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Abstract. Robotics has played an increasingly important role in several
sectors of the society. Nowadays, robots are not only used to support ac-
tivities in factories, but also to assist house cleaning, border surveillance,
and even surgeries. The variety of application domains and the rising
complexity are challenging the design of robotic systems that control
such robots. In this perspective, Service-Oriented Architecture (SOA)
has been adopted as a promising architectural style to design large, com-
plex robotic systems in a flexible and reusable manner. Several Service-
Oriented Robotic Systems (SORS) have been developed in the recent
years and a large number of services are available for reuse. Neverthe-
less, none of the environments dedicated to the development of SORS
provide an efficient mechanism for publishing and discovering services.
As a consequence, services for SORS have to be manually searched, re-
ducing significantly the potential of reuse and productivity provided by
SOA. This paper presents RoboSeT, a mechanism that supports cata-
loging and discovery of services for robotic systems. RoboSeT is based
on semantic search and classifies the services using a taxonomy of the
robotics domain. Results of our case study indicate that RoboSeT facili-
tates the development of robotic systems, since it presents the potential
to widely promote reusability of services for SORS.

1 Introduction

The rapidly growing advancements in robot technology are allowing its use in a
broad range of applications for the society. Robots are no longer exclusively used
to perform fast, repetitive tasks in controlled environments of factories. The ac-
tual generation of robots is being produced to operate along with humans and to
support daily activities inside hospitals [37], houses [22], and on the streets [13].
Robotic systems that are used to control such robots are becoming increasingly
large, complex, and integrated to other devices of the environment. As a con-
sequence, reusability, productivity, scalability, and flexibility are now intrinsic
concerns of the robotic systems development. To accommodate such character-
istics, the design of robotic systems has evolved from procedural paradigm to



object-orientation and, then, to component-orientation [6]. Recently, Service-
Oriented Architecture (SOA) [33] has become focus of attention as a promising
architectural style for developing robotic systems.

SOA is an architectural style traditionally used in commercial, business sys-
tems developed in the industry [1]. It has also been increasingly adopted to
develop systems for diverse domains of the academia, such as education [9] and
software testing [29]. SOA-based systems are developed by assembling indepen-
dent, self-contained, and well-defined modules of software called services [32].
Each service shares a set of functionalities that are language-independent and
provided through auto-descriptive standard interfaces. Service descriptions can
be published in third-party repositories that act as brokers and enable discovery
of services by consumers in transparent way. Therefore, SOA promotes the reuse
and improves productivity of software systems development [32].

In robotics, SOA has been adopted as a solution to produce more flexible,
reconfigurable, and scalable software for robotic systems. The use of SOA is
enabling developers to overcome traditional problems of robotics design, such
as the integration of heterogeneous hardware devices and reuse of complex al-
gorithms [2]. Several studies reporting on the development of Service-Oriented
Robotic Systems (SORS) can be found in the literature and a large number of
services are already available for reuse [30]. Most of these services were developed
on two well-known environments specially focused on SORS: Robot Operating
System (ROS) [36] and Microsoft Robotic Developed Studio (MRDS) [24]. These
environments provide functionalities that support creation, execution, and com-
position of services for different types of robotic systems.

Nevertheless, environments available for the development of SORS lack an
important element of SOA: they do not provide an efficient mechanism for pub-
lishing and discovering services. Currently, developers of SORS need to manually
search the services in repositories containing hundreds of different services. For
instance, users have to previously know the name of the services they are going
to use in the ROS Wiki3 repository. Besides that, users of such repository need
to follow daily updates in the site to be aware of any new content available.
These time-consuming tasks significantly reduce the potential of SOA in provid-
ing reuse and hence decrease productivity of SORS development. In this context,
a mechanism that enables to catalog and discover services can contribute to the
SORS development process, as well as to dissemination of resources useful for
the robotics community.

The main objective of this paper is to put forward RoboSeT (Robotics
Services Semantic Search Tool), a mechanism that supports cataloging and dis-
covery of services for SORS. Using RoboSeT, robotics services are classified
according to a common-sense taxonomy of services for SORS [31] and can be
searched using semantic information. These services can be transparently discov-
ered by other developers and integrated into different development environments.
In this work, we also present a plug-in that integrates ROS with the repository
of RoboSeT and enables discovery and deployment of services for SORS directly

3 http://www.ros.org/browse/list.php



into projects of such development environment. In order to obtain evidences on
the viability of RoboSeT, we designed a robotic system with robust navigation
capabilities by reusing ROS services cataloged and discovered in such mechanism.
Results indicate that RoboSeT facilitates the discovery of reusable robotics ser-
vices, which can contribute to a higher productivity during the development of
SORS.

The remainder of the paper is organized as follows. Section 2 presents a back-
ground on software reuse, robotic systems reuse, and SORS. Section 3 overviews
the taxonomy of services on which the repository is based. Section 4 describes
RoboSeT, its integration to the development environments, and the plug-in for
ROS. Section 5 addresses our case study on the design of a robust mobile robotic
system. Section 6 discusses the results, perspectives, and limitations of our work.
Section 7 presents the conclusion and future directions of this work.

2 Software Reuse: From Libraries to Services

Software reuse is a key principle of software development that aims at reducing
the effort to develop new software by promoting the systematic use of existing so-
lutions. Systematic reuse is recognized as one of the most important approaches
to improve productivity and quality [15]. First attempts to systematically in-
corporate reuse during software development focused on the use of existing sub-
routines provided as libraries. With the emergence of object-oriented languages,
reuse techniques started to adopt classes of objects as main elements of reuse.
Object-oriented systems are collections of objects, which encapsulate state, be-
haviour, and communicate through messages. The whole behaviour of an object-
oriented system is determined by the structure of interaction and communication
among its objects.

As software systems become larger in both size and complexity, simple reuse
of classes and objects evolved to a higher level of abstraction and the impor-
tance of design and architecture increased. The adoption of design patters [17],
architectural styles [38], and reference architectures [28] during the development
of software systems made it possible to reuse not only software design assets
but also the knowledge and expertise that lead to such design. Design patterns
describe general reusable solutions to commonly occurring problems of software
design. Architectural styles shape software systems by enforcing a set of de-
sign constraints and architectural decisions to provide predictable, well-known
quality properties. In parallel, reference architectures support reuse of design
expertise and encompass knowledge of how to structure software systems on
specific domains.

Similarly to systems in other domains, there is also a strong move towards
the use of software engineering to reduce the effort to develop robotic systems.
Several studies focusing on systematic reuse during the development of robotic
systems can be found in literature. For instance, Fryer et al. [16] investigate
the use of object-orientation to develop modular software for controlling robots.
Graves and Czarnecki [18] propose design patterns for developing behaviour-



based robotic systems. The systematic literature review described in [12] re-
ports on reference architectures for mobile robotic systems. The work presented
in [6] discusses on the use of Component-Based Software Engineering (CBSE)
for designing robotic systems as a set of architectural building blocks. In parallel,
Model-Driven Engineering (MDE) and Software Product Lines (SPL) techniques
have been adopted to support the application of CBSE in robotic systems devel-
opment. For instance, Iborra et al. [21] associate MDE and CBSE with reference
architectures in a process to design robotic systems. The BRICS project [4] uses
CBSE and SPL for reducing the development effort of engineering robotic sys-
tems. CBSE and SPL are also used as a basis for incorporating certification
activity into the design of unmanned aerial vehicles [3]. These works and several
others already identified by Schlegel et al. [35] represent important contributions
to robotic system development.

More recently, researchers have been investigating the suitability of SOA ar-
chitectural style for developing robotic systems that are not only reusable, but
also more flexible, integrable, and scalable. In a broad, systematic literature re-
view carried out in a previous work [30], we identified 39 studies dedicated to
investigate and consolidate the use of SOA in robotics. According to such re-
view, the first attempt to use SOA in robotics was proposed in 2003 by Lee
et al. [26], which described an architecture for integrating different robots in a
multi-robotic application. Similarly, Ha et al. [19] designed a SOA to support in-
tegration among robots and remote sensors in an aware house. With the advent
of the first environment focused on the development of SORS, the commercial
MRDS, several other systems emerged in literature [7,8]. Currently, ROS devel-
opment environment is being used as a basis for building a second generation of
SORS [25,40]. ROS is an open source environment supported by several research
institutes and has already been adopted to design over a thousand of services
for SORS. Despite the increasing adoption of SOA in robotics, as well as the
support of dedicated tools, there is no mechanism that efficiently enables publi-
cation, categorization, and discovery of services for SORS. Unlike services used in
commercial, business systems that can be transparently discovered, services for
SORS need to be searched manually. Our first measure to mitigate such problem
was establishing a taxonomy of types of service to enable the search of services
by their functionalities and not simply by their names or textual descriptions.
This taxonomy is presented in the following section.

3 A Taxonomy of Services for SORS

To automate the semantic search of services for SORS, it was necessary to or-
ganize knowledge about the domain and establish a common vocabulary among
stakeholders. Therefore, we proposed a taxonomy [31], which is a form of classi-
fication widely accepted in different domains, such as software architecture [10]
and robotics [11]. This taxonomy of services is based on the SORS available in
the literature [30], a set of reference architectures of robotics [12], and expertise
and knowledge of specialists on how to develop robotic systems. It was evalu-



ated by software architects, software engineers, software developers, and research
team leaders from six different institutions of five countries, from both academy
and industry.

The taxonomy classifies services for SORS into five main groups: (i) Device
Driver, (ii) Knowledge, (iii) Task, (iv) Robotic Agent, and (v) Application. Its
groups are also divided into several subgroups (types). A brief description of
these groups of services and service types is presented as follows. For sake of
space, the complete description of all groups and service types, as well as exam-
ples, is presented in another work [31].

– Device Driver: encompasses services that control hardware devices, provid-
ing their functionalities to other services. Services in this group are respon-
sible for managing the data collection from the environment (i.e., drivers
that control sensors) and controlling the interactions of the robot within
it (i.e., drivers that control actuators). Sensor drivers are classified as fol-
lows: Position, Orientation, Movement, Contact, Distance, Optical, Thermal,
and Communication. Actuator drivers are divided into the following service
types: Locomotion, Manipulation, and Communication;

– Knowledge: comprises services responsible for gathering, interpreting, stor-
ing, and sharing information necessary for performing tasks and controlling
the robot as a whole. These services enable the robotic system to learn
about characteristics of its environment and objects within it. Knowledge
services not only deal with data from sensors, but also with semantic infor-
mation from a wide range of sources, such as ontologies or machine learning
datasets. Services of knowledge group are divided into two types: Internal
and external. Internal knowledge services manage information obtained from
inside the environment, such as from sensors and back-end servers. External
knowledge services manage information obtained from outside the environ-
ment, such as from the Web [39];

– Task: encompasses services that provide functionalities considered as the
fundamental tasks of robotics. These services enable the robot to perform
basic activities, such as moving from one place to another. A service of this
group can be implemented according to different behaviours, i.e., a robot
can move to another position by either following a wall or keeping the dis-
tance between walls. The following service types are encompassed by this
group: Mapping (e.g., geometric and grid), Localization (e.g., probabilis-
tic and deterministic), Path Planning (e.g., heuristic search and exhaustive
search), Navigation/Control (e.g., reactive, deliberative, and hybrid), Inter-
action (e.g., with other robots or the environment), Object Manipulation,
and Support (e.g., image segmentation and math calculation);

– Robotic Agent: encompasses services that provide high level functionalities
to control the robot as a whole (i.e., robot as a service). Services of this
group are responsible for coordinating other types of services, such as Task
services and Device Driver services. A robotic agent as a service also enables
the robot to be remotely controlled and monitored. Services in these groups



are classified as Non-mobile and Mobile (e.g., grounded, aquatic, and aerial);
and

– Application: comprises services responsible for managing Robotic Agents in
performing more complex activities. These services are particularly orches-
trators [34], i.e., they acquire knowledge through the Robotic Agent ser-
vices, process it, and then request a set of tasks that satisfy a given activity.
Services in this groups are divided into the following types: Single Robot,
Multi-robot, and Swarm.

This classification has formed the conceptual, initial base for automating
cataloging and discovery of services in our mechanism. The next section describes
how we developed the service repository and the plug-in for ROS and how these
modules interact to enable the reuse of services.

4 Designing RoboSeT

We designed RoboSeT to automate the semantic search for services. This mech-
anism is composed of two main parts: the on-line service repository and the
plug-ins that can be locally integrated into development environments. Using
RoboSeT, developers of SORS can publish in the service repository robotics ser-
vices hosted in different version control systems, such as Git4 and SVN5, and
describe them using types of services proposed by the taxonomy of services for
SORS. Each service registered by a service provider is classified according to
the type it belongs to and can, therefore, be discovered semantically. Service
consumers can search for services they need by using either the web interface
provided by RoboSeT or a plug-in installed in their machines. Plug-ins are ap-
plications integrated into development environments that are able to access the
service repository and enable developers to search and obtain services. Therefore,
services for SORS can be discovered and integrated into local projects transpar-
ently, i.e., the service consumer does not need to know where the service is or who
the service provider is. Figure 1 shows an overview of RoboSeT and details about
its development and functionalities are presented as follows. Graphical examples
and tutorials on how to use the functionalities provided by the mechanism are
available in the website6.

4.1 Services Repository

RoboSeT makes it possible to store and classify information of robotics services
in a repository, as well as to select services for reuse in new robotic systems
by using semantic information. Registered service providers can publish their
services and describe them by using the taxonomy. These services are linked to
a control version repository, such as SVN and Git, where they are hosted, and

4 git-scm.com/
5 subversion.tigris.org/
6 http://www.labes.icmc.usp.br:8595/RegistroServicoWeb/



Fig. 1. Overview of RoboSeT

information on how to use them, the license type, and versions are provided.
Service consumers use semantic information available in the taxonomy to search
for services that provide the functionalities they need.

For instance, a service consumer that needs a service for robotic localization
based on a high precision GPS (Global Localization System) can search for a
service whose type is “Service/Task/Localization/Non-probabilistic”(for more
information about the types of services see [31]). This query would retrieve all
services in the repository that provide a functionality of the type Task, related to
Localization, and based solely on the information of a sensor, such as a GPS. A
less precise search like “Service/Task/Localization” would also retrieve services
of the first query, plus all other services described as subtype of Localization,
e.g., probabilist localization services.

Figure 2 illustrates the result of a search performed in the RoboSeT service
repository. In this screen, service consumers obtain a summary about the services
retrieved in the search, such as the names, providers, and related service types.
It is also possible to use buttons in the right side of the screen to obtain further
information on a service, access the host address, or endorse it. Endorsements
are used to recommend a given service, indicating to other potential service con-
sumers that it is a worthwhile choice. In addition to searches using the taxonomy,
RoboSeT also provides the following functionalities:

– Account management: a user account is required for accessing to the service
repository. Three possible types of user are available: consumer, provider,
and administrator. Consumers are able to search for and obtain services in
the repository. Providers can obtain services for reuse and also publish their



Fig. 2. Result of a search in the service repository

own services into the system. Administrators are responsible for managing
accounts, the elements of the service taxonomy, and other important aspects
of the systems. The account management enables users of the systems to
edit information and also to promote their accounts types from consumer to
provider. Administrators are also able to invite consumers and providers to
administrate the service repository;

– Service management: this functionality enable service consumers to get in-
formation about services they have already obtained, such as configuration
instructions, comments of other users, and bug report. In addition to this
functionality, service providers are able to manage their published services
and publish new services in the repository;

– Service ranking: a ranking is provided for the most relevant services available
in the repository. In this ranking, users can easily find services with better
reputation and data about their providers. Similarly to the service search
functionality, it is also possible to obtain additional information on a given
service or have access to the repository where such service is hosted;

– Service search: in addition to the search using the types of services, it is
possible to look for services using search strings. This type of search comple-
ments the semantic search and enables users to find services by their names
and providers. Services are also obtained by searching parts of text contained
in the service description;

– Service detailing: using this functionality, service consumers obtain all in-
formation available about a service, such as its full description, service de-
pendencies, number of users, number of endorsements, versions, and license



of use. Comments made by previous consumers and reported bugs are also
available as references. In addition, a complete list of quality attributes is
provided to support consumers to identify services of higher quality. Services
in the repository can receive grades from their consumers for each quality
attributes of ISO/IEC 25010:2011 [23], such as dependability, efficiency, and
maintainability;

– News about services: news are automatically generated based on logs of the
system and presented to users in a customized and user friendly way. Users
are notified about new versions of services they are using, bugs reported
or fixed, and so forth. They are also informed on any changes in the service
repository, such as updates in the taxonomy or in the set of quality attributes
used for the evaluation of services for SORS.

To provide such functionalities in a system with a better modularity, we
adopted MVC (Model-View-Controller) and DAO (Data Access Object) archi-
tectural patterns. Thus, RoboSeT was organized into four layers, namely: Model,
View, Controller, and Database. These layers were organized into packages and
indicated using stereotypes (e.g., classes into package Servlets are associated to
Controller layer), as shown in Figure 3. The package Entities contains classes
that represent entities of the system, such as those related to published ser-
vices and users of repository. The package DAO contains classes responsible for
the persistence of entities in the database. Since we adopted Hibernate7 frame-
work, XML (eXtensible Markup Language) files for each entity were placed in
the package Mappings. The package JSP contains web pages developed using
the Twitter Bootstrap8 framework. The package Controllers contains classes re-
sponsible for the communication among graphical interface, the entities, and the
package DAO. To integrate the graphical interface into the controllers, different
servlets were created and placed in the package Servlets.

4.2 Semantic Search Plug-in

Different plug-ins can be developed to make possible communication between
service repository and development environments. A RoboSeT plug-in is an ap-
plication that locally performs semantic search of services and integrates search
results into the project of a robotic system. Thus, developers designing a robotic
system can create a project in their development environment using the plug-
in, search for services necessary for such system, and reuse them. Only services
not available in the repository and services used to integrate the functionalities
of the robotic system need to be implemented. Services used to integrate and
coordinate other services are more domain-specific and should be implemented
according to requirements of each project. To exemplify the functionalities that
should be provided by these plug-ins, we created a plug-in for ROS development
environment. Despite this implementation is specific for ROS, these functional-
ities can be adapted to any other SORS development environment. To support

7 hibernate.org/
8 getbootstrap.com/



Fig. 3. Packages Diagram of the service repository

creation of a robotic system, the following activities were automated by the
plug-in:

– Project creation: as this plug-in acts as a layer on top of ROS, we developed
a functionality to abstract creation of projects in such environment. Thus,
it is possible to build the whole ROS file-system resources using the plug-in,
including the appropriate build and manifest files. The functionality imple-
mented in this plug-in works as a proxy for the respective functionality in
ROS (i.e., the roscreate-pkg command);

– Identification of types of services: services that will be necessary in the devel-
opment of the robotic system must be identified. Therefore, requirements of
the robotic system are analysed, grouped, and mapped according to service
types available in taxonomy. An updated version of the service taxonomy
available in the service repository is obtained whenever the plug-in starts.
In addition, further information on a given service type (e.g., parent type,
description, and examples) is easily obtained from the repository by using
command lines;

– Service search: searches for each service type identified in the last step are
performed in the repository of services using the plug-in. As a result, all ser-
vices that match the searched types are presented along with the service ID,
service description, service provider information, license type, and number
of users that have recommended the service;

– Service selection: since the search for a given type of service can retrieve
more than one service implementation, additional information are also made
available. The number of recommendations received and the score of each
quality attribute associated with the service can be analysed to support the
decision about which service will be used;



– Service obtaining: after deciding on the services to be used, they can be
obtained by the plug-in. To obtain a service, a request using the service ID
is sent to the service repository, which answers with the url of where the
service is hosted. The service is automatically accessed in the version control
repository and downloaded into the local environment;

– Service deployment: services obtained by the plug-in are deployed inside the
current ROS project to be integrated with other services being developed
locally;

– Service evaluation: users can evaluate the quality of services they are using
at any time. Five levels of quality can be assigned to each non-functional
attribute of the service: (1) unsatisfying, (2) needs improvement, (3) regular,
(4) good, and (5) excellent. As mentioned before, a service can be evaluated
according to any quality attributes of ISO/IEC 25010:2011. We adopted this
quality model as a reference of quality to avoid different interpretations of
quality attributes. As a standard, it provides detailed and widely accepted
descriptions of software quality attributes that can be used as a common
vocabulary; and

– Comments and bug report: when necessary, users can provide comments
and report errors in the services directly from the plug-in. Comments can be
either improvement requests or tips that might be useful for other developers
of SORS.

The plug-in we designed for ROS is implemented in Java and has a command-
line user interface. Figure 4 illustrates such interface being used to obtain in-
formation about a probabilistic localization service named amcl. We opted for a
command-line plug-in to make it more familiar to ROS developers, who already
use such interface to interact with the development environment. A help com-
mand is available to support developers to learn how to use the functionalities
available in the plug-in. Currently, the developed plug-in does no support publi-
cation of services directly into the service repository. Nevertheless, new services
developed in projects that use the plug-in can be published through the Web
interface and reused in other projects, thus contributing to the community of
robotics.

5 Case Study

In order to illustrate the use of RoboSeT, this section describes the design of
a robotic system that presents robust navigation capability. Robust navigation
enables a robotic system to guide the robot through the environment without
risk, avoiding collision with humans, objects, and other robots. The design of
this robotic system for robust navigation involves coordination of different tasks,
such as path planning, motion control, and sensor data processing. Brugalli et al.
[5] investigated several development environments to identify existing modules
associated with the design of robust navigation functionalities. They realized
that modules related to robust navigation typically refer to the same tasks of
robotics, but different names are used. These tasks are described as follows:



Fig. 4. Interface used to integrate the plug-in with ROS

– Motion Planning: it is the task responsible for creating a global path between
a given starting position and a goal position. This path is represented by a
sequence of intermediate points in a static environment;

– Trajectory generation: it defines the velocity of each part of the path. This
trajectory is represented as a sequence of planned intermediate positions and
associated velocities;

– Obstacle detection and representation: it is the task responsible for creating
a representation of the objects in the environment by using data from differ-
ent sensors, such as laser range finder and cameras. These objects and their
respective positions are used to create and update the map of the environ-
ment;

– Obstacle avoidance: it is responsible for adapting the pre-defined global tra-
jectory, while the robot is moving to avoid unexpected elements in its path,
such as humans or other robots. It allows robot to safely navigate in dynamic
environments;

– Position and velocity control: it is the task that generates the instant linear
and angular velocity for the robot to drive it along the computed trajectory.
This task is also known as local navigation and is strongly related to the
kinematic model used by the robot; and

– Localization: it estimates the position of the robot with respect to a global
frame. Different types of sensors, such as odometer, camera, and laser range-
finder are used for the estimate.

In addition to these tasks, functionalities related to the control of sensors and
actuators were also considered. In this case study, we adopted Pioneer P3-DX9

robot as base platform. Pioneer P3-DX moves using 2-wheel differential drive,
with rear balancing caster. The two front wheels are independent and can have

9 http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx



different speeds if necessary. Each wheel has an encoder sensor that can be used
to support the robot localization. A laser sensors placed on the robot was also
necessary to provide information about objects surrounding the robot. Given
these hardware specifications, drivers for the robot and laser were considered in
the design of this robotic system.

The first step to develop this robotic system was to investigate services avail-
able for reuse. Each functionality was classified according to the service types
identified in the taxonomy of services for SORS. After creating a ROS project,
all types of services necessary to develop the robotic system were identified. Ta-
ble 1 presents functionalities of our robotic system and types of services they
are associated with.

Table 1. Functionalities of the robotic system and related service types

Functionality Service type

Motion Planning Service/Task/Path planning
Trajectory generation Service/Task/Path planning
Obstacle detection and representation Service/Task/Mapping
Obstacle avoidance Service/Task/Path planning
Position and velocity control Service/Task/Navigation
Localization Service/Task/Localization
Encoder controller Service/Device/Sensor/Movement
Differential drive controller Service/Device/Actuator/Locomotion
Laser controller Service/Device/Sensor/Distance

Based on the identified types, the search for reusable services was performed.
Each service type was applied to the plug-in we developed for ROS in order
to find services available in the service repository. Results of the search were
analysed so that the most adequate services for our robotic system could be
selected. Task services and Device Driver services were the only two groups of
the taxonomy necessary for designing a robotic systems with robust navigation
capabilities. However, the design of more complex examples can result in the
use of other groups of service, such as the Knowledge group and the Application
group. Table 2 presents the services identified for functionalities related to the
Task group and the service types associated with them.

The service CostMap2D implements a 2D costmap that takes in sensor data
from the world and builds a 2D or 3D occupancy grid of the data. NavfnROS
and CarrotPlanner are two complementary implementations of BaseGlobalPlan-
ner interface for ROS. NavfnROS is an A* [20] path-planner for maps described
using occupancy grids. CarrotPlanner is a simpler planner that calculates a
straight line between the robot position and the goal position, checking colli-
sions along the path. Both path planners are complementary services that can
be used for calculating a global path. TrajectoryPlannerROS and DWAPlan-
nerROS can be used to generate a trajectory for a defined global path. These
services produce velocity commands based on the map, the global path, and



Table 2. Functionalities of Task group, service types, and services identified for reuse

Functionality Task service types ROS service

Motion Planning Path planning/Heuristic Search NavfnROS, CarrotPlanner
Trajectory generation Path planning/Heuristic Search TrajectoryPlannerROS,

DWAPlannerROS
Obstacle detection
and representation

Mapping/Metric/Grid CostMap2D

Obstacle avoidance Path planning/Heuristic Search TrajectoryPlannerROS,
DWAPlannerROS

Position and velocity
control

Navigation MoveBase

Localization Localization/Probabilistic Amcl

unexpected objects close to the robot and also provide functionalities associated
with obstacle avoidance. The localization of the robot can be estimated by Amcl
service, which uses Monte Carlo [14] probabilistic method to reduce the error
of the encoder measurements. It is important to observe that some task ser-
vices in the repository were able to provide more than one type of functionality.
For instance, the services TrajectoryPlannerROS and DWAPlannerROS were
associated to both trajectory generation and obstacle avoidance.

In addition to services of task group, we also obtained services for control-
ling hardware devices. Table 3 presents the services identified for functionalities
related to the Device Driver group and the service types associated to them.
RosAria service provides means for controlling the differential drive and the en-
coder of Pioneer P3-DX. We also identified the SICK Toolbox service to control
the SICK10 laser range finder. Similarly to services in task group, RosAria was
able to provide functionalities in more than one type of service.

Table 3. Functionalities of Device Driver group, service types, and services identified
for reuse

Functionality Device service types ROS service

Encoder controller Sensor/Movement RosAria
Differential drive controller Actuator/Locomotion RosAria
Laser controller Sensor/Distance SICK Toolbox

Figure 5 illustrates the software architecture we designed for the robotic
system using the services found in RoboSeT repository. In this architecture,
CostMap2D builds its map based on information provided by SICK Toolbox ser-
vice. MoveBase service orchestrates mapping (CostMap2D) service and other
services for localization (Amcl) and path planning (NavfnROS, CarrotPlanner,

10 http://www.sick.com/group/EN/home/products/product_portfolio/laser_

measurement_systems/Pages/laser_measurement_technology.aspx



TrajectoryPlannerROS, and DWAPlannerROS ) to generate robust navigation
commands. These commands are provided to RosAria service, which acts as
an interface to control the robot Pioneer P3-DX. As the robot moves in the
environment, RosAria service collects data from the odometer sensor. Odome-
try information is consumed by Amcl service and used to estimate the current
localization of the robot.

Fig. 5. Software architecture of the robotic system

The navigation system described in the software architecture is similar to
the architecture of the 2D Navigation Stack11 available for ROS. In fact, ser-
vices identified by the plug-in are part of this ROS stack, but registered in the
service repository as independent services. Currently, the services we identified
for robust navigation have a strong dependence from MoveBase. These services
depends on MoveBase to start and, therefore, to work properly. However, a study
has already proved that all of these services are able to work independently after
a refactoring process [5].

11 http://wiki.ros.org/navigation



6 Discussion

The case study presented in the previous section described how services can
be identified, obtained, and reused to develop SORS. Even though the services
used in such example are also available in the ROS Wiki, their localization de-
pends on previous knowledge of developers. Without the support provided by
RoboSeT and the use of semantic search, researchers not aware of the exis-
tence of the services considered in the example would need to manually search
them among hundreds of other services. In addition, RoboSeT enabled, at the
same time, transparent discovery of services and indirect communication among
service providers and its service consumers. These characteristics can provide
benefits in three different perspectives: service consumer, service provider, and
robotic system user.

From the perspective of service consumer, RoboSeT can facilitate the dis-
covery of services and, therefore, improve reuse during robotic systems develop-
ment. It is intuitive that services that are easier to be found are more likely to be
reused. However, reusing a service does not depend only on its discovery, but on
its documentation and suitability to the robotic system being developed. Thus,
RoboSeT provides functionalities that enable consumers to obtain structured in-
formation on the services being searched, such as documentation, comments of
other users, and quality attributes. These functionalities aim at facilitating the
identification of the most suitable service for each robotic systems. As a direct
consequence of reuse, RoboSeT intends to improve productivity in robotic sys-
tems development. Although quantitative evidences are still necessary, studies
in literature have already shown that reuse improvements positively influence
productivity in software systems development [27].

As counterpart, service providers of RoboSeT receive in use feedback from
robotics community on the services they have published. Services provided to
the community are generally executed in several environment configurations and
on different robotic platforms, representing an important corpus of evaluation.
Comments, suggestions, bug reports, and quality evaluation of such services are
organized in the Web interface of RoboSeT for each service provider. Thus,
providers can use the My Services section in the Web interface as a guide to
improve the quality of their services. By improving the quality of each service
they provide to the community, providers can also improve the overall quality
of their own robotic systems.

The collaboration among service providers and service consumers through
RoboSeT can also provide benefits in the perspective of robotic systems users.
As service providers receive feedback for their services and use it to improve
the overall quality of their systems, higher quality robotic systems are made
available for end users. Besides that, the literature has already indicated that
reuse improvements in software systems development can support cost reduction
and result in more affordable systems [27]. Therefore, users of robotic systems
which have the development facilitated by mechanisms that aid service reuse
may also be benefited from it.



Despite of RoboSeT benefits, it is also important highlight limitations of such
mechanism. Similarly to other repositories of services for SORS, the success of
RoboSeT strongly depends on the cooperation of the robotics community. We
are aware that without the adoption of RoboSeT by the community, few services
will be available for search, less consumers will be interested in searching for
them, and weak feedbacks will be offered as counterpart to providers. Therefore,
we designed RoboSeT to be as flexible as possible to stimulate its adoption by
the robotics community. The initial version of the taxonomy can be evolved
and modified according to the community needs. New quality attributes can
be proposed to evaluate the services as well. Besides that, we intend to release
RoboSeT and its plug-in for ROS as an open source software in order to support
the creation of plug-ins for other development environments.

7 Conclusion and Future Work

SOA is an architectural style that can support developers to cope with the de-
sign of large, complex robotic systems and, at the same time, provide better
reusability and flexibility to such systems. In this perspective, the main con-
tribution of this work is RoboSeT, a mechanism that enables cataloging and
discovery of services for robotic systems using semantic information provided
by a robotics taxonomy. RoboSeT encompasses two main parts: a repository of
services for SORS and plug-ins that integrate development environments into
such repository. We describe in this work the structure, main functionalities,
and implementation of both parts of RoboSeT. The developed plug-in makes it
possible to locally search, obtain, and deploy services directly into ROS projects.
Results of our case study indicate that RoboSeT can facilitate the development
of robotic systems by supporting the discovery and reuse of services available in
the repository. By supporting service reuse, we aim at providing better produc-
tivity during the development of robotic systems based on SOA. As future work,
we intend to improve RoboSeT by adding new features and creating plug-ins
for other development environments. In addition, to contribute to the robotics
community, we plan to release RoboSeT as an open source system. Different
experiments will also be performed to obtain quantitative evidences about the
benefits of using our mechanism.
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26. K. K. Lee, P. Zhang, and Y. Xu. A service-based network architecture for wearable
robots. In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA’03), pages 1671–1676, Taipei, Taiwan, September 2003.

27. P. Mohagheghi and R. Conradi. Quality, productivity and economic benefits of
software reuse: a review of industrial studies. Empirical Software Engineering,
12(5):471–516, 2007.

28. E. Y. Nakagawa and F. Oquendo. RAModel: A Reference Model for Reference Ar-
chitectures. In Proc. of the Joint 10th Working IEEE/IFIP Conference on Software
Architecture (WICSA’12) and 6th European Conference on Software Architecture
(ECSA’12), pages 297–301, Helsinki, Finland, August 2012.

29. L. B. R. Oliveira and E. Y. Nakagawa. A service-oriented reference architecture
for software testing tools. In Proc. of the 5th European Conference on Software Ar-
chitecture (ECSA’11), pages 405–421, Essen, Germany, September 2011. Springer-
Verlag.
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