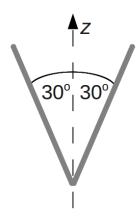
Ensaio para Prova 2 - Física 1 para o Instituto Oceanográfico (4300111)

Prof. José Roberto B. Oliveira - IFUSP - 2013

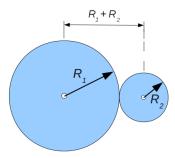
Observação - substitua os valores numéricos após todas as manipulações algébricas de cada item.

- 1. Um trenó com massa total $m_T = 90$ kg desliza horizontalmente com velocidade constante $v_T = 11$ m/s, quando, ao passar por baixo da copa de uma árvore, uma massa de neve de $m_N = 20$ kg despenca de um galho a uma altura h = 5 m para dentro do trenó.
- (a) [1,0] Determine a velocidade horizontal do trenó v_F logo após a queda da massa de neve.
- (b) [1,0] Determine as componentes vertical e horizontal do impulso $(J_x \in J_y)$ que o trenó recebe da massa de neve.

- 2. Um objeto rígido com a forma da letra V consiste de duas hastes finas de massa $m_H = 1,5$ kg (cada uma) e comprimento $l_H = 2,0$ m, inclinadas de 30^0 com relação à vertical (vide figura).
- (a) [1,5] Calcule o momento de inércia do sistema com relação ao eixo vertical (z) que passa pelo vértice do "V".



- 3. Dois discos maciços de borracha de mesma espessura giram em torno de seus eixos e suas superfícies cilíndricas encontram-se em contato em um dado ponto (vide figura). A força de atrito estático é tal que não há deslizamento entre as superfícies. Um motor está ligado ao eixo do disco de raio maior $R_1 = 1$ m e provoca uma aceleração angular de rotação $\alpha_1 = 2$ rad/s² a este disco. O atrito no eixo do segundo cilindro é desprezível.
- (a) [1,0] Determine a aceleração angular α_2 do disco menor (de raio $R_2 = \frac{1}{4}$ m), em torno de seu próprio eixo.
- (b) [1,0] Determine o torque τ_2 que age sobre o disco menor, com relação a seu eixo, e a força F_a de atrito entre as superfícies no ponto de contato. O momento de inércia do disco menor (em torno do próprio eixo) é $I_{cm} = \frac{1}{8} \text{ kg m}^2$.
- (c) [1,0] Determine o torque que esta força de atrito realiza sobre o disco maior, com relação ao eixo deste.



4. Três esferas uniformes de massa m e raio R_E m estão ligadas simetricamente à distância D entre si, por fios finos esticados e de massa desprezível (vide figura). O sistema encontra-se em rotação com velocidade angular ω_0 rad/s em torno de um eixo imaginário, perpendicular à direção dos fios, e que passa pelo centro de massa do sistema. Em um dado instante (representado na figura), corta-se um dos fios (o da direita) com uma lâmina afiada. Considere o sistema livre de forças externas.

Dados: m=0,5kg; $R_E=0,1\sqrt{\frac{5}{6}}\mathrm{m};\,D=1$ m; $\omega_0=2~\mathrm{rad/s}$.

Momento de inércia de uma esfera homogênea com relação a um eixo que passe pelo seu centro de massa: $I_{CME} = \frac{2}{5}m_ER_E^2$; Teorema dos eixos paralelos: $I_z = I_{cm} + MD^2$.

(a) [1,0] Determine o momento de inércia do sistema em torno do eixo de rotação inicial.

A partir de agora, desprezando R_E^2 com relação a D^2 (limite de massas puntiformes):

- (b) [1,0] Determine o momento angular e a energia cinética do sistema.
- (c) [0,5] Determine a velocidade do centro de massa dos discos da esquerda (que continuam ligados após o corte do fio da direita).
- (d) [1,0] Determine o momento de inércia e a velocidade angular destes dois discos que continuam ligados, em torno de seu centro de massa.

