Introdução aos Problemas de Roteirização e Programação de Veículos

PNV-2450

André Bergsten Mendes

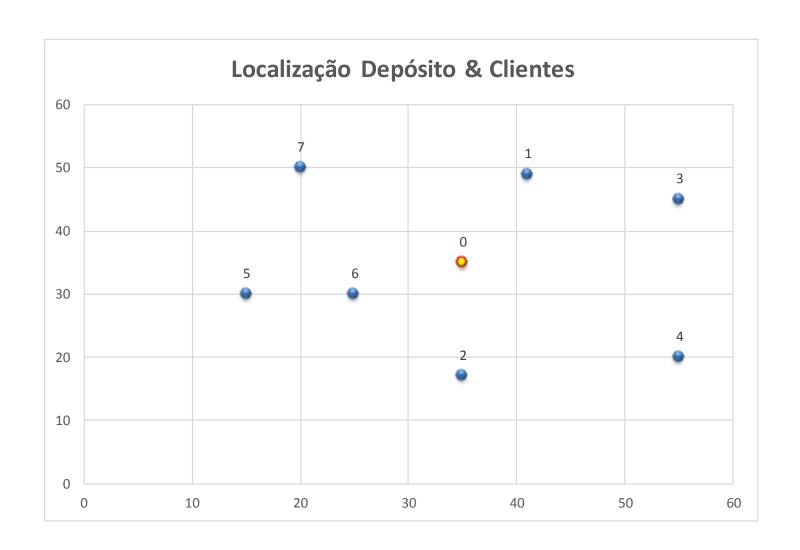
HEURÍSTICA DE INSERÇÃO DE SOLOMON (VRPTW)

Para o problema de roteirização com janela de tempo indicado na tabela, gere uma solução por meio da Heurística de Inserção de Solomon. Adote os valores que julgar conveniente para α1, α2, μ e λ.

Exercício

- 7 clientes (os clientes 0 e 8 referem-se à base)
- A operação de distribuição inicia-se às 7hs, com os veículos já carregados, e é encerrada às 18hs
- Há, no máximo, 3 veículos homogêneos, com capacidade igual a 50 unidades de carga, cada
- As colunas "a" e "b" referem-se aos limites inferior e superior da janela de tempo para chegada aos clientes
- A coluna "Serviço" indica o tempo de atendimento do veículo junto a cada cliente

Exercício

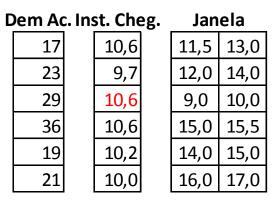

Cliente	Demanda (unidades)	a (h)	b (h)	Serviço (h)
0	0	7	18	0
1	10	8	8,5	1
2	7	11,5	13	1
3	13	12	14	1
4	19	9	10	1
5	26	15	15,5	1
6	9	14	15	1
7	11	16	17	1
8	0	7	18	0

Matriz de Distância (km)

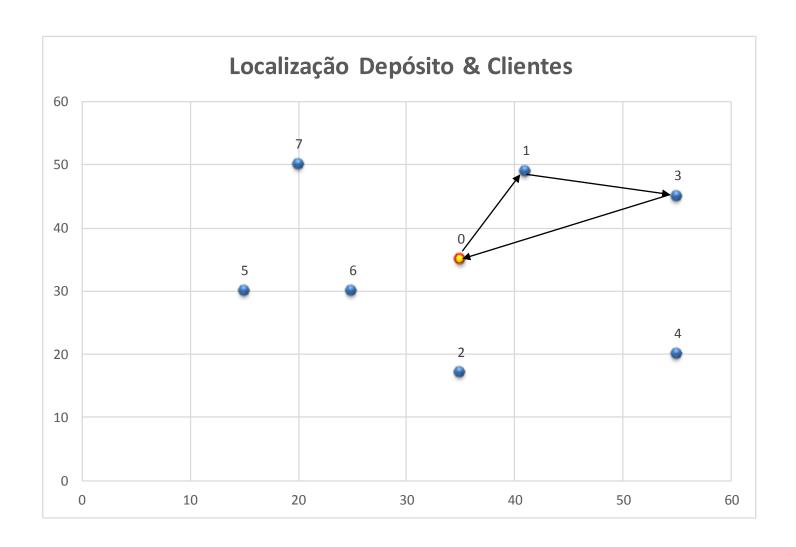
	0	1	2	3	4	5	6	7	8
0	0	15,2	18	22,3	25	20,6	11,1	21,2	0
1	15,2	0	32,5	14,5	32,2	32,2	24,8	21	15,2
2	18	32,5	0	34,4	20,2	23,8	16,4	36,2	18
3	22,3	14,5	34,4	0	25	42,7	33,5	35,3	22,3
4	25	32,2	20,2	25	0	41,2	31,6	46	25
5	20,6	32,2	23,8	42,7	41,2	0	10	20,6	20,6
6	11,1	24,8	16,4	33,5	31,6	10	0	20,6	11,1
7	21,2	21	36,2	35,3	46	20,6	20,6	0	21,2
8	0	15,2	18	22,3	25	20,6	11,1	21,2	0

Tempo de Deslocamento (h)

	0	1	2	3	4	5	6	7	8
0	0	0,7	0,9	1,1	1,2	1	0,5	1	0
1	0,7	0	1,6	0,7	1,6	1,6	1,2	1	0,7
2	0,9	1,6	0	1,7	1	1,1	0,8	1,8	0,9
3	1,1	0,7	1,7	0	1,2	2,1	1,6	1,7	1,1
4	1,2	1,6	1	1,2	0	2	1,5	2,3	1,2
5	1	1,6	1,1	2,1	2	0	0,5	1	1
6	0,5	1,2	0,8	1,6	1,5	0,5	0	1	0,5
7	1	1	1,8	1,7	2,3	1	1	0	1
8	0	0,7	0,9	1,1	1,2	1	0,5	1	0

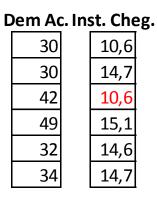


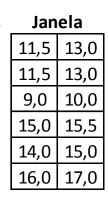
 Inicialização da primeira rota: cliente 1, pois possui janela de tempo mais apertada

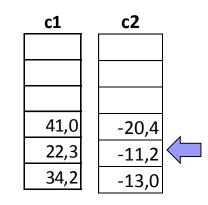

Cliente	Demanda (unidades)	a (h)	b (h)	Serviço (h)
0	0	7	18	0
1	10	8	8,5	1
2	7	11,5	13	1
3	13	12	14	1
4	19	9	10	1
5	26	15	15,5	1
6	9	14	15	1
7	11	16	17	1
8	0	7	18	0

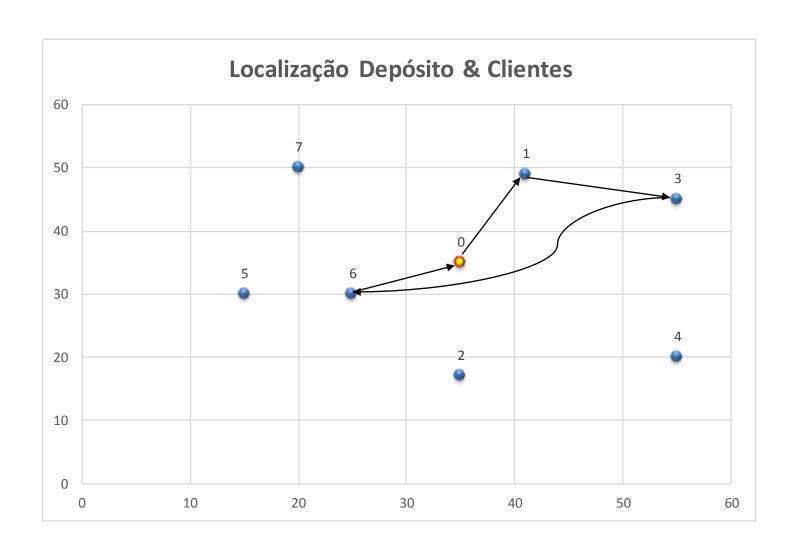
Possíveis inserções:

0	1	2	8
0	1	3	8
0	1	4	8
0	1	5	8
0	1	6	8
0	1	7	8




c1	c2	
35,3	-17,3	
21,6	0,7	
		•
37,6	-17,0	
20,7	-9,6	
27,0	-5,8	

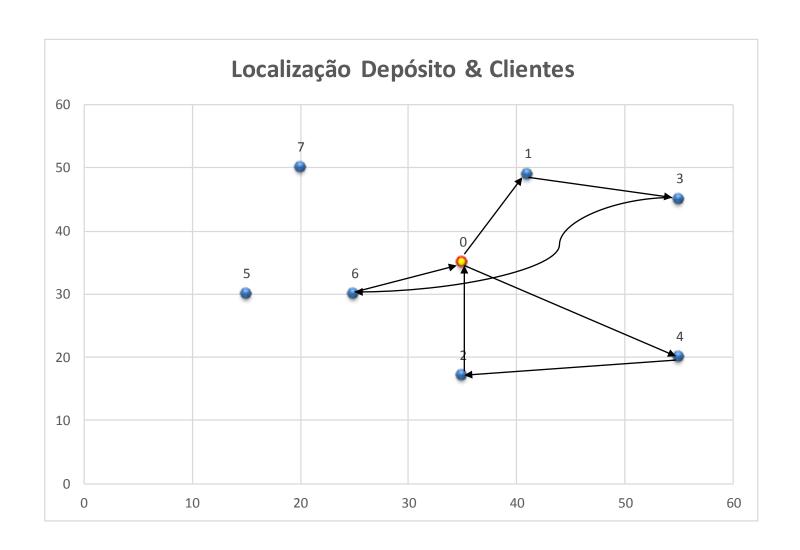



Possíveis inserções:

0	1	2	3	8
0	1	3	2	8
0	1	4	3	8
0	1	3	5	8
0	1	3	6	8
0	1	3	7	8

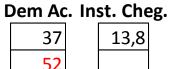
 Inicialização da segunda rota: cliente 4, pois possui janela de tempo mais apertada

Cliente	Demanda (unid)	а	b	Serviço (h)
0	0	7,0	18,0	0
1	10	8,0	8,5	1
2	7	11,5	13,0	1
3	13	12,0	14,0	1
4	19	9,0	10,0	1
5	26	15,0	15,5	1
6	9	14,0	15,0	1
7	11	16,0	17,0	1
8	0	7,0	18,0	0

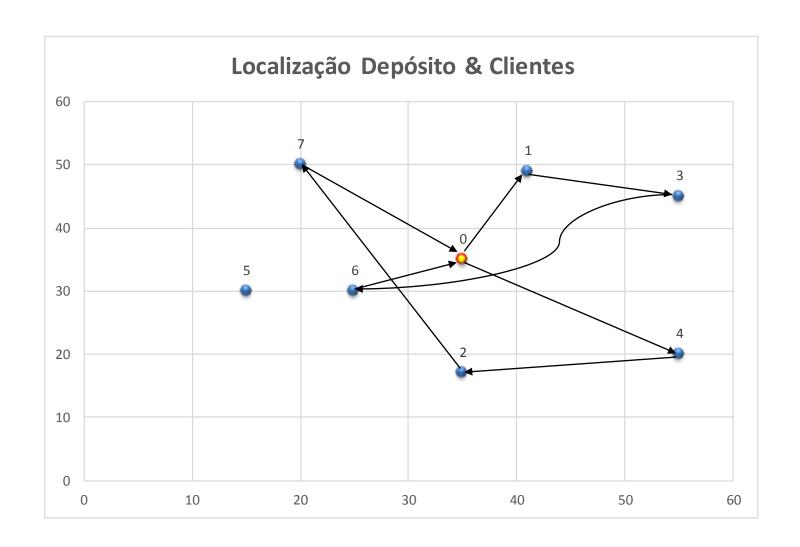

■ Possíveis inserções:

0	4	2	8
0	4	5	8
0	4	7	8

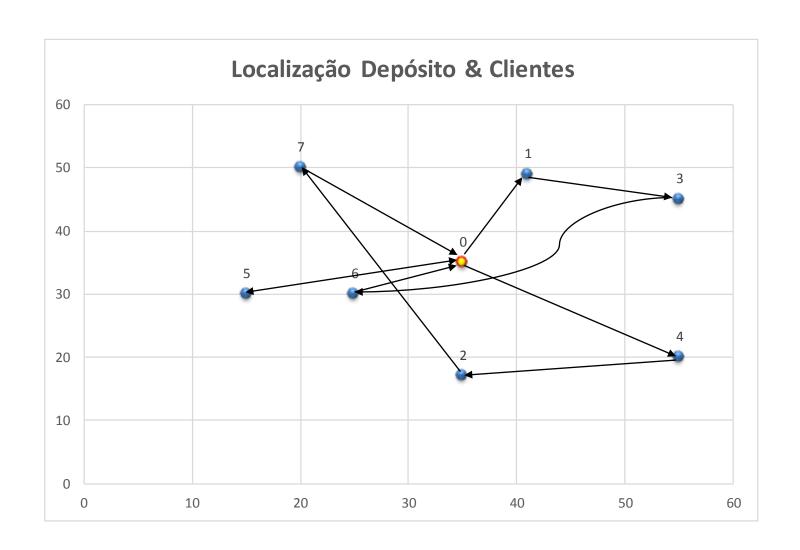
Jem Ac	. In <u>st</u>
26	
45	
30	


Janela			
11,5	13,0		
15,0	15,5		
16,0	17,0		


<u>c1</u>	c2
13,2	4,8
36,8	-16,2
42,2	-21,0


■ Possíveis inserções:

0	4	2	7	8
0	4	2	5	8



c1	c2	
54,4	-33,2	

Inicialização da terceira rota: cliente 5, o único que sobrou

Cliente	Demanda (unid)	а	b	Serviço (h)
0	0	7,0	18,0	0
1	10	8,0	8,5	1
2	7	11,5	13,0	1
3	13	12,0	14,0	1
4	19	9,0	10,0	1
5	26	15,0	15,5	1
6	9	14,0	15,0	1
7	11	16,0	17,0	1
8	0	7,0	18,0	0

Solução Ótima

Veículo Rota


1	0	4	2	8	
2	0	1	3	7	8
3	0	6	5	8	

Veículo Instantes

1	7	9	11,5	
2	7	8	12	16
3	7	14	15,5	

Distância total = 191,1

Heurística de Inserção de Solomon (Solução ótima)

GRASP

Feo, T.A., & Resende, M.G.C. (1995). Greedy randomized adaptive search procedures. *Journal of Global Optimization 6*, 109–133.

GRASP

Greedy Randomized Adaptive Search Procedure

```
procedure ConstructSemiGreedySolution(\alpha)
   Initialize solution: S \leftarrow \emptyset;
   Initialize candidate set:
      C \leftarrow \{s \in E \setminus S \mid S \cup \{s\} \text{ is not infeasible}\};
   while C \neq \emptyset do
      g_{\min} \leftarrow \min\{g(s) \mid s \in C\}
      g_{\text{max}} \leftarrow \max\{g(s) \mid s \in C\}
      RCL \leftarrow \{s \in C \mid g(s) \le g_{min} + \alpha (g_{max} - g_{min})\}
      Select s \in RCL:
      Add s to solution: S \leftarrow S \cup \{s\};
      Update candidate set:
          C \leftarrow \{s \in E \setminus S \mid S \cup \{s\} \text{ is not infeasible}\};
   end
   return S:
                                                                    Fonte: Marti et al. (2013)
                    g(s) – contribution to the cost of the solution
                    under construction; RCL – Restricted candidate list
```

GRASP

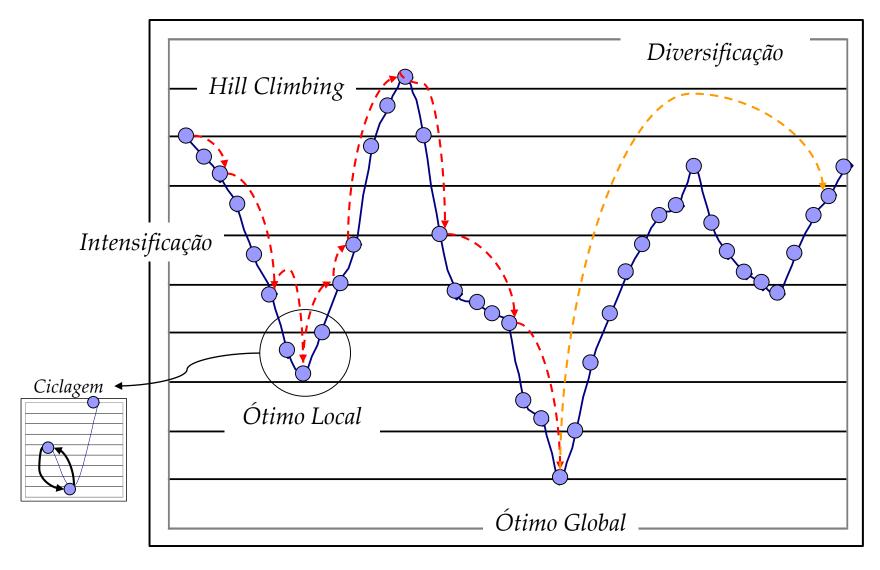
Greedy Randomized Adaptive Search Procedure

```
procedure GRASP(\alpha)
  f \leftarrow \infty;
  while stopping criterion not satisfied do
     Construct feasible randomized semi greedy solution:
        S \leftarrow ConstructSemiGreedySolution(\alpha);
     Find a locally optimal solution:
        S \leftarrow \text{LocalSearch}(S);
     if f(S) < f^* then
       S^* \leftarrow S;
       f^* \leftarrow f(S);
     end
  end
  return S^*:
```

Fonte: Marti et al. (2013)

VNS

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. *Computers and Operations Research, 24*(11), 1097–1100.


VNS

Variable Neighborhood Search

```
Algorithm: Basic VNS
Input: The set of neighborhood structures N_k, for k=1,\ldots,k_{\max}
01 Initialization: Find an initial solution x;
02 repeat
03 k\leftarrow 1:
04 while k \le k_{\text{max}} do
05 x' \leftarrow a random neighbor in N_k(x) // Shaking
06 x'' \leftarrow \text{Local Search}(x')
                               // Local Search
of if f(x') < f(x) then
                                            // Move or Not
08 x \leftarrow x''; k \leftarrow 1;
09 else
10
         k \leftarrow k+1:
                                            // Neighborhood Change
11 until termination condition is met
12 return x;
```

BUSCA TABU

- Proposto por Glover e Laguna
- Heurística iterativa genérica para resolução de problemas de otimização combinatória
- Extensão da Busca Local
- Princípio básico: uma memória força a exploração de novas áreas do espaço de busca. As soluções que foram examinadas recentemente se tornam tabus (proibidas) de serem escolhidas para as próximas soluções


```
X_{cur} \leftarrow \text{solução corrente} (= \text{solução inicial}); X_{opt} \leftarrow \text{melhor solução} (= \text{solução inicial})
diversificação = falso
enquanto critério de parada não for atingido
  se diversificação = verdadeiro então
       utilizar memória de longo prazo
  senão
       x' \leftarrow melhor solução não-tabu na vizinhança de x_{cur}
       x'' \leftarrow melhor solução tabu na vizinhança de x_{cur}
  fim se
  se f(X') < f(X) e f(X') < f(X_{opt}) então
       aplicar critério de aspiração: x_{cur} \leftarrow x''; x_{opt} \leftarrow x''
  senão
       se f(x') < f(x_{opt}) então x_{opt} \leftarrow x'
       X_{cur} \leftarrow X'
  fim se
  atualizar lista tabu(memória de curto prazo), memória de longo prazo, ativação diversificação
fim_enquanto
```

- Componentes
 - 1. Operador para geração de vizinhança
 - 2. Vizinhança
 - 3. Memória de curto prazo
 - 4. Memória de longo prazo
 - 5. Critério de aspiração
 - 6. Critério de parada

- Operador para geração de vizinhança A ideia central dos métodos de busca é partir de uma solução viável e realizar sobre a mesma uma modificação que resulte em outra solução viável, denominada de movimento.
- Exemplos: remoção & inserção, swap, etc.

Vizinhança - Dado uma solução inicial e um tipo de operador para geração de vizinhança, existem soluções que podem ser atingidas a partir da solução inicial aplicando sobre esta o operador escolhido. Todas estas soluções formam a vizinhança da solução inicial.

- Memória de Curto Prazo Lista de movimentos proibidos (tabus).
- Memória de Longo Prazo Lista de movimentos mais frequentes; ao utilizar o critério de diversificação, movimentos pouco realizados terão maiores chances de ocorrer.

- Critério de Aspiração Uma solução contendo um movimento tabu torna-se corrente apenas se o movimento gerar uma solução melhor que a solução de referência (a melhor solução já obtida).
- Critério de Parada Número de iterações; número de iterações sem melhoria; número de diversificações; tempo de processamento.

Matriz de Distâncias

	0	1	2	3	4	5
0	0	3	5	6	7	4
1	5	0	5	7	9	5
2	8	4	0	7	2	6
3	5	6	5	0	5	7
4	3	8	11	6	0	3
5	8	4	3	7	4	0

1a. Iteração

Distância

Sol Inicial

0	1	2	3	4	5	0	31
0	2	1	3	4	5	0	32
0	1	3	2	4	5	0	28
0	1	2	4	3	5	0	31
0	1	2	3	5	4	0	29

Melhora FO

2a. Iteração

Lista Tabu {(2,3)}

Distância

Sol Corrente = Sol Ótima

Solução Tabu

0	1	3	2	4	5	0	28
0	3	1	2	4	5	0	30
0	1	2	3	4	5	0	31
0	1	3	4	2	5	0	40
0	1	3	2	5	4	0	28

Melhor Solução Não Tabu

	T	~
3a.	Itera	icao
041	ICCIO	- Ça-O

	Lista	Tabu	{(2,3),	$(4,5)$ }			Dis	tância
Solução Ótima	0	1	3	2	4	5	0	28
Solução Corrente	0	1	3	2	5	4	0	28
	0	3	1	2	5	4	0	30
Solução Tabu	0	1	2	3	5	4	0	29
	0	1	3	5	2	4	0	25
Solução Tabu	0	1	3	2	4	5	0	28

Melhora FO

4a. Iteração

Lista Tabu {(2,3), (4,5), (2,5)}

Distância

Solução Ótima Solução Corrente

!	0	1	3	5	2	4	0	25
?	0	1	3	5	2	4	0	25
	0	3	1	5	2	4	0	25
	0	1	5	3	2	4	0	25
	0	1	3	2	5	4	0	28
	0	1	3	5	4	2	0	40

Solução Tabu

Melhor Solução Não Tabu