules,” Comm. ACM, Dec. 1972, pp. 1053-
1058.

4. B. Meyer, Object-Oriented Software Construction, Prentice
Hall, 1997.

5. K. Ducatel et al., Scenarios for Ambient Intelligence in 2010,
tech. report, Inst. of Prospective Technological Studies-Seville,
2001.

6. D. Garland, J. Kramer, and A. Wolf, eds., Proc. First Work-
shop Self-Healing Systems (WOSS 02), ACM Press, 2002.

7. 2020 Science Group, Toward 2020 Science, tech. report,
Microsoft, 2006; http://research.microsoft.com/towards
2020science/downloads/T2020S_Report.pdf.

8. J.O. Kephart, “Research Challenges of Autonomic Comput-
ing,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05), ACM
Press, 2005, pp. 15-22.

9. G. Serugendo et al., “Self-Organisation: Paradigms and Appli-
cations,” Engineering Self-Organising Systems: Nature-

Inspired Approaches to Software Engineering, Springer, 2004,
pp. 1-19.

10. D. Roman, L. Holger, and U. Keller, eds., D2v1.2. Web Ser-
vice Modeling Ontology, WSMO Working Group, 2005;
www.wsmo.org/TR/d2/v1.2.

11. G. Canfora and M. Di Penta, “Testing Services and Service-
Centric Systems: Challenges and Opportunities,” IT Profes-
sional, Mar./Apr. 2006, pp. 10-17.

12. A. Bertolino et al., “Audition of Web Services for Testing Con-
formance to Open Specified Protocols,” J. Stafford et al., eds.,
Architecting Systems with Trustworthy Components, Springer,
2006.

Luciano Baresi is an associate professor of computer sci-
ence at Politecnico di Milano. His research interests focus
on dynamic software architectures, with special emphasis on
service-oriented applications. He received a PhD in com-
puter science from Politecnico di Milano. Contact him at
baresi@elet.polimi.it.

Elisabetta Di Nitto is an associate professor at Politecnico
di Milano. Her research interests are software architectures
and middleware, process support systems, and Internet
applications. She received a PhD in computer science and
automation from Politecnico di Milano. Contact her at
dinitto@elet.polimi.it.

Carlo Ghezzi is a professor of software engineering at
Politecnico di Milano. His research interests are software
engineering and programming languages. He is an IEEE
Fellow and an ACM Fellow. Contact him at carlo.ghezzi@
elet.polimi.it.

October 2006 43

computer.org/e-News

Available
for FREE
to members.

Be alerted to
•articles and

special issues
•conference

news
•registration

deadlines

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

