FCM0501 — Física I

$11^{\text {a }}$ Lista de exercícios

Conservação da Quantidade de Movimento

Problemas do Capítulo 8 Tipler/Mosca 4^{a} edição:
5. Localizar a coordenada $x_{C M}$ do centro de massa dos três corpos que aparecem na Fig. 8-46 do livro texto, reproduzida a seguir.

9. A massa da folha de compensado esquematizada na Fig. 8-49, reproduzida abaixo, é de 20 kg . Localizar o seu centro de massa.

*11. Um taco de beisebol tem o comprimento L e a densidade linear de massa dada por $\lambda=\lambda_{0}\left(1+x^{2} / L^{2}\right)$. Localizar a coordenada x do centro de massa em termos de L.
18. Dois corpos, cada qual com 3 kg de massa, têm as velocidades $v_{1}=(2 \mathrm{~m} / \mathrm{s}) \hat{\imath}+$ $(3 \mathrm{~m} / \mathrm{s}) \hat{\jmath}$ e $\vec{v}_{2}=(4 \mathrm{~m} / \mathrm{s}) \hat{\imath}-(6 \mathrm{~m} / \mathrm{s}) \hat{\jmath}$, respectivamente. Determine a velocidade do centro de massa dos sistema. $R .: 3 \mathrm{~m} / \mathrm{s} \hat{\imath}-1.5 \mathrm{~m} / \mathrm{s} \hat{\jmath}$.
21. Um corpo de massa m está preso a uma mola e pendurado no interior de uma caixa oca de massa M. A caixa está sobre a plataforma de uma balança que responde ao peso do sistema.
a) Se a mola arrebenta, a leitura da balança se altera? Explique a resposta.
b) Admita que a mola arrebente e que a massa m caia com aceleração constante g. Determine a aceleração do centro de massa, em direção e módulo.
c) Com o resultado conseguido em (b), determine a leitura da balança durante a queda livre de m.
25. Certo ou errado
a) O momento de um corpo pesado é maior do que o de um corpo leve quando ambos têm a mesma velocidade.
b) O momento de um sistema pode ser conservado mesmo quano a energia mecânica não for conservada.
c) A velocidade do centro de massa de um sistema é igual ao momento total do sistema dividido pela massa do sistema.
32. Duas massas de 5 kg e de 10 kg estão presas a uma mola helicoidal comprimida e em repouso sobre a mesa horizontal sem atrito. Depois de a mola se distender, a massa menor adquire velocidade de $8 \mathrm{~m} / \mathrm{s}$ para a esquerda. Qual a velocidade da massa maior? A massa da mola é desprezível. R.: $4 \mathrm{~m} / \mathrm{s}$.
34. Uma bomba de massa m e velocidade v explode no ar e se divide em dois fragmentos iguais. No instante da explosão a velocidade da bomba era horizontal em relação à Terra, e logo depois da explosão um dos fragmentos tinha velocidade de módulo v, dirigida na vertical. Determinar a velocidade v^{\prime} do outro fragmento. $R .: 2 v \hat{\imath}-v \hat{\jmath}$
36. Um bloco de madeira e uma pequena arma estão firmemente presos nas expremidades opostas de uma plataforma (massa desprezível) que pode deslizar sem atrito sobre uma mesa de ar (Fig. 8-53, reproduzida a seguir). A massa da arma é m_{a}, a do bloco, m_{b}, e a do projétil disparado, m_{p}. A arma está apontada para o bloco e o projétil, ao ser disparado, tem a velocidade v_{p} em relação a um observador em repouso na mesa. Vamos admitir que o desvio do projétil em relação à horizontal seja desprezível e que sua penetração do alvo seja pequena.

a) Qual a velocidade da plataforma deslizante imediatamente depois de a arma ser disparada? $R .: m_{p} v_{p} /\left(m_{a}+m_{b}\right)$, em módulo.
b) Qual a velocidade da plataforma imediatamenete depois de o projétil ficar em repouso no alvo? R.: 0 .
c) Qual o deslocamento do bloco de madeira, em relação à sua posição inicial, no instante em que o projétil o atinge? $R .: m_{p} L /\left(m_{a}+m_{b}+m_{p}\right)$.
37. Um pequeno corpo de massa m escorrega pela face inclinada de um prisma triangular, de massa $2 m$, sem atrito, e escorrega depois por uma superfície horizontal sem atrito. O corpo está, inicialmente, em repouso, à altura h em relação à superfície horizontal. Determinar a velocidade do prisma no instante em que o corpo perde contato com ele.
40. Um corpo de 3 kg move-se para a direita a $5 \mathrm{~m} / \mathrm{s}$, e um outro, de 3 kg , move-se para a esquerda a $2 \mathrm{~m} / \mathrm{s}$.
a) Calcular a energia cinética total do sistema dos dois corpos no referencial mencionado. $R .: 43.5 \mathrm{~J}$.
b) Calcular a velocidade do centro de massa do sistema de dois corpos. R.: $1.5 \mathrm{kgm} / \mathrm{s}$.
c) Calcular as velocidades dos dois blocos em relação ao centro de massa. R.: $3.5 \mathrm{~m} / \mathrm{s}$, ambos.
d) Calcular a energia cinética do movimento dos dois corpos em relação ao centro de massa. R.: 36.75 J .
e) Mostra que a resposta da parte (a) é maior do que a resposta da parte (d) e que a diferença entre elas é a energia cinética do centro de massa. R.: 6.75 J .
102. Quando um pêndulo oscila alternadamente num e noutro sentido, o seu momento se conserva? Por quê? R.: Não.
*111. Uma mulher de 60 kg está de pé na popa de um flutuador de 120 kg e 6 m de comprimento que flutua em repouso na água tranquila. O flutuador está a 0.5 m de distância de um desembarcadouro (Fig. 8-58, reproduzida a seguir).

a) A mulher caminha até a proa do flutuador e para. A que distância do desembarcadouro está agora o flutuador?
b) A velocidade da mulher, na sua caminhada, é constante e igual a $3 \mathrm{~m} / \mathrm{s} \mathrm{em}$ relação ao flutuador. Calcular a energia cinética do sistema (mulher mais flutuador) e comparar essa energia com a energia cinética do mesmo sistema, com a mulher andando a $3 \mathrm{~m} / \mathrm{s}$ sobre o flutuador, porém com este firmemente amarrado ao desembarcadouro.
c) De onde provém a energia da mulher em movimento, e como se dissipa esta energia quando a mulher fica parada na proa do flutuador?
d) Em terra firme, a mulher é capaz de arremessar um peso a 6 m . Na popa do flutuador, a mulher aremessa esse peso com a mesma velocidade em relação a si mesma que no arremesso em terra firme. Onde cai o peso?

