
Chapter 6

Viscosity

6.1 Introduction

Viscosity of a polymer solution depends on concentration and size (i.e., molecular weight) of the

dissolved polymer. By measuring the solution viscosity we should be able to get an idea about

molecular weight. Viscosity techniques are very popular because they are experimentally simple.

They are, however less accurate and the determined molecular weight, the viscosity average molec-

ular weight, is less precise. For example, Mv depends on a parameter which depends on the solvent

used to measure the viscosity. Therefore the measured molecular weight depends on the solvent

used. Despite these drawbacks, viscosity techniques are very valuable. This chapter discusses the

theory and methods for determining polymer molecular weight by measuring solution viscosity

6.2 Viscosity and Viscosity Nomenclature

Figure 6.1 shows a piece of a liquid moving at a strain rate γ̇ under an applied shear stress of τ .

The viscosity of the liquid is the ratio of the applied shear stress to the resulting strain rate (or

equivalently, the ratio of the shear stress required to move the solution at a fixed strain rate to that

strain rate). The shear strain in Fig. 6.1 is

γ =
du

dy
(6.1)

where u is displacement in the x direction. The strain rate is therefore

γ̇ =
d

dt

du

dy
=

d

dy

du

dt
=

dvx

dy
(6.2)

where vx is velocity in the x direction. The relations between viscosity (η), shear stress (τ), and

shear rate (γ̇) are

τ = ηγ̇ or γ̇ =
τ

η
or η =

τ

γ̇
(6.3)
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Figure 6.1: A piece of a liquid moving at shear rate γ̇ under an applied shear stress of τ .

A Newtonian fluid is one in which the viscosity is independent of the shear rate. In other words

a plot of shear stress versus shear strain rate is linear with slope η. In Newtonian fluids all the

energy goes into sliding molecules by each other. In non-Newtonian fluids, the shear stress/strain

rate relation is not linear. Typically the viscosity drops at high shear rates — a phenomenon known

as shear thinning. Although the following development will not discuss shear rate effects in detail,

the possibility of experimental results being affected by the shear rate of the measurement should

be kept in mind. Plots of shear force vs. shear rate for Newtonian and non-Newtonian fluids are

given in Fig. 6.2.

We let η0 be the viscosity of the pure solvent and η be the viscosity of a solution using that

solvent. Several methods exist for characterizing the solution viscosity, or more specifically, the

capacity of the solute to increase the viscosity of the solution. That capacity is quantified by using

one of several different measures of solution viscosity. The most common solution viscosity terms

are:

1. Relative viscosity

ηr =
η

η0
(6.4)

2. Specific viscosity

ηsp =
η − η0

η0
= ηr − 1 (6.5)

3. Inherent Viscosity

ηi =
ln ηr

c
(6.6)

4. Intrinsic Viscosity

[η] = lim
c→0

ηsp

c
(6.7)
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Figure 6.2: Schematic plots of shear force vs. shear rate for Newtonian and non-Newtonian fluids.

In these equations, η is solution viscosity, η0 is viscosity of the pure solvent, and c is concentration.

Relative viscosity is self-explanatory. Specific viscosity expresses the incremental viscosity due

to the presence of the polymer in the solution. Normalizing ηsp to concentration gives ηsp/c which

expresses the capacity of a polymer to cause the solution viscosity to increase; i.e., the incremental

viscosity per unit concentration of polymer. As with other polymer solution properties, the solutions

used for viscosity measurements will be nonideal and therefore ηsp/c will depend on c. As with

osmotic pressure, it will probably be useful to extrapolate to zero concentration. The extrapolated

value of ηsp/c at zero concentration is known as the intrinsic viscosity — [η]. [η] will be shown to

be a unique function of molecular weight (for a given polymer-solvent pair) and measurements of

[η] can be used to measure molecular weight.

The remaining form for the viscosity is the inherent viscosity. Like ηsp, ln ηr is zero for pure

solvent and increases with increasing concentration, thus ln ηr also expresses the incremental vis-

cosity due to the presence of the polymer in the solution. Normalizing ln ηr to concentration or

ln ηr/c gives the inherent viscosity In the limit of zero concentration, ηi extrapolates the same as

ηsp/c and becomes equal to the intrinsic viscosity. This can be proved by:

lim
c→0

ln ηr

c
= lim

c→0

ln (1 + ηsp)
c

= lim
c→0

ηsp

c
= [η] (6.8)

We can thus find [η] be extrapolating either ηsp/c or ηi to zero concentration. When c is not equal

to zero the specific viscosity and inherent viscosities will be different, even for an ideal solution. In

ideal solutions ηsp/c will be independent of concentration, but ni will depend on concentration.
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6.3 Viscosity Theory

Einstein derived the specific viscosity for a dilute solution of hard spheres. His result is

ηsp = 2.5
NBVη

V
(6.9)

where NB is the number of particles (hard spheres), Vη is the hydrodynamic volume of each sphere,

and V is the total volume. For a first approximation to polymer solutions, we will use Einstein’s

theory and assume each polymer to be a hard sphere with Vη equal to some effective hydrodynamic

volume. Letting moles of polymer be nB = NB/L, we get

ηsp = 2.5
nBVηL

V
(6.10)

We begin with a monodisperse polymer solution with concentration c = nBM/V where M is

molecular weight. We can rewrite ηsp as

ηsp = 2.5
nBM

V

VηL

M
= 2.5c

VηL

M
(6.11)

or
ηsp

c
= 2.5L

Vη

M
(6.12)

This result is for an ideal solution. We see that ηsp/c in an ideal solution is independent of

concentration. Extrapolating to zero concentration, which is trivial because ηsp/c is independent

of c, the intrinsic viscosity of an ideal solution is

[η] = lim
c→0

ηsp

c
= 2.5L

Vη

M
(6.13)

For a hard sphere we could take Vη to be the volume of that sphere or equal to 4πr3/3. Because a

polymer is not a hard sphere, we do not have so simple a result. We can, however, probably assume

that Vη is be proportional to root-mean-squared radius cubed —
(√

〈r2〉
)3

. Writing Q for the as

yet unknown proportionality constant we have Vη = Q
(√

〈r2〉
)3

. Lumping the proportionality

constant along with other constants in the above equation results in:

[η] = Φ
〈r2〉

3
2

M
= Φ

(
〈r2〉
M

) 3
2

M
1
2 = Φ

(
〈r2〉0
M

) 3
2

M
1
2 α3 (6.14)

where Φ = 2.5LQ. In the last step of the above equation we rewrote the root-mean-squared

end-to-end distance using the expansion factor α and the unperturbed end-to-end distance:

〈r2〉 = α2〈r2〉0 (6.15)

In a theta solvent the expansion factor is 1 (α = 1) and the above equation tells us that [η] is

proportional to the square root of molecule weight and the 3/2 power of 〈r2〉0/M

[η] = Φ
(
〈r2〉0
M

) 3
2

M
1
2 (6.16)
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But, both 〈r2〉0 and M are proportional to the number of bonds or n. Thus 〈r2〉0/M is a constant

for a particular polymer that is independent of molecular weight. We get in the simplest form

[η] = KM
1
2 (6.17)

where K is a constant.

The polymer size is determined by the ratio of the mean-squared unperturbed end-to-end

distance and its molecular weight. In terms of K and Φ, the result is

(
〈r2〉0
M

)
=
(

K

Φ

) 2
3

(6.18)

Recall that characteristic ratio is defined as the ratio of the mean-squared end-to-end distance,

〈r2〉0, to the freely-jointed chain mean-squared length, nl2. The characteristic ratio can thus be

written as

Cn =
〈r2〉0
nl2

or Cn =
〈r2〉0
M

Mb

l2
(6.19)

where Mb is the molecular weight per bond or M/n. Inserting this result into the previous result

gives Cn in terms of K and Φ.

Cn =
(

K

Φ

) 2
3 Mb

l2
(6.20)

The viscosity constant Φ can be evaluated from theory. For polymers it is typically assumed to be

2.5-2.66×1021 (when r is in cm and [η] is in dl/g). Therefore a measurement of [η] for a polymer of

known molecular weight in a theta solvent will give K, which in turn can be used to give a direct

measurement of the characteristic ratio. These types of experiments were used to check early work

on the conformations of polymers and calculations of end-to-end distances.

For polymers in non-theta solvents, α will no longer be one and we lose the square-root depen-

dence of [η] on molecular weight. We instead have

[η] = KM
1
2 α3 (6.21)

where α may have molecular weight dependence of its own. It is usually acceptable to treat non-

theta solvent results by lumping the molecular weight dependence of α into one molecular weight

term to get

[η] = KMa (6.22)

where a is some constant that depends on the polymer-solvent pair and on temperature. Values of

a are typically between 0.5 and 0.8. Close to 0.5 represents near theta solvent conditions. Farther

away from 0.5 represents large deviations from a theta solvent.
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6.4 Viscosity Experiments

It is usually not convenient to work in theta solvents. We thus next discuss how to use viscosity

experiments in non-theta solvents to measure molecular weight. The key experimental property

is intrinsic viscosity — [η]. You measure [η] by measuring ηsp at several different concentrations

and extrapolating to zero concentration (we will discuss the extrapolation further below). Once

[η] is known, it is related to molecular weight through two unknown constants — K and a. These

constants must have been previously determined by a calibration experiment. For a particular

polymer-solvent pair, K and a can be measured by measuring [η] on a several batches of that poly-

mer with different, and known, molecular weights. The molecular weights might be known by some

other experimental technique such as osmotic pressure experiments. Plotting log [η] vs. log M will

easily give K and a for that polymer-solvent pair. Many K’s and a’s for common polymer-solvent

pairs can be found in handbooks of polymer science. Once K and a are known, a measurement

of [η] on a polymer of unknown molecular weight can be used to measure the molecular weight.

We note that this viscosity technique for measuring molecular weight is not an absolute technique

as was osmotic pressure. It requires calibration experiments using samples with known molecular.

To avoid errors resulting from the type of average molecular weights determined by osmotic pres-

sure or viscosity experiments, accurate calibration experiments should be done with monodisperse

polymers.

6.4.1 Polydisperse Polymers

We next consider experiments on polydisperse polymers. How do we use viscosity experiments to

measure an average molecular weight? What sort of average molecular weight do we measure?

We cannot be as rigorous as we were for osmotic pressure on polydisperse polymers. We can,

however, make some reasonable assumptions and get a reasonable result. We make the following

three assumptions

1. ηsp =
∑

i

(ηsp)i (6.23)

2. (ηsp)i = [η]ici (6.24)

3. [η]i = KMa
i (6.25)

The first assumption says that the total specific viscosity is the sum of the specific viscosities for

each components (i.e., each molecular weight of the polymer). The second assumption says that

the specific weight of each component can be calculated from the intrinsic viscosity due to that

component. The third assumption says that the relation between intrinsic viscosity and molecular

weight is independent of molecular weight; i.e., K and a are independent of molecular weight.



6.4. VISCOSITY EXPERIMENTS 83

Using the above three assumptions we derive

ηsp

c
=
∑

i KciM
a
i

c
=
∑

i K
NiMi

V Ma
i∑

i
NiMi

V

=
∑

i KNiM
1+a
i∑

i NiMi
(6.26)

Assumption two implies we are considering the limit of zero concentration. Thus we remove the

constant K from the summation terms and state the zero-concentration limit to get

lim
c→0

ηsp

c
= KMv

a (6.27)

where

Mv =
(∑

i NiM
1+a
i∑

i NiMi

) 1
a

(6.28)

Mv is known as the viscosity average molecular weight (for obvious reasons). When a = 1, Mv

is equal to the weight average molecule weight, MW ; otherwise Mv is between the weight average

molecule weight and the number average molecule weight, MN ≤ Mv ≤ MW . For typical a’s (0.5

to 0.8), Mv is closer to MW . This result is to be expected because viscosity properties are expected

to be a function of size and not just the number of polymers.

6.4.2 Experimental Procedures

We next discuss the experimental procedures and the equipment used to measure solution viscosity.

The experiments are simple and can all be down with a relatively simple and relatively inexpensive

piece of glassware called a viscometer (see Fig. 6.3). The experiment is to fill the viscometer such

that the level on the left side is at point C and the level on the right side is at point A (i.e.,

a certain volume of liquid depending on the volume of the viscometer). Because of the height

difference between C and A (h), there is a hydrostatic head or driving pressure to cause the liquid

to flow through the capillary or narrow diameter section of the viscometer. The experiment is to

measure the time it takes the liquid to flow from point A to B. In other words the time it takes

the volume of liquid between A and B to flow through the capillary.

Flow of a Newtonian fluid through a capillary is relatively easy to analyze. The result can

be found in many fluids books. If we ignore kinetic energy terms, the time is proportional to the

solution viscosity through the following relation:

η =
πr4

c∆P

8VfL
t = Aρt (6.29)

where rc is the radius of the capillary, Vf if the volume of liquid that flows (i.e., the volume between

points A and B), ∆P is pressure difference, and L is the length of the capillary. When flowing

due to gravity only in a tube of length h, ∆P = ρgh where ρ is the solution density. The physical

constants of the viscometer can be then lumped into a single constant denoted above as A. If A is
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Figure 6.3: Simple viscometer.

known for a particular viscometer, a measurement of flow time and solution density can be used to

determine solution viscosity.

A more accurate calculation of solution viscosity in terms of flow time would account for kinetic

energy of the moving liquid. The result with kinetic energy is

η = Aρ

(
t− B

At

)
(6.30)

where B is a constant. If the flow occurs rapidly (t is small), the liquid is moving fast and there

can be significant kinetic energy. In this case it is important to correct for kinetic energy. If the

flow is slow (t is large) the kinetic energy term, which is proportional to 1/t, gets small. Physically

the liquid is moving slowly and has little kinetic energy. In practice, it is simplest to use long flow

times and ignore the kinetic energy term.

For most accurate results, there are several important considerations. First, the viscometer

must be clean. Any contamination from previous solutions might add to the current solution and

change its viscosity. A clean tube also means a tube that is free from dust particles. Dust particles

can add to the solution as hard spheres with a large hydrodynamic volume. They can increase

the solution viscosity and affect the results, especially when working with very dilute solutions.

Third, it is best to choose a viscometer such that the flow time is greater than 100 seconds. When

t > 100 seconds, it is permissible to ignore the kinetic energy terms. It is then a simple matter to

calculate relative viscosity and specific viscosity by comparing the flow time of the solution, t, to

the flow time of the pure solvent, t0:

ηr =
t

t0
and ηsp =

t− t0
t0

(6.31)
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To adjust flow times, viscometers are available with different radius capillaries. The smaller the

capillary, the longer the flow time. You thus select a viscometer to give good flow times in the

expected viscosity range for your solutions.

To measure intrinsic viscosity requires extrapolation of ηsp/c to zero concentration. As with

osmotic pressure, we are faced with the problem of how to extrapolate. The simplest approach is

to do a simple linear extrapolation:
ηsp

c
= [η] + kc (6.32)

Experience shows that a linear extrapolation works well as long as ηr is restricted to less than 2.

Another consideration for viscosity experiments, therefore, is to keep the relative viscosity less than

2.

Experimental results with polymer solutions has revealed that the slope of the ηsp/c vs. c curve,

k, depends on molecular weight of the polymer. Huggins found that a plot of k versus [η]2 was

linear and passed through the origin. In other words

d
(ηsp

c

)
dc

= k′[η]2 (6.33)

Integrating this empirical result gives the Huggins’ equation:

ηsp

c
= [η] + k′[η]2c (6.34)

The new constant, k′, is a function of the polymer/solvent/temperature of the system, but is inde-

pendent of molecular weight. Therefore once k′ is known, a single relative viscosity measurement

at one concentration can be used to get the viscosity average molecular weight. The following steps

are used:

1. Measuring ηr leads to ηsp/c which using k′ gives [η]

2. With known K and a, the measured [η] gives Mv or the viscosity average molecular weight.

If k′ is not known, the typical viscosity experiment is to measure ηsp/c at several concentrations

and do a linear extrapolation to zero concentration to get [η]. With known K and a, the measured

[η] gives Mv.

An alternate technique is to extrapolate inherent viscosity or ln ηr/c to zero concentration to

get [η]. As we approach zero concentration, ηsp will get small. Using the approximation for small

x of ln(1 + x) ≈ x− x2/2 we can derive

ln ηr = ln (1 + ηsp) ≈ ηsp −
η2

sp

2
(6.35)

Then
ln ηr

c
≈ ηsp

c
−

η2
sp

2c2
c (6.36)
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Figure 6.4: Typical plots of ηsp/c and ln ηr/c as a function of concentration. The curves extrapolate to
the same [η] at zero concentration, but approach zero concentration with different slopes.

Using Huggins’ equation, this result gives:

ln ηr

c
≈ [η] + k′[η]2c− [η]2c

2
− k′[η]2c2 − k′2[η]4c3

4
(6.37)

Neglecting higher order terms of order c2 or higher gives

ln ηr

c
≈ [η] +

(
k′ − 1

2

)
[η]2c = [η] + k′′[η]2c (6.38)

Thus a plot of ln ηr/c vs. c should be linear with slope k′′[η]2 and intercept [η]. The new constant,

k′′, is related to k′ by k′′ = k′−1/2. We see that plots of both ηsp/c vs. c and ln ηr/c vs. c will both

be linear and both extrapolate to [η] at zero concentration. The slopes of the two plots, however,

will be different.

The terms ηsp/c, ln ηr/c, and [η] all have units of 1/concentration (e.g., a common convenient

unit is deciliters per gram — dl/g). Because [η]2c also has units of 1/c, k′ and k′′ are dimensionless.

For many polymers k′ ≈ 1/3 which makes k′′ ≈ −1/6. This difference in signs makes plots of

both types of data useful. The two types of plots converge on the same intrinsic viscosity but from

different directions — one has a positive slope and the other a negative one. Plotting of both types

of data will often give a good feeling for the accuracy of the extrapolated intrinsic viscosity. Typical

plots will resemble the curves in Fig. 6.4.

One final complication arises if [η] is large. A high intrinsic viscosity probably means that the

viscosity depends on the shear rate of the test. Likewise, the extrapolation to zero concentration

will also depend on shear rate. To remove shear rate effect it is sometimes necessary to get [η] at

several shear rates and do a second extrapolation of [η] to zero shear rate. The zero shear-rate
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intrinsic viscosity is the intrinsic viscosity that should be used in molecular weight calculations. If

[η] is not too high, the measured value of [η] at some non-zero shear rate can probably be assumed

to be a good estimate of the zero shear-rate viscosity.

6.5 Viscosity Summary

In summary, the work you need to do to get useful results from viscosity experiments depends on the

prior knowledge you might have about the constants relevant to your particular polymer/solvent

pair. We consider four situations:

1. Known K, a, k′ (or k′′): If all these constants are all known, then measurement of η0 and

η at one concentration will lead directly to Mv. Many of these constants are tabulated for

common polymers. Thus when you are working with common polymers it is relatively easy

to get a good estimate of molecular weight.

2. Known K and a, but unknown k′ (and k′′): Tables of K and a are common, but there is less

data about k′ (or k′′). When these constants are not known, you have to measure η0 and

measure η at several concentrations. These results can be used to linearly extrapolate ηsp/c

and ln ηr/c to zero concentration to get [η] which will lead to Mv. Although this situation

requires more work than using a known k′ (or k′′), it is less prone to errors; it is less prone to

uncertainties in the tabulated values of k′ (or k′′).

3. No constants known: If you are working with a new polymer or an unusual solvent, it is

likely that none of the constants (K, a, k′, or k′′) will be known. For such polymers you

can still measure [η] by extrapolating ηsp/c and ln ηr/c to zero concentration. Although you

cannot use [η] to determine molecular weight, you can compare values of [η] from the same

polymer/solvent pair to get relative molecular weights. The higher the value of [η], the higher

the molecular weight. Relative molecular weights are often enough. If they are not enough it

might be useful to do calibration experiments to find K and a. The calibration experiments

will require monodisperse polymers whose molecular weight has been absolutely determined

by some other method (e.g., osmotic pressure or light scattering). The use of monodisperse

polymers avoids problems of differences in MN , MW , and Mv.

4. Insoluble polymer: Solution viscosity techniques assume that you can dissolve the polymer

in some solvent. Obviously the techniques cannot be used with polymers that cannot be

dissolved in any solvent. For such polymers it is often possible to measure the zero shear-rate

viscosity of the polymer melt. The zero shear-rate melt viscosity increases as the molecular

weight increases. A crude, but standardized method of estimating melt viscosity is called the

melt index. The melt index test measures the mass of material that flows through a standard
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orifice in a fixed amount of time. The more material that flows, and hence the higher the

melt index, the lower the melt viscosity and thus the lower the molecular weight.

Problems

6–1. Two “monodisperse” polystyrenes are mixed in equal quantities by weight. One polymer has

molecular weight 39,000 and the other molecular weight of 292,000. What is the intrinsic vis-

cosity of the blend in benzene at 25◦C. The Mark-Houwink constants for polystyrene/benzene

at 25◦C are K = 9.18× 10−5 dl/g and a = 0.74.

6–2. With enough predetermined constants for a particular polymer-solvent pair, it is possible to

determine molecular weight of a polymer by doing only two viscosity measurements. What

two viscosity measurements are required? What constants for the particular polymer-solvent

pair are required and how are they used?

6–3. Solution viscosities for a particular polymer and solvent are plotted in the form (η−η0)/(cη0)

versus c, where η is the viscosity of the polymer solution at concentration c in g/cm3 and η0

is the viscosity of the pure solvent. The plot is a straight line with intercept of 1.50 cm3/g

and a slope of 0.9 cm6/g2. Give the magnitude and the units for the Huggin’s constant for

this polymer-solvent pair.




