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State-Space Solutions to Standard X2 and X, 
Control Problems 

Abstract-Simple state-space formulas are derived for all controllers 
solving a standard X, problem: for a given number y> 0, find all 
controllers such that the X, norm of the closed-loop transfer function is 
(strictly) less than y. A controller exists if and only if the unique 
stabilizing solutions to two algebraic Riccati equations are positive 
definite and the spectral radius of their product is less than yz. Under 
these conditions, a parametrization of all controllers solving the problem 
is given as a linear fractional transformation (LFT) on a contractive, 
stable free parameter. The state dimension of the coefficient matrix for 
the LFT, constructed using these same two Riccati solutions, equals that 
of the plant, and has a separation structure reminiscent of classical LQG 
(i.e., X,) theory. This paper is also intended to be of tutorial value, so a 
standard XI solution is developed in parallel. 

I. INTRODUCTION 

A .  Overview 

WO popular performance measures in optimal control theory T are X2 and X, norms, defined in the frequency-domain for a 
stable transfer matrix G(s)  as 

trace [G(jw)*G(jw)l dw 

11 G 11 , : = sup umax [ G ( j w ) ]  (U,,, : = maximum singular value). 

The former arises when the exogenous signals either are fixed or 
have a fixed power spectrum; the latter arises from (weighted) 
balls of exogenous signals. X2-optimal control theory was heavily 
studied in the 1960’s as the linear quadratic Gaussian (LQG) 
optimal control problem; E,-optimal control theory is continuing 
to be developed. 

w 

The basic block diagram used in this paper is 

where G is the generalized plant and K is the controller. Only 
finite-dimensional linear time-invariant (LTI) systems and con- 
trollers will be considered in this paper. The generalized plant G 
contains what is usually called the plant in a control problem plus 
all weighting functions. The signal w contains all external inputs, 
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including disturbances, sensor noise, and commands; the output z 
is an error signal; y is the measured variables; and U is the control 
input. The diagram is also referred to as a linear fractional 
transformation (LFT) on K ,  and G is called the coefficient matrix 
for the LFT. The resulting closed-loop transfer function from w to 
z is denoted by TZw. 

The main X, output feedback results of this paper as described 
in the Abstract are presented in Section 111. The proofs of these 
results in Section V exploit the “separation” structure of the 
controller, which is reminiscent of the classical X2 controller. Of 
course, there are significant differences that reflect the fact that 
the X, criterion corresponds to designing for the worst exoge- 
nous signal. These are also discussed in Section V. Special 
attention will be given to the central controller, obtained by setting 
to zero the free parameter in the LFT formula for the controller. 

If full state feedback is available, then the central controller is 
simply a gain matrix F,, obtained through solving a single Riccati 
equation. Also, the optimal estimator is an observer whose gain is 
obtained as a solution to a Riccati equation. These special cases 
are described in Section IV and the proofs are given in Sections 
VI1 and VIII. In the general output feedback case the central 
controller can be interpreted as an optimal estimator for F,x. 
Furthermore, the two Riccati equations involved in this solution 
can be associated with state feedback and estimation problems. 

The algebraic Riccati equations in the X, solution are those 
that arise in the theory of linear quadratic differential games. The 
game theoretic analogy is intuitively appealing for in the X, 
control problem the exogenous input and the control input can be 
viewed as strategies employed by opposing players in a game: the 
exogenous input is chosen to maximize the norm of the output and 
the control input is chosen to minimize it. The Riccati equations 
have indefinite quadratic terms, however, so solutions cannot be 
guaranteed as simply as in the X2 problem. Indeed, as mentioned 
in the Abstract, the existence of solutions to the Riccati equations 
is part of the necessary and sufficient conditions for existence of 
X, (sub)optimal controllers. The preliminary machinery needed 
to establish these conditions in terms of Riccati equations is 
developed in Section 11. 

To facilitate exposition, the problem chosen for treatment in 
this paper is the simplest special case which captures all the 
essential features of the general problem. Although the assump- 
tions used in this special case involve some sacrifice of generality, 
the formulas are simple and easy to interpret. Also, these 
assumptions are commonly used in treatments of the X2 problem. 
The general formulas are presented in [14]. Our entire approach 
to the X, problem has parallels in the conventional X2 theory. In 
fact, it is interesting to note that as y tends to 00, the central 
controller actually approaches the X2 controller. Because the Xz 
theory is well-understood throughout the control community, 
these two problems are developed side-by-side. It is hoped that 
this will enhance the paper’s tutorial value. 

This paper is organized in a top-down manner and is intended to 
be accessible to a variety of readers. While this organization may 
be a bit awkward for the experts who plan to study all the details, 
it is hoped that it will enhance the tutorial value of the paper. The 
main results are stated in Sections I-IV. The reader who is only 
interested in seeing the new theorems and formulas could stop 
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there. The reader may find some deeper interpretation and see 
how the separation argument is used to prove the output feedback 
results by additionally reading Section V. Finally, the more 
technical aspects of the proofs are in Sections VI-VIII. Section IX 
on connections with risk sensitivity and 2 x 2-block mixed 
Hankel-Toeplitz operators is intended for experts. 

The proofs are constructed out of a series of lemmas, each of 
which has some independent interest. A possible contribution of 
this paper, beyond the new formulas and theorems, may be some 
of the machinery developed. The result is that the proofs of both 
the theorems and the lemmas leading to them are quite short. 
Furthermore, the development is reasonably self-contained, and 
the only background required is a knowledge of elementary 
aspects of state-space theory, $2 spaces, and operators on Cz, 
including projections and adjoints. 

The main results in this paper appeared, without proofs, in [8]. 

B. Historical Perspective 

Since the state-space methods in this paper stand in contrast to 
previous work in X, theory, it is useful to provide some 
historical perspective. This section is not intended as a review of 
the literature in X, theory, but rather an attempt to outline some 
of the work that most closely touches on this paper. For a more 
extensive bibliography and review of the literature, the interested 
reader might see [ I l l  and [12]. 

Zames’ [40] original formulation of X, optimal control theory 
was in an input-output setting. Most solution techniques available 
at that time involved analytic functions (Nevanlinna-Pick interpo- 
lation) or operator-theoretic methods [33], [l], [4]. An earlier 
state-space solution was presented in [7], in which the steps were 
as follows: parametrize all internally-stabilizing controllers via 
[38]; obtain realizations of the closed-loop transfer matrix; 
convert the resulting model-matching problem into the equivalent 
2 x 2-block general distance or best approximation problem 
involving mixed Hankel-Toeplitz operators; reduce to the Nehari 
problem (Hankel only); solve the Nehari problem by the 
procedure of Glover [ 131. Both [ 1 11 and [ 121 give expositions of 
this approach, which will be referred to as the “1984” approach. 

In a mathematical sense, the 1984 procedure “solved” the 
general rational X, optimal control problem and much of the 
subsequent work in X, control theory focused on the 2 x 2- 
block problems, either in the model-matching or general distance 
forms. Unfortunately, the associated complexity of computation 
was substantial, involving several Riccati equations of increasing 
dimension, and formulas for the resulting controllers tended to be 
very complicated and have high state dimension. Encouragement 
came from Limebeer, Hung, and Halikias [26], [27] who showed, 
for problems transformable to 2 x I-block problems, that a 
subsequent minimal realization of the controller has state dimen- 
sion no greater than that of the generalized plant G. This 
suggested the likely existence of similarly low dimension optimal 
controllers in the general 2 x 2 case. 

Additional progress on the 2 X 2-block problems came from 
Ball and Cohen [3], who gave a state-space solution involving 
three Riccati equations. Jonckheere and Juang [19] showed a 
connection between the 2 X I-block problem and previous work 
by Jonckheere and Silverman on linear-quadratic control. Foias 
and Tannenbaum [lo] developed an interesting class of operators 
called skew Toeplitz to study the 2 x 2-block problem. Other 
approaches have been derived by Hung [ 181 using an interpolation 
theory approach, Kwakernaak [25] using a polynomial approach, 
and Kimura [22] using a method based on conjugation. 

In addition to providing controller formulas that are simple and 
expressed in terms of plant data, the methods in the present paper 
are a fundamental departure from the earlier work described 
above. In particular, the Youla parametrization and the resulting 2 
x 2-block model-matching problem of the 1984 solution are 
avoided entirely; replaced by a pair of 2 x 1 block problems and 
a separation argument. The entire development uses simple and 

familiar tools, in the style of Willems [37], relying on state 
feedback and observer-based control methods and more straight- 
forward and elegant use of operator theory. Another strong 
influence on this paper is Redheffer’s work [31] on linear 
fractional transformations. 

Interestingly, the formulas for the controller given here were 
actually first obtained with the 1984 approach, but using a new 2 
X 2-block solution, together with a cumbersome back substitu- 
tion. This approach has subsequently been developed and ex- 
tended in [14], where the optimal case is also treated in detail. The 
very simplicity of the new formulas and their similarity with the 
XZ ones suggested a more direct approach. Of course, elegance is 
in the eye of the beholder, and researchers who have been 
studying the 2 x 2 block problems arising in the 1984 approach 
may still prefer it to the new approach taken here. While the 
Youla parametrization and a 2 x 2-block problem of the 1984 
solution are not needed for our new results, these techniques have 
played a central role in X, theory, and so we will indicate how 
they fit in with this paper’s development. In particular, the new 
results on 2 x 2-block mixed Hankel-Toeplitz operators are 
briefly described in Section IX-A, and the resulting new version 
of the 1984 approach is sketched. 

Independent encouragement for a simpler approach to the X, 
problem came from papers by Khargonekar, Petersen, Rotea, and 
Zhou [20], [21], [41]. They showed that for the state-feedback 
X, problem one can choose a constant gain as a (sub)optimal 
controller. In addition, a formula for the state-feedback gain 
matrix was given in terms of an algebraic Riccati equation. These 
results are similar to those in Section IV-A below, although the 
proof techniques in Section VI1 are entirely different. Also, these 
papers established connections between 32,-optimal control, 
quadratic stabilization, and linear-quadratic differential games. 

We expect the results and techniques in this paper to encourage 
greater interest in applications of X, methods, in alternative 
developments of the theory using other techniques, and in 
extensions to more general problems. Some of this has already 
taken place. A version of the Glover and Doyle [14] formulas for 
the controller was used by Stein in the Tutorial Workshop on X, 
Control Theory which preceded the 1987 IEEE Conference on 
Decision and Control. The formulas also appeared in the 
associated workshop notes [9]. Several software packages are 
under development with the new results as a central feature, and 
these are being used in a number of applications. 

On the theoretical side, Green et al. [17] offer an alternative 
development using a J-spectral factorization approach. Bernstein 
and Haddad [5] were able to reproduce the formulas in this paper 
using Lagrange multiplier techniques, which will be discussed 
more in Section 11-C. Tadmor [34] uses the maximum principle to 
extend these results to the time-varying, finite horizon case. For 
the relationship of the results in this paper to the risk-sensitive 
LQG problem of Whittle 1351, see [ 141. There are a number of 
other generalizations, many of which have been completed and 
will appear elsewhere. 

C. Notation 

The notation is fairly standard. The Hardy spaces Xz and X: 
consist of square-integrable functions on the imaginary axis with 
analytic continuation into, respectively, the right and left half- 
plane. The Hardy space X, consists of bounded functions with 
analytic continuation into the right half-plane. The Lebesgue 
spaces C2 = C2(-w,  w),  C2+ = &[O, a), and C2- = 
C2( - w, 01 consist, respectively, of square-integrable functions 
on ( -  03, a), [0, a), and ( -  w,O], and C, consists of bounded 
functions on (- a, a). As interpreted in this paper, C, will 
consist of functions of frequency, .&+ and Cz- functions of time, 
and C2 will be used for both. 

We will make liberal use of the Hilbert space isomorphism, via 
the Laplace transform and the Paley-Wiener theorem, of C 2  = 
C,, @ C2- in the time-domain with C 2  = X2 o 3.2: in the 
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frequency-domain, and of S 2 +  with X2 and C 2 -  with X:.. In 
fact, we will normally not make any distinction between a time- 
domain signal and its transform. Thus, we may write w € &+ 

and then treat w as if w E X2. This style streamlines the 
development, as well as the notation, but when any possibility of 
confusion could arise, we will make it clear whether we are 
working in the time- or frequency-domain. 

A transfer matrix in terms of state-space data is denoted [g] :=  C(sZ-A)-’B+D. 

For a matrix M E W x r  or W x r ,  M’ denotes its transpose, M* 
denotes its conjugate transpose, umax ( M )  = p(M*M)  1’2 denotes 
its maximum singular value, p ( M )  denotes its spectral radius (ifp 
= r ) ,  and Mt denotes the Moore-Penrose psuedoinverse of M .  
Im denotes image, ker denotes kernel, and G - (s) : = G( - s) I .  

For operators, r* denotes the adjoint of r. The prefix 63 denotes 
the open unit ball and the prefix 63 denotes real-rational. 

The orthogonal projections P+ and P- map C 2  to, respec- 
tively, X2 and X: (or C2+ and C2_).  For G E C,, the Laurent 
or multiplication operator MG: Se2 + oC2 for frequency-domain w 
E S 2  is defined by MG w = Gw. The norms on C ,  and C2 in the 
frequency-domain were defined in Section I-A. Note that both 
norms apply to matrix or vector-valued functions. The unsub- 
scripted norm I( 3 11 will denote the standard Euclidean norm on 
vectors. We will omit all vector and matrix dimensions through- 
out, and assume that all quantities have compatible dimensions. 

11. PRELIMINARIES 

This section reviews some mathematical preliminaries, in 
particular, the computation of the X z  and X, norms of a transfer 
matrix G. Consider the transfer matrix 

with A stable (i.e., all eigenvalues in the open left half-plane). 
Although 11 G 112 and 11 G 11, can, in principle, be computed from 
their definitions in Section I-A, it is useful in the development of 
the subsequent theory to have alternative characterizations. 

One useful characterization is in terms of hypothetical input- 
output experiments. Let e, denote the ith standard basis vector. 
Apply the impulsive input 6(t)e, (6 is the unit impulse) and denote 
the output by z , ( t ) .  Then z, E C2+,  because D = 0, and 

II G II ; = II zr II :. 
1 

For the X, norm, suppose that we apply an input w E C2 and 
consider the output z E S2. Then a standard result is that 11 G 11, is 
the induced norm of the multiplication operator MG , as well as the 
Toeplitz operator P, MG : X2 + X2. 

11 G (1, = SUP 11 ~ 1 1 2 ’  wzt~2+ I I P + z I I z =  wgg2 I I P + M c W I I ~ .  
wEcES2 

The rest of this section involves additional characterizations of 
the norms in terms of state-space descriptions. Section 11-A 
considers the X2 norm and 11-C considers the X, norm. Section 
11-B collects some basic material on the Riccati equation and the 
Riccati operator which play an essential role in the development of 
both theories. 

A. Computing Xz Norm 

observability Gramian of ( C ,  A ) ,  then 
If L, denotes the controllability Gramian of ( A ,  B )  and Lo the 

AL,+ L,A ’ + B E ’  = 0 A ‘Lo+ LOA + C’C= 0 

IIGII;=trace (CL,C’)=trace ( B ’ L , B ) .  (2) 

Note that this computation involves the solution of a linear 
equation and can be done in a finite number of steps. 

B. The Riccati Operator 

Define the 2n x 2n Hamiltonian matrix 
Let A ,  Q,  R be real n x n matrices with Q and R symmetric. 

H : =  [l -:,I. 
Assume H has no eigenvalues on the imaginary axis. Then it must 
have n eigenvalues in Re s < 0 and n in Re s > 0. Consider the 
two n-dimensional spectral subspaces ‘X - ( H )  and ‘X+ ( H ) :  the 
former is the invariant subspace corresponding to eigenvalues in 
Re s < 0; the latter, to eigenvalues in Re s > 0. Finding a basis 
for ‘3- ( H ) ,  stacking the basis vectors up to form a matrix, and 
partitioning the matrix, we get 

where XI, X2 E R“”“. If X ,  is nonsingular, or equivalently, if 
the two subspaces 

(3) 

are complementary, we can set X : = X 2 X ;  I .  Then X i s  uniquely 
determined by H, i.e., H - X is a function, which will be 
denoted Ric; thus, X = Ric ( H ) .  We will take the domain of Ric, 
denoted dom(Ric), to consist of Hamiltonian matrices H with two 
properties, namely, H has no eigenvalues on the imaginary axis 
and the two subspaces in (3) are complementary. For ease of 
reference, these will be called the stability property and the 
complementarity property, respectively. The following well- 
known results give some properties of X as well as verifiable 
conditions under which H belongs to dom(Ric). See, for example, 
Section 7.2 in [ l l ] ,  Theorem 12.2 in [39], and [23]. 

Lemma 1: Suppose H E dom(Ric) and X = Ric(H). Then: 
a) X is symmetric; 
b) X satisfies the algebraic Riccati equation 

A ’ X + X A + X R X - Q = O ;  

c) A + RX is stable. 
Lemma 2: Suppose H has no imaginary eigenvalues, R is 

either positive semidefinite or negative semidefinite, and ( A ,  R)  
is stabilizable. Then H E dom(Ric). 

Lemma 3: Suppose H has the form 

H = [  -;,c ---;I 
with ( A ,  B )  stabilizable and (C, A )  detectable (denote the 
unobservable subspace by ‘X). Then H E dom(Ric), X = 
Ric(H) 2 0, and ker(X) C ‘X. 

Note that if (C, A )  is observable, then Ric(H) > 0. Also, note 
that ker(X) C ‘X c ker(C), so that the equation XM = C’ 
always has a solution for M ,  and we will denote the least-squares 
solution by XtC’.  

C. Computing X, Norm 

define the Hamiltonian matrix 
For the transfer matrix G(s )  in (l) ,  with A stable and y > 0, 

1 A Y - ~ B B ‘  
-C‘C - A ’  

H : =  (4) 

The following lemma is essentially from [2], [37], and [6]. 
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Lemma 4: The following conditions are equivalent. 

b) H has no eigenvalues on the imaginary axis. 
c) H E dom(Ric). 
d) H E dom(Ric) and Ric(H) z 0 (Ric(H) > 0 if (C, A )  

is observable). 
Proof: Without loss of generality, take y = 1. This can be 

done with the scaling G -+ ?-IC, B -+ y- 'B.  We begin by 
proving the equivalence of a) and b). We have 

a) IIGIIm < 7. 

( I -  G-G)- ' (s )  = [ -!T Ti i] 
soHistheA-matrixof(I  - G-G)-'.  Itiseasytocheckthatthis 
realization has no uncontrollable or unobservable modes on the 
imaginary axis. Thus, N has no eigenvalues on the imaginary axis 
iff ( I  - G-G)- '  has no poles there, i.e., (I - G-G)-l E 
as,. So it suffices to prove that 

If IIGII, < 1, thenZ - G ( j w ) * G ( j w )  > 0, vu, and hence ( I  
- G-G)- '  E as,. Conversely, if (IG(1, z 1, then umaX 
[G(jw)] = 1 for some o, i.e., 1 is an eigenvalue of 
G ( j w ) * G ( j w ) ,  so1 - G(jw)*G(jw) is singular. Thus, a) and b) 
are equivalent. 

The equivalence of b) and c) follows from Lemma 2 ,  and the 
equivalence of c) and d) follows from Lemma 1 and standard 

Lemma 4 suggests the following way to compute an X, norm: 
select a positive number y; test if 11 G 11, < y by calculating the 
eigenvalues of H ,  increase or decrease y accordingly; repeat. 
Thus, X, norm computation requires a search, over either y or 
w ,  in contrast to Xz norm computation, which does not. We 
should not be surprised by similar characteristics of the X,- 
optimal control problem. A somewhat analogous situation occurs 
for matrices with the norms llMll: = trace(M*M) and I(M(( ,  = 
umaX [MI. In principle, llMll: can be computed exactly with a 
finite number of operations, as can the test for whether om,, ( M )  
< y (e.g., y z I  - M*M > 01, but the value of umax ( M )  cannot. 
To compute U,,, ( M )  we must use some type of iterative 
algorithm. 

One could use the above characterizations of the Xz and X, 
norms to obtain controllers by fixing the controller order and 
solving the equations for controller parameters using Lagrange 
multiplier methods. This method was studied extensively in the 
1960's and early 1970's for the Xz case. Bernstein and co- 
workers have recently explored this in a series of papers (see, for 
example, [5]  and the references therein), and extended the 
approach to handle X, specifications as well. In both the X 2  and 
X, cases, one can derive coupled Riccati equations, which can, 
in principle, be solved to obtain a suboptimal controller of the 
specified dimension. 

It was well-known that in the full-order Xz case these coupled 
Riccati equations obtained using Lagrange multiplier methods 
decouple into the two standard equations and the approach yields 
the optimal controller. A new result in [SI is that the simple 
formulas in this paper for the X, case can be reproduced as well. 
While their techniques cannot currently reproduce the full theory 
developed in this paper, their results are still very encouraging as 
their techniques do extend to more general problems, such as the 
reduced-order controller problem, in a natural way. 

results for solutions of Lyapunov equations. 

111. MAIN RESULTS: OUTPUT FEEDBACK 

Consider the system described by the block diagram 

K 

Both G and K are real-rational and proper. Section 111-A discusses 
the assumptions on G that will be used in both the X2 and X, 
cases. In Section 111-B we show how to pick K to minimize the Xz 
norm of T,, , the transfer matrix from w to z; in Section 111-C we 
do the same for the X, norm. In both cases K is constrained to 
provide internal stability. In our application we shall have state 
models of G and K .  Then internal stability will mean that the 
states of G and K go to zero from all initial values when w = 0. 
Since we will restrict our attention exclusively to proper, real- 
rational controllers which are stabilizable and detectable, these 
properties will be assumed throughout. Thus, the term controller 
will be taken to mean a controller which satisfies these properties. 
Controllers that have the additional property of being internally- 
stabilizing will be said to be admissible. 

A .  Assumptions on G 

The realization of the transfer matrix G is taken to be of the 
form 

The following assumptions are made. 
i) ( A ,  B , )  is stabilizable and (Cl, A )  is detectable. 
ii) ( A ,  B2) is stabilizable and (Cz, A )  is detectable. 
iii) D ; z [ C I D 1 z J  = [O I]. 

Assumption i) is made for a technical reason: together with ii) it 
guarantees that the two Hamiltonian matrices (Hz  and J2 below) in 
the XZ problem belongs to dom(Ric). This assumption simplifies 
the theorem statements and proofs, but if it is relaxed, the 
theorems and proofs can be modified so that the given formulas 
are still correct. An important simplification that is a consequence 
of the assumptions is that internal stability is essentially equivalent 
to input-output stability (T,, E @E,). This is captured in the 
following lemma, which is proven in Section VI-B. Of course, 
assumption ii) is necessary and sufficient for G to be internally 
stabilizable, but is not needed to prove the equivalence of internal 
stability and T,, E @X,. 

Lemma 5: Suppose that assumptions i), iii), and iv) hold. Then 
a controller K is admissible iff T,, E ax,. 

Assumption iii) means that C,x and Dl2u are orthogonal so that 
the penalty on z = Clx + Dlzu includes a nonsingular, 
normalized penalty on the control U .  In the conventional Xz 
setting this means that there is no cross weighting between the 
state and control input, and that the control weight matrix is the 
identity. Other nonsingular control weights can easily be con- 
verted to this problem with a change of coordinates in U .  Relaxing 
the orthogonality condition introduces a few extra terms in the 
controller formulas. This is well-known in the X2 case and the 
X, case generalizes similarly. Assumption iv) is dual to iii) and 
concerns how the exogenous signal w enters G: w includes both 
plant disturbance and sensor noise, these are orthogonal, and the 
sensor noise weighting is normalized and nonsingular. 

Two additional assumptions that are implicit in the assumed 
realization for G(s)  are that D l l  = 0 and Dz2 = 0. Relaxing these 
assumptions complicates the formulas substantially, as can be 
seen in [14]. There it is shown how to form an equivalent problem 
with D22 = 0. A transformation from DI I nonzero to D1 = 0 was 
done in 1411, for the state feedback case. Finally, Safonov and 
Limebeer [321 have shown, in the output feedback case, how to 
construct an equivalent problem with both D I I  = 0 and Dzz = 0. 

The above assumptions were chosen in part because they are 
reasonably standard in elementary treatments of conventional Xz 
control theory. Developing the X, theory in parallel with the Xz 
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theory in this way should facilitate the tutorial contribution of this 
paper. Furthermore, the entire development, including proofs, 
under these assumptions, contains the essential features of the 
general problem when these assumptions are relaxed. The only 
major subtlety in the general case occurs for optimal controllers, 
which are considered only briefly in Section V-G. 

B. X2 Case 

The first problem in this section is to find an admissible 
controller K which minimizes )I  TzW)l2. By Lemma 3, the 
Hamiltonian matrices 

1 A '  -C;C2 
H2 : = [ -c;c1 A - B i B ; ]  - , J2:= [ -BIB,! - A  

belong to dom(Ric) and, moreover, X2 : = Ric(H2) and Y, : = 
Ric( J2)  are positive semidefinite. Define F2 : = - B; X2,  L2 : = 
- Y 2 C ; ,  and 

A,c2 : = A + B2F2, CIFZ : C1+ Dl2F2 

A L ~  : = A + L2C2, BlL2 : = BI + L2D21 

A^2 :=  A+B2F2+L2Cz 

Theorem I :  The unique optimal controller is 

Kopt(s) : = [x] . 

Moreover, min II T,, I1 = II G,BI 11 i + llF2GAl i = 11 G J 2  11 i + 

The controller KO,, has the well-known separation structure, 
which will be discussed in more detail in Section V .  For 
comparison to the X, results below, it is useful to describe all 
suboptimal controllers. 

Theorem 2: The family of all admissible controllers such that 
( 1  TzW1l2 < y equals the set of all transfer matrices from y to U in 

II CI G/l/ :. 

where Q E @X2, ,lIQlli < y2 - ( l l G B ~ l / ~  +,llF2G/lli).- 
Thus, the suboptimal controllers are parametrized by a fixed 

(independent of y) linear-fractional transformation with a free 
parameter Q. With Q = 0 we recover KO,,. It is worth noting that 
the parametrization in Theorem 2 makes T,, affine in Q and 
yields the Youla parametrization of all stabilizing controllers 
when the conditions on Q are replaced by Q E CFiX,. This 
particular parametrization also has additional useful properties 
that will be discussed in Section IX-A. 

C.  X, Case 

The problem considered in this subsection is the suboptimal X, 
control problem: find all admissible K such that 11 T,,11, < y. 
Clearly, y must be greater than the X,-optimal level. In Section 
V-G we will briefly discuss how to find an admissible K to 
minimize )I  T,,~~,. Optimal X, controllers are more difficult to 
characterize than suboptimal ones, and this is one major differ- 
ence between the X, and X2 results. Recall that similar 
differences arose in the norm computation problem in Section 11-C 
as well. 

The X, solution involves two new Hamiltonian matrices 

The important difference here is that the (1, 2)-blocks are not sign 
definite, so we cannot use the lemmas in Section I1 to guarantee 
that H, E dom(Ric) or Ric(H,) 2 0. Indeed, these conditions 
are intimately related to the existence of X, suboptimal control- 
lers. Note that the (1, 2)-blocks are a suggestive combination of 
expressions from the X, analysis of Section 11-C and the X2 
synthesis of Section 111-B. The reasons for the form of these 
expressions should become clearer through the discussions and 
proofs for the following theorem. 

Theorem 3: There exists an admissible controller such that 
11 Tzwllm < y iff the following three conditions hold. 

i) H, E dom(Ric) and X ,  : = Ric(H,) L 0. 
ii) J, E dom(Ric) and Y ,  : = Ric(J,) 2 0. 
iii) p ( X ,  Y,)  < y2. 
Moreover, when these conditions hold, one such controller is 

where 

a, : = A f y -'BIB ,!X, + BzF, + Z ,  L,C2 

F, := -B;X , ,  L ,  :=  - Y,C;, Z ,  := ( I - Y - ~ Y , X , ) - '  

The X, controller displayed in Theorem 3 has certain obvious 
similarities to the X2 controller as well as some important 
differences. Although it is not as apparent as in the X2 case, the 
X, controller also has an interesting separation structure. 
Furthermore, each of the conditions in the theorem can be given a 
system-theoretic interpretation in terms of this separation. These 
interpretations, given in Section V, require the filtering and full 
information (i.e., state feedback) results of the next section. The 
proof of Theorem 3 is constructed out of these results as well. 

The following theorem parametrizes the controllers that 
achieve a suboptimal X, norm less than y. 

Theorem 4: If conditions i)-iii) in Theorem 3 are satisfied, 
the set of all admissible controllers such that 11 T,, 11 , < y equals 
the set of all transfer matrices from y to U in 

where Q E RXm, I I Q l l m  < y. 
As in the X2 case, the suboptimal controllers are parametrized 

by a fixed linear-fractional transformation with a free parameter 
Q. With Q = 0 we recover the central controller Ksub(s). 

IV. SPECIAL PROBLEMS 

In this section we discuss four problems from which the output 
feedback solutions of the previous sections will be constructed via 
a separation argument. These special problems are central to the 
whole approach taken in this paper, and as we shall see, they are 
also important in their own right. All pertain to the standard block 
diagram 

K 
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but with different structures for G. The problems are labeled as 
follows. 

FZ: Full information. 
FC: Full control. 
DF: Disturbance feedforward. 
OE: Output estimation. 
FC and OE are natural duals of FI and DF, respectively. The 

output feedback solutions will be constructed out of the FI and OE 
results. 

These special problems are not, strictly speaking, special cases 
of the output feedback problem, as they do not satisfy all of the 
assumptions. Each of the four problems inherits certain of the 
assumptions i)-iv) from Section 111 as appropriate. The terminol- 
ogy and assumptions will be discussed in the subsections for each 
problem. In each of the four cases, the results are summarized as a 
list of five items, as follows (in all cases, K must be admissible): 

1) the minimum of 11 T,,)I2 
2 )  the unique controller minimizing 11 T,, 112 

3) the family of all controllers such that ( 1  Tzw((2 < y, where y 

4) necessary and sufficient conditions for the existence of a 

5) the family of all controllers such that 1) Tzw\lm < y. 
In all cases, item 3) can yield the Youla parametrization of all 

stabilizing controllers, as in Theorem 2 .  To obtain this in each 
case below, simply replace the given conditions on Q with Q E 
CRX,. Detailed proofs for the results stated for these four 
problems are presented in Sections VI1 and VIII. 

is greater than the minimum norm 

controller such that 1 1  T,, )I  , < y 

A. Problem FZ: Full Information 

In this problem the controller is provided with full information 
since y = (X,). However, in the X2 case the optimal controller 
uses just x ,  with w providing only redundant information. And in 
the X, case a suboptimal controller exists which also uses just x.  
This case could have been restricted to state feedback, which is 
more traditional, but we believe that the full information problem 
is more fundamental and more natural than the state feedback 
problem, once one gets outside the pure Xz setting. 

One setting in which the full information case is more natural 
occurs when the parametrization of all suboptimal controllers is 
considered. It is also appropriate when studying the general case 
when Dll # 0 or when X, optimal (not just suboptimal) 
controllers are desired. Even though the latter two problems are 
not studied in detail in this paper, we want the methods to extend 
to them in a natural and straightforward way. 

The assumptions relevant to the FI problem which are inherited 
from the output feedback problem are as follows. 

i) ( A ,  B , )  is stabilizable and (Cl, A )  is detectable. 
ii) (A ,  B2) is stabilizable. 
iii) D,',[CI PI,] = [0 Z]. 
Assumption iv) has been effectively strengthened because of the 

assumed structure for Cz and D2,.  We should note that for the FI 
(and FC) problem, internal stability is not equivalent to T,, E 
@Em, although this presents no difficulties in the proofs. We 
simply must remember that in the FI case K admissible means 
internally stabilizing, not just T,, E CRX,. The results for the 
full information case are as follows. 

FZ.Z: min )I Tzw112 = ) I  G,BI ) I 2  = (trace(B,'X2B,))''*. 

FZ.3: K ( s )  = [F2 Q ( s ) ] ,  where Q E ax2, IIQII: < y2 - 
FZ.2: K ( s )  = [F2 01. 

II G,BI II ?. 
" FZ.4.'&Hm E dom(Ric), Ric(H,) 2 0. 

FZ.5: K ( s )  = [F,  - Q ( s ) y - ' B ; X ,  Q ( s ) ] ,  where Q E 

The X2 optimal controller in this case is a constant gain 
obtained from Ric( H2), as is well-known, and the X, controller 
is obtained similarly from Ric(H,). A fundamental difference 
between the two is that the X, controller depends on the 
disturbance through B, ,  whereas the X2 controller does not. This 
difference is essentially captured by the necessary and sufficient 
conditions for the existence of a controller given in FI.4. Note that 
this condition is the same as condition i) in Theorem 3. 

The two individual conditions in FI.4 may each be given their 
own interpretations. The condition that H ,  E dom(Ric) implies 
that X ,  : = Ric(H,) exists and K ( s )  = [F, 01 gives T,, as 

aX-9 II Qll- 5 7. 

Furthermore, )I  T,, 11, < 7, which is verified as part of the proof 
of Lemma 18 in Section VI-D. The further condition that X ,  2 0 
is equivalent to this K stabilizing T,,. Since this will be used 
again, it will be stated as a lemma. 

Lemma 6: Suppose H ,  E dom(Ric). Then A ,  in (5) is stable 
iff X ,  2 0. 

Proof: Rearrange the Riccati equation for X ,  and use the 
definition of F, and CIF, to get 

A ~ , X , + X , A ~ , + C ~ F , C ~ ~ , + ~ - 2 X m B ~ B ~ X , = 0 .  (6) 

Since H, E dom(Ric), (AF, + y-2B,B,'X,) is stable by 
Lemma 1 c), and hence (B,'X,, AF,) is detectable. Then from 
standard results on Lyapunov equations (see Lemma 14 a) in 

4 

B. Problem FC: Full Control 
I 

Section VI-B) AFm in (5) is stable iff X ,  2 0. 

W ) =  [3-5-] 
This problem is dual to the full information case: the FC G has the 
same form as the transpose of the FI G. The term full control is 
used because the controller has full access to both the state 
through output injection and to the output z. The only restriction 
on the controller is that it must work with the measurement y. The 
assumptions that the FC problem inherit from the output feedback 
problem are just the dual of those in the FI problem. 

i) ( A ,  B , )  is stabilizable and (Cl, A )  is detectable. 
ii) (C2, A )  is detectable. 

The results for the FC case are as follows. 
FCZ: min )I TzwJ12 = 11 CIG~ll2 = (trace(CI Y2C;))''2. 

FC.2: K(s )=  [ :] 

I1 QII :<y2 - II CiGfll:. 

FC.4: J ,  E dom(Ric), Ric(J,) 2 0. 
L 

where Q E @ E m ,  I I Q l l m < r .  

As expected, the condition in FC.4 is the same as that in ii) of 
Theorem 3. 
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C. Problem DF: Disturbance Feedforward 

G@)= [":I 
This problem inherits the same assumptions i)-iii) as in the FI 

problem, but for internal stability we need to strengthen i) from 
(A ,  B, )  stabilizable to A - BlC2 is stable. With this assumption, 
internal stability is again equivalent to T,, E (RX,, as in the 
output feedback case. This fact will be stated in its dual form as a 
lemma in the next section. 

To motivate the name disturbance feedforward consider the 
special case with C2 = 0. Then there is no feedback and the 
measurement is exactly w. The feedback caused by Cz # 0 does 
not affect the achievable norm as long as A - B,C2 is stable. The 
latter condition is equivalent to the transfer function from w to 
y (  G2])  having neither right half-plane transmission zeros nor 
unstable hidden modes, so both x and w can be solved for in terms 
ofy (since U is known as well). Thus, DF is essentially equivalent 
to FI, DF.l  and DF.4 are the same as FI.1 and FI.4, and DF.2, 
DF.3, and DF.5 can be obtained from the corresponding results in 
FI. This idea is formalized in the proofs in Section VIII. The DF 
results are as follows. 

DF.1: min 1)  TzwJ(2 = I/ G,BI 112. 

DF.2: K ( s )  := [w] . 

DF.3: The set of all transfer matrices from y to U in 

M z ( s )  = [-I 
where Q E a&, II Q II :< r2 - II G,BI 11:. 

DF.4: Ha E dom(Ric), Ric(H,) 2 0. 
DF.5: The set of all transfer matrices from y to U in 

where Q E @X,, I I Q l l m  < Y. 
D, Problem OE: Output Estimation 

G(s)= [*I 
This problem is dual to DF, just as FC was to FI. Thus, the 

discussion of the DF problem is relevant here, when appropriately 
dualized. The OE assumptions are as follows. 

i) ( A ,  B , )  is stabilizable and A - B2Cl is stable. 
ii) (Cz,  A )  is detectable. 

Assumption i), together with iv), imply that internal stability is 
again equivalent to T,, E @X,, as in the output feedback case. 
Obviously, assumption ii) is necessary for the existence of 
internally stabilizing controllers, but is not required to prove this 
equivalence. Since this is used in the proof of the output feedback 
problem, it will be stated as a lemma. The proof is in Section VI- 
C .  

Lemma 7: Suppose that assumptions i) and iv) hold. Then for 
the OE problem, K is admissible iff T,, E @X,. 

We are focusing on this restricted estimation problem because it 
is the one that arises in solving the output feedback problem. A 
more conventional estimation problem would be the special case 
where the internal stability requirement is dropped and B2 = 0. 
Then the problem would be that of estimating the output z given 
the measurement y .  This special case motivates the term output 
estimation, and can be obtained immediately from the results 
here. The OE results are as follows. 

0E.I: min 11 Tzwl12 = )I CIGfJI2. 

OE.2: K ( s )  := [-] . 

OE.3: The set of all transfer matrices from y to U in 

where Q E (RX2, IIQII; < y2 - IICiGfII:. 
OE.4: J ,  E dom(Ric), Ric(J,) 2 0. 
OE.5: The set of all transfer matrices from y to U in 

where Q E @Ea, II Qll, < y. 
It is interesting to compare X, and Xz in the context of the OE 

problem, even though, by duality, the essence of these remarks 
was made before. Both optimal estimators are observers with the 
observer gain determined by Ric(J,) and Ric(Jz). Optimal X2 
output estimation consists of multiplying the optimal state estimate 
by the output map C1. Thus, optimal X2 estimation depends only 
trivially on the output z that is being estimated and state 
estimation is the fundamental problem. In contrast, the X, 
estimation problem depends very explicitly and importantly on the 
output being estimated. This will have implications for the 
separation properties of the X, output feedback controller. 

V. SEPARATION THEORY AND PROOFS OF THEOREMS 1-4 

If we assume the results of the special problems, which are 
proven in Sections VI1 and VIII, we can now prove Theorems 3 
and 4 using separation arguments. This essentially involves 
reducing the output feedback problem to a combination of the full 
information and the output estimation problems. The separation 
properties of the X, controller are more complicated than for the 
X2 controller, although they are no less interesting. This paper 
gives only a brief interpretation of these ideas, and it may be that 
further study will reveal deeper understanding of the structure of 
the X,controller. The notation and assumptions for this section 
are as in Section 111. 

A .  X2 Controller Structure 

Recall that the unique XI optimal controller is 

[ :; I = [ -4+B2F2+L2C2 1 Ybc;]  
K ~ ( s )  :=  

- B;X2 
and 

min II T Z W  11; = II GCBI II ; + II FZGf II ; 
where X2 : = Ric(H2) and Yz : = Ric(J2) and the min is over all 
stabilizing controllers. Note that F2 is the optimal state feedback in 
the full information problem and L2 is the optimal output injection 
in the full control case. The well-known separation property of the 
X2 solution is reflected in the fact that K2 is exactly the optimal 
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output estimate of F2x and can be obtained by setting C ,  = F2 in 
OE.2. Also, the minimum cost is the sum of the FI cost (FI. 1) and 
the OE cost for estimating F2x (OE. 1). 

The controller equations can be written in standard observer 
form as 

= A i  + &U + Lz( CzZ - y )  

U = F22 

where .f is the optimal estimate of x .  

B. Proof of Theorem I 

The proof requires a preliminary change of variables that will 
also be used several times in the sequel. If we define a new control 
variable v : = U - F ~ x ,  the transfer function to z becomes 

where 

and 

U(s )  := [*] . 

This latter matrix has two useful properties given in Lemma 17 in 
Section VI-D and proven by simple algebra: U is inner (i.e., 
U - U  = I) and U-G, belongs to CRX:. 

Proof of Theorem I :  Let K be any admissible controller 
and look at how v is generated: 

K 

G, = 

Note that K stabilizes G iff K stabilizes G, (the two closed-loop 
systems have identical A-matrices), and that G, has the form of 
the output estimation problem. From (7) and the properties of U 
we have that 

(8) 

But from item OE.2, 11 TYw(J2 is uniquely minimized by the 
controller 

min II T,, I1 = II G,BI I1 f + min II T,, II f. 

[ A + B Z f t 2 + L 2 G  1 -oLz] 

and then from OE. 1 min 11 Tuw112 = 1 1  F2GfIIp. 

C .  Proof of Theorem 2 

Continuing with the development in the previous proof, we see 
that the set of all suboptimal controllers equal the set of all K s  
such that 11 Tu, 11; < yz - 11 G,BI 11 i. Apply item OE.3 to get that 
such K s  are parametrized by 

D. X, Controller Structure 

The X, controller formulas from Theorem 3 are 

KSUb(s) :=  [s] 
A,  = A + y - 2 B ~  B X, + B2Fm + Z ,  L,C2 

F ,  := - B ; X , ,  L ,  := -y,c; ,  z,  :=  ( I -y -2Y,Xm)- '  

where X ,  : = Ric(H,) and Y ,  : = Ric(J,). The necessary and 
sufficient conditions for the existence of an admissible controller 
such that (1  T,, (1, < y are as follows. 

i) H, E dom(Ric) and X ,  : = Ric(H,) 2 0. 
ii) J ,  E dom(Ric) and Y ,  : = Ric(J,) 2 0. 
iii) p(X,Y,)  < y2. 
We have seen that condition i) corresponds to the full 

information condition Ft.4, and that ii) corresponds to the full 
control condition FC.4. It is easily shown that, given the FI and 
FC results, these conditions are necessary for the output feedback 
case as well. 

Lemma 8: Suppose that there exists an admissible controller 
making I( Tzw\lm < y. Then conditions i) and ii) hold. 

Proof: Let K be an admissible controller for which 1 1  Tzwllm 
< y. The controller K [ C 2  D Z l ]  solves problem FI; hence, from 
FI.4, H, E dom(Ric) and X ,  : = Ric(H,) 2 0. Condition ii) 

We also would expect some condition beyond these two, and 
that is provided by iii) which is an elegant combination of 
elements from the FI and FC. Note that all the conditions of 
Theorem 3 are symmetric in H,, J,, X,, and Y,, but the 
formula for the controller is not. Needless to say there is a dual 
form that can be obtained by inspection from the above formula. 
For a symmetric formula, the state equations above can be 
multiplied through by Z ,  and put in descriptor form. A simple 
substitution from the Riccati equation for X ,  will then yield a 
symmetric, although more complicated, formula. A symmetric 
formula of the standard form can then be obtained using Z z 2 .  The 
details are omitted. 

To emphasize its relationship to the X 2  controller formulas, the 
X, controller can be written as 

follows by the dual argument. 

~ = A ~ + B ~ ~ , , , , , + B ~ u + Z , L , ( C ~ ~ - ~ )  

These equations have the structure of an observer-based compen- 
sator. The obvious questions that arise when these formulas are 
compared to the X2 formulas above are as follows. 

1) Where does the term Bl$Cworst come from? 
2) Why Z,L, instead of L,? 
3) Is there a separation interpretation of these formulas 

analogous to that for Xz? 
The proof of Theorem 3 reveals that there is a very well-defined 

separation interpretation of these formulas and that w,,,,~ : = 
Y - ~ B , ' X , X  is, in some sense, a worst-case input for the full 
information problem. Furthermore, Z , L ,  is actually the optimal 
filter gain for estimating F,x, which is the optimal full informa- 
tion control input, in the presence of this worst-case input. It is 
therefore not surprising that Z ,  L ,  should enter in the controller 
equations instead of L,. The term GJ',,,,~ may be thought of loosely 
as an estimate for w,,,,,. 

E. Proof of Theorem 3 

This proof also requires a preliminary change of variables that 
will be used repeatedly. If we define new disturbance and control 
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variables r : = w - y 2 B , ’ X , x ,  U : = U + B;X,x ,  then 

Call this transfer function G,,, , and note that it has the form of the 
plant in problem OE. Now look at a proper controller K and its 
effect when applied both to G and to Grmp. The two block 
diagrams are =-& 

K K 

The following lemma connects these two systems, TZk, and Tur. 
Recall that internal and input-output stability are equivalent for 
admissibility of K in both the output feedback and OE problems. 

Lemma 9: Assume X ,  exists and X ,  2 0. Then K is 
admissible for G and )I T,, 11, < y iff K is admissible for Grnlp and 

Although the proof of this lemma is given in Section VI-D, we 
will give some motivation. If we assume X ,  : = Ric(H,) exists, 
we can differentiate x( t )  ’ X , x ( t ) ,  where x ( t )  is the solution to 
the plant equations for a given input w 

d 
- x ‘ x , x = x ‘ x , x + x ‘ x , x  
dt 

lIT”rl1- < 7. 

= x ’ ( A ’ X w + X m A ) x + 2 ( w ,  B ; X m x ) + 2 ( u ,  B;X,x) .  

The Riccati equation for X ,  is 

A ‘X, + X,A + C ;  C I  + y -2X,B,  B,‘ X ,  - XmB2B; X ,  = 0. 

Using this to substitute in for A ’ X ,  + X,A gives 

+ 11 B ;  X,xll + 2(  w, B,’ X m x )  + 2 ( u ,  B;  X,x) .  

Finally, completion of the squares along with orthogonality of 
Clx and DI2u gives the key equation: 

- y2  It W -  Y - 2 ~ , ’  xmxli 2 +  11 U + B; ~ ~ ~ 1 1 2 .  (9) 

Assume x(0)  = x ( m )  = 0 ,  w E C 2 + ,  and integrate (9) from t = 
O t o t  = 03: 

I1 z 11; - Y 2  I1 w I1 ; = I1 U + B; X-XII ; 
-y21) w-y-2B, ’X ,x l ( ;  = II uI(:-y2 IIr 11:. (10) 

These results motivate the change of variables to rand U, and they 
provide the connections between T,, and Tur. In particular, from 
(10) it is immediate that 11 T,,]I, 5 y iff 11 Turll, 5 y. While this 
is the basic idea behind the proof of Lemma 9, the details needed 
for strict inequality and internal stability require a bit more work. 

Note that w,,,,~ : = ?;’B,’X,x is the worst disturbance input 
in the sense that it maximizes the quantity ( 1  z )I  - y2 11 w ( 1  in (10) 
for the minimizing value of U = - B;  X,x;  that is, the U making 
U = 0 and the w making r = 0 are values satisfying a saddle point 
condition. It is also interesting to note that w,,,,~ is the optimal 
strategy for win the corresponding LQ game problem. In terms of 
problem OE for Grmp, the output being estimated is the optimal FI 
control input F,x and the new disturbance r is offset by the 
“worst case” FI disturbance input w,,,,~. 

While G,,, has the form required for the OE problem, to 
actually use the OE results to prove Lemma 9 and the rest of 
Theorem 3, we will need to verify that G,, satisfies the following 
assumptions for the OE problem. 

i) ( A r m p ,  B l )  is stabilizable and A,, + B2F, is stable. 
ii) (C2, A,,,) is detectable. 

Assumptions iv) and (A,,,, B , )  stabilizable from i) follow 
immediately from the corresponding assumptions for Theorem 3. 
The following lemma gives conditions for assumption ii) and the 
remaining part of i) to hold. Of course, the existence of an 
admissible controller for G,,,,, immediately implies that assump- 
tion ii) holds. Note that the OE Hamiltonian matrix for Grmp is 

Lemma 10: a) If H, E dom(Ric), then A,,, + BzF, is 
stable. b) If Jrmp E dom(Ric) and Y,, : = Ric(J,,) 2 0, then 
(C2, Arm,) is detectable. 

Proof: Part a) follows immediately from Lemma 1 c) and 
part b) follows from the dual to Lemma 6, which gives that (Armp 

U 
Proof of Theorem 3 (Sufficiency): Assume conditions i)- 

iii) in the theorem statement hold. Using the Riccati equation for 
X,, one can easily verify that 

- YrmpC; C2) is stable. 

1 c o r  
I - y -2x, T : =  

L -l 

provides a similarity transformation between Jrmp and J,, i.e., 
T-‘  Jlmp T = J,. Thus, 

SO Yrmp : = Ric( Jt,) = Y,(Z - Y, ) - ’  = Z ,  Y,, and 
p(X, Y,)  < y2 implies that Y,,  2 0. Thus, by Lemma 10 the 
OE assumptions hold for G,,,,, and by item OE.4 the OE problem 
is solvable. For item OE.5 with Q = 0 one solution is 

rA+y-2BIB;Xm-YrmpC;C2+B2Fm Y r m p C ;  1 
L Fm I o J  

but this is precisely Ksub defined in Theorem 3. We conclude that 
Ksub stabilizes G,, and 11 Turll < y. Then by Lemma 9, K,ub 
stabilizes G and 1)  T,,Il < y. 

(Necessity): Let K be an admissible controller for which 
)I T,,\I, < y. By Lemma 8 H, E dom(Ric), X ,  : = Ric(H,) 2 
0, J ,  E dom(Ric), and Y ,  : = Ric(J,) 2 0. From Lemma 9, K 
is admissible for G,, and 11 Tu, 11, < y. Together with Lemma 10 
a), this implies that the OE assumptions hold for G,, and that the 
OE problem is solvable, so from OE.4 applied to G,,,,, we have 
that Jrmp E dom(Ric) and U,, = Ric( Jrmp) 2 0. Using the same 
argument as in the sufficiency part, we note that Y,, = ( I  - 
y2 Y,X,)-l Y ,  2 0, which implies that p ( X ,  Y,)  < y2. U 

We now see exactly why the term involving 12’,,,,~ appears and 
why the “observer” gain is Z,L,. Both terms are consequences 
of the output estimation problem of estimating the optimal full 
information (i.e., state feedback) control gain. While an analo- 
gous output estimation problem arises in the X2 output feedback 
problem, the resulting equations are much simpler. This is 
because there is no “worst-case” disturbance for the Xz full 
information problem and the problem of estimating any output, 
including the optimal state feedback, is equivalent to state 
estimation. 

We may now present a separation interpretation for X, 
suboptimal controllers. It will be stated in terms of the central 
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controller, but similar interpretations could be made for the 
parametrization of all suboptimal controllers (see the proofs of 
Theorems 3 and 4). 

The X, output feedback controller is the output estimator of the 
full information control law in the presence of the “worst-case” 
disturbance w,,,,,~. 

Note that the same statement holds for the X 2  optimal controller, 
except that w,,,,~ = 0. 

F. Proof of Theorem 4 

From Lemma 9 the set of all admissible controllers for G such 
that (1  TZw\\, < y equals the set of all admissible controllers for 

I Glmp such that 11 TUr[ [ ,  < y .  Apply item OE.5. 

G .  Optimality and Dependence of the Solution on y 

In this section we will discuss, without proof, the behavior of 
the X, suboptimal solution as y varies, especially as y ap- 
proaches the infimal achievable norm, denoted by yo. Since 
Theorem 3 gives necessary and sufficient conditions for existence 
of an admissible controller such that 1 1  Tzwllm < y, yo is the 
infimum over all y such that conditions i)-iii) are satisfied. 
Theorem 3 does not give an explicit formula for yo, but just as for 
the X, norm calculation, it can be computed as closely as 
desired by a search technique. 

Although we have not focused on the problem of X, optimal 
controllers, the assumptions in this paper make them relatively 
easy to obtain in most cases. In addition to describing the 
qualitative behavior of suboptimal solutions as y varies, we will 
indicate why the descriptor version of the controller formulas 
from Section V-D can usually provide formulas for the optimal 
controller when y = yo. Most of these results can be obtained 
relatively easily using the machinery that is developed in Sections 
VI1 and VIII. The reader interested in filling in the details is 
encouraged to begin by strengthening assumption i) to controlla- 
ble and observable and considering the Hamiltonians for X i  I and 
Y , ’ .  Descriptor formulas are stated in Limebeer and Kasenally 
[28], and the optimal case is treated in detail in Glover et al. [ 161. 

As y -+ 03, H, -+ H2, X, -+ X 2 ,  etc., and Ksub -+ K2. This 
fact is the result of the particular choice for the central controller 
(Q = 0) that was made here. While it could be argued that Ksub is 
a natural choice, this connection with X2 actually hints at deeper 
interpretations. In fact, Ksub is the maximum entropy solution 
[29], [I51 as well as the minimax controller for 1 1  z 1 1  - y z  11 w 11 :. 

If yz 2 yl > yo, then Xm(Yl) 2 X,(y2) and Ym(yz) 2 Ym(y2). 
Thus, X ,  and Y ,  are decreasing functions of y, as is p ( X ,  Y,). 
At y = yo, any one of the three conditions in Theorem 3 can fail. 
If only condition iii) fails, then it is relatively straightforward to 
show that the descriptor formulas for y = yo are optimal. The 
formulas in Theorem 3 are not well-defined because the term (Z - 
yo-2X, Y,)  is not invertible. It is possible but far less likely that 
conditions i) or ii) would fail before iii). To see this, consider i) 
and let yI be the largest y for which H, fails to be in dom(Ric), 
because it fails to have either the stability property or the 
complementarity property. The same remarks will apply to ii) by 
duality. 

If complementarity fails at y = yI ,  then p(X,) -+ 03 as y -+ 71. 
For y < yI,  H ,  may again be in dom(Ric), but X ,  will be 
indefinite. For such y, the controller U = - B; X,x would make 
11 T,, 11, < y but would not be stabilizing. If the stability property 
fails at y = yl,  then H, 4 dom(Ric) but Ric can be extended to 
obtain X ,  and the controller U = - B; X,x  is stabilizing and makes 
11 Tzwllm = yl.  The stability property will also not hold for any y 
5 yI ,  and no controller whatsoever exists which makes 11 T Z w ~ ~ ,  
< yI .  In other words, if stability breaks down first then the 
infimum over stabilizing controllers equals the infimum over all 
controllers, stabilizing or otherwise. In view of this, we would 
expect that typically complementarity would fair first. 
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Complementarity failing at y = y I  means p(X,) -+ 03 as y -+ 

yI so condition iii) would fail at even larger values of y, unless the 
eigenvectors associated with p(X,) as y -+ y1 are in the null space 
of Y,. Thus, condition iii) is the most likely of all to fail first. If 
condition i) or ii) fails first because the stability property fails, the 
formulas in Theorem 3 as well as their descriptor versions are 
optimal at y = yo. If the complementarity condition fails first, 
then obtaining formulas for the optimal controllers is a more 
subtle problem. 

VI. TECHNICAL MACHINERY 

This section collects a number of results that will be used in the 
proofs in the remainder of this paper. The development is in terms 
of a series of lemmas, each having a short and reasonably 
elementary proof. It is hoped that this incremental development 
will help reveal the essential structure of the proofs. Also, the 
lemmas in this section are of independent interest beyond their 
utility in constructing the proofs of the main theorems. 

Section VI-A reviews some results on Hankel operators and 
introduces the 2 x 1-block mixed Hankel-Toeplitz operator 
result that will play a key role in the X, FI problem. Section VI-B 
includes two lemmas on characterizing inner transfer functions 
and their role in certain LFT’s and Section VI-C considers the 
equivalence of internal and input-output stability for the output 
feedback and OE problems. Finally, Section VI-D gives some 
specific state-space formulas, based on the general results in 
Section VI-B which will be used in the proof of Lemma 9 and the 
FI results. The proof of Lemma 9 is also given. 

It can be assumed, without loss of generality, that y = 1, since 
this is achieved by the scalings Y-’’~C’, y”’B2, Y I ’ ~ C Z ,  
y-IX,, y-I Y,, and y - IK .  This will be done for the remainder 
of this paper. 

A. Mixed Hankel- Toeplitz Operators 

of G(s) in (1) and its associated differential equation 
It will be useful to characterize some additional induced norms 

i= Ax+ Bw 

z =  c x  (1 1) 

with A stable. We will prove several lemmas that will be useful in 
the rest of the paper. It is convenient to describe all the results in 
the frequency domain and give all the proofs in the time domain. 

Consider first the problem of using an input w E .e2- to 
maximize 11 P+zll: .  This is exactly the standard problem of 
computing the Hankel norm of G (i.e., the induced norm of the 
Hankel operator P + M G : X t  -+ X2), and can be expressed in 
terms of the Gramians L, and Lo from (2). Although this result is 
well known, we will include a time-domain proof similar in 
technique to the proofs of the new results in this paper. 

Lemma 11: 

sup IIP+zll;= sup I lP+MGwI l ;  = p ( L o L ) .  
w E @ 3 2 2 -  w m H c :  

Proof: Assume ( A ,  B )  is controllable; otherwise, restrict 
attention to the controllable subspace. Then L, is invertible and w 
E Oe2- can be used to produce any x(0) = xo given x (  - 03) = 0. 
The proof is in two steps. First, 

inf { II w I1 Ix(0) = x o }  =x; Lp’xo. (12) 
w E 2 2 -  

To show this, we can differentiate x ( t ) ’ L ; ’ x ( t )  along the 
solutions of (1 1) for any given input w as follows: 

= x ’  ( A  ’ L ; ’ + L ; ’ A  ) x + 2 ( w ,  B ’ L ; ‘x) . 
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Use of ( 2 )  to substitute for A 'LC-l + L ,  ' A  and completion of the 
squares give 

Integration from t = - 03 to t = 0 with x (  - 00) = 0 and x(0) = 
xo gives 

xi L,-'xO= 11 w 11 - 11 w - B'Lc-lxl( is 11 w 11 :. 
If w(t) = B'e-A'rL;'xo = B'Lcle(A+BB'Lc ' ) fxoon ( -  CO, 01, 
then w = B'Lc-*x and equality is achieved, thus proving (12). 

Second, given x(0)  = xo and w = 0, the norm of z ( t )  = 
CeA'xo can be found from 

11 P +  z 11 = j6 x i  e A  "c' CeArxo dt = x i  ~ , x ~ .  

These two results can be combined as in Section I1 of [13] 

If ( 1  G (Im < 1, then by Lemmas 1 and 4, the Hamiltonian matrix 
H i n  (4) is in dom(Ric), X = Ric(H) L 0, A + BB'Xis stable, 
and 

(13) 

The following lemma offers yet another consequence of 11 G 11 < 
1. In fact, this simple time-domain characterization and its proof 
form the basis for the entire development to follow. 

A ' X  + XA + XBB ' X + C' C = 0. 

Lemma 12: Suppose ( 1  G Ilm < 1 and x(0) = xo. Then 

sup 
wE3e2+ 

(11z11: - II wll:) =x;=o. 

Proof: We can differentiate x( t ) 'Xx(t)  as above, use the 
Riccati equation (13) to substitute for A ' X  + X A ,  and complete 
the squares to get 

d 
dt 
- (x'XX)= - 1 1 ~ 1 / ~ +  IIwJ12- )I  w-B'Xxl( ' .  

If w E C 2 + ,  thenx E C2+ , so integrating from t = 0 to I = CO 
gives 

11 211 - 11 W I( XXO - ( 1  w - B'Xxll i s x i  XXO. (14) 

Ifwelet w = B ' X x  = B'Xe(A+BB'X)rxo, then w E C2+ because 
A + BB'Xis stable. Thus, the inequality in (14) can be made an 
equality and the proof is complete. Note that the sup is achieved 
for a w which is a linear function of the state. 

Now suppose that the input is partitioned so that B = [ B1 B,], 
G(s)  = [C,(s) G 2 ( s ) ] ,  and w is partitioned conformally. Then 
IIG2llm < 1 iff 

is in dom(Ric). For Hw E dom(Ric), define W = Ric(Hw). Let 

We are interested in a test for supwEaw IIP+Z\\~ < 1, or 
equivalently 

where r = P+[MG,  MG2]:W + X2 is a mixed Hankel-Toeplitz 
operator 

Note that I' is the sum of the Hankel operator P+MGP_ with the 
Toeplitz operator P+MG2P+ . The following lemma generalizes 
Lemma 4 ( B ,  = 0) and Lemma 11 (B2 = 0). 

Lemma 13: Equation (16) holds iff the following two condi- 
tions hold. 

i) Hw E dom(Ric). 
ii) p(WL,) < 1. 

Proof: As in Lemma 11, assume ( A ,  B) is controllable; 
otherwise, restrict attention to the controllable subspace. By 
Lemma 4, condition i) is necessary for (16), so we will prove that 
given condition i), (16) holds iff condition ii) holds. We will do 
this by showing, equivalently, that p (  WL,) 2 1 iff supwEm3w7 
((I'w1I2 2 1. By definition of 151, if w E W, then 

I I~+zI l : - l lw l l :=  IIP+zll:- IlP+w2lI:- l lP -w I l$  
Note that the last term only contributes to )I P+z 11 through x(0). 
Thus, if L, is invertible, then Lemma 12 and (12) yield 

SUP { 11 P+ Z ( 1  :- ( 1  w 11 $ Ix(0) =XO} =xi WXO - x i  L,-'xo (17) 
W E  w 

and the supremum is achieved for some w E W that can be 
constructed from the previous lemmas. Since p (  WL,) 2 1 iff 3x0 
# 0 such that the right-hand side of (17) is 2 0, we have, by (17), 

that p (  WL,) 2 1 iff 3 w E W, w # 0 such that ~ \ Z J + z ~ ~ ~  L 

The FI proof of Section VII-C will make use of the adjoint 
I'*:X2 -+ 151, which is given by 

Ilwll:. But this is true iff supWE,,Ilrwl12 2 1. 

where P-Gz : = P - ( G z )  = ( P - M G ) z .  That the expression in 
(18) is actually the adjoint of r is easily verified from the 
definition of the inner product on vector-valued C 2 ,  expressed in 
the frequency-domain as 

( x I ,  x2) : = jm x l ( jw)*x* ( jw)  dw. (19) 2% - m  

The adjoint of I':W - X2 is the operator r*:X2 -+ W such that 
( z ,  I'w) = (I'*z, w) for all w E W, z E X2. Directly using the 
definition in (19), we get 

B. LFT's and Inner Matrices 

A transfer function G in @Xm, is called inner if G - G  = I ,  
and hence G( jw)*G( jo )  = I for all W .  Note that G inner implies 
that G has at least as many rows as columns. For G inner, and any 
q E em, w E C 2 ,  then I IG(b)q)I  ,= 11q(19 V y 9  and lIGw112 = 
11 ~ 1 1 2 .  Because of these norm preserving properties inner matrices 
will be central to several of the proofs. In this section we give a 
characterization of inner functions and some properties of linear 
fractional transformations. First, we present a state-space charac- 
terization of inner transfer functions analogous to Lemma 4 that is 
well known and simple to verify (see [ 2 ] ,  [39], and [13]). 
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Lemma 14: Suppose 

with ( C ,  A )  detectable and Lo = L i  satisfies 

A'L,+L,A+C'C=O. 
Then the following holds. 
a) Lo 2 0 iff A is stable. 
b) D'C + B ' L ,  = 0 implies G - G  = D'D. 
c) Lo 2 0, (A ,  B )  is controllable, and G - G  = D'D implies 

D'C + B'L,  = 0. 
The next lemma considers linear fractional transformations 

with inner matrices and is based on the work of Redheffer [31]. 
Lemma 15: Consider the following feedback system: 

Suppose that P-P  = I ,  P i '  E @X,, and Q is a proper 

a) The system is internally stable and well-posed, and 1) T,,\\, 

b) Q E @X, and IlQllm < 1. 

rational matrix. Then the following are equivalent. 

< 1. 

Proof: b) j a). Internal stability and well-posedness follow 
from P, Q E CRX,, IIP221Jm 5 1, lIQ\l, < 1, and a small gain 
argument. To show that 1)  Tz,,,llm < 1 consider the closed-loop 
system at any frequency s = j w  with the signals fixed as complex 
constant vectors. Let 11 Q 11, = : E < 1 and note that Twr = P ; I ( Z  
- P Z 2 Q ) E  CRX,.Alsolet~:= ))T,,I\,.Then)Iwll I K i r y ,  
and P inner implies that llzllz + llr1I2 = 11 wl12 + )I U 11 . 
Therefore, 

on. Define 

n12(h)  : = rank [ 
::2] , 

Now suppose we apply a controller K to G to obtain Tzw. Recall 
that K is admissible iff it internally stabilizes G. For the following 
lemma, we do not need the assumptions from Section 111-A on G 
for the output feedback problem. 

Lemma 16: Suppose that n12(A) = n + m, and nzl (A) = n + 
p2 for all Re (A) 2 0. Then K is admissible iff T,, E @X,. 

Proof: Form the closed-loop state-space matrices and per- 
form a PBH test for controllability and observability. It is easily 
checked that any unobservable or uncontrollable modes must 
occur at X violating the above rank conditions (see Limebeer and 
Halikias [26] for more details). Hence, the closed-loop system is 
stabilizable and detectable and the result follows. 

It is easy to prove Lemma 5 by verifying that assumptions i), 
iii), and iv) for the output feedback problem in Section 111-A imply 
that the rank conditions in Lemma 16 hold. Similarly, Lemma 7 is 
proven by verifying that the assumptions for the OE problem also 
imply that the above rank conditions hold. Note that for the OE 
problem, DI2 = Z. Further details are left to the reader. 

D. Specijic State-Space Formulas 

Recall from Section V-B that if we define a new control 
variable in the X2 problem, v : = U - F2x, the transfer function 
to z becomes (7) 

Z =  [F] [ :] = G , B , w + U v  
C I F ~  0 D12 

which implies 1)  Tz,,,\\, < 1. 
a) - b). To show that 1)  Q < 1 suppose there exists a (real or 

infinite) frequency w and a constant nonzero vector r such that at s 
= j y ,  IIQrll 2 Ilrll. Then setting w = P;,'(Z - PZ2Q)r, U = 
Qr gives U = Tu,w. But as above, P inner implies that + 
Ilrl12 7 I IWI I '  + IIuI12, and hence llzl12 2 I I w ~ ~ ~ ,  which is 
impossible since )I T Z w ~ ~ ,  < 1. It follows that umaX(Q(ju)) < 1 
for all U ,  i.e., 11 Qll, < 1, since Q is rational. 

Finally, Q has a right-coprime factorization Q = NM-I with 
N ,  M E CRX,. We shall show thatM-I E @X,. Since T,,Pi1 
= Q(Z - P22Q)-1 it has the right-coprime factorization TUwP;' 
= N ( M  - P22N)-1 .  But since T,,P;' E @Xm, so does ( M  - 
P22N)- ' .  This implies that the winding number of det(M - 
P22N) ,  as s traverses the Nyquist contour, equals zero. Further- 
more, since det(M - aP2,N) # 0 for all a in [0, 11 and all s = 
j w  (this uses the fact that llP2211m 5 1 and IIQll, < l) ,  we have 
that the winding number of det M equals zero too. Therefore, Q 
E @Em and the proof is complete. 8 

C. LFT's and Stability 

and 

Suppose D ,  is any matrix making IDlz D,] an orthogonal 
matrix, and define 

The following is easily proven using Lemma 14 by obtaining a 
state-space realization, and then eliminating uncontrollable states 
using a little algebra involving the Riccati equation for X2.  

Lemma 17: [ U U 1  ] is square and inner and a realization for 
G;[U U , ]  is 

In this section, we consider the equivalence of internal and 
input-output stability for the output feedback problem and the DF 
problem, and in particular, Lemmas 5 and 7. The proofs in this 
section are very routine and use standard techniques, principally 
the PBH test for controllability or observability, so they will only 
be sketched. 

Recall the realization of G from Section 111-A and suppose that 
A E W X n ,  and that z ,  y ,  w, and U have dimension p1, 8 2 ,  m , ,  
and m,, respectively. Thus, C1 E R P l x n ,  B2 E Rnxm2, and so 

This implies that U and U ,  are each inner, and both U ;  G, and 
U-G,  are in CRX:. 

Under the assumption that X ,  exists, the change of variables 
for the X, problem introduced in Section V-E is r : = w - 
B,'X,X, U : = U + B; X,x. If we recall the definitions of G and 
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AF, 

[ zi: = [ Cl,=, p22 
-B;x, 

843 

Bl B2 

0 D12]  
r o 

U U U 

Equation (10) suggests that P is inner when X ,  2 0, which is 
verified by the following lemma. 

Lemma 18: If X ,  exists and X ,  2 0, then P in (22 )  is in 
(RX, and inner, and P i 1  E (RX,. 

Proof: Note that P I 1  equals T,, in (5). Thus by Lemma 6, 
A ,  is stable and P E @X,. That P is inner ( P - P  = I )  follows 
from Lemma 14 upon noting that the observability Gramian of P 
is X ,  [see (6)] and 

Finally, the state matrix for P i '  is (AF, + B I B ;  X,), which is 
stable from the proof of Lemma 6 .  Thus, P i '  E (RX,. H 

We are now in a position to prove Lemma 9, which was the 
central part of the separation argument in Section V-E. 

Proof of Lemma 9: We may assume without loss of 
generality that the realization of K is stabilizable and detectable. 
Recall from Lemma 5 that for T,, internal stability is equivalent to 
T,, E @X,, and similarly from Lemma 7 for Tu,, provided that 
OE assumptions i) and iv) hold for Glmp. OE assumption iv) for 
GI, is the same as for the output feedback problem, and 
assumption i) follows from Lemma 10 a). Thus, internal stability 
is equivalent to input-output stability for both G and Glmp. The 
result then follows immediately from Lemmas 15 and 18 along 

H 

VII. PROOFS FOR PROBLEM FI: FULL INFORMATION 

with the above block diagrams. 

We will prove the FI results and the FC results follow by 
duality. 

A .  Items FI.l and FI.2 

The minimum of 11 Tzw)12 equals 11 G,BI 112 and the unique 
optimal controller is K ( s )  = [FZ 01. 

Proof of FI.l and FI.2: We have verified the steps in the 
proof of Theorem 1 in Section V-B through (8) (see Lemma 17). 
Now Tu, can be made identically 0 by setting U = F2x so that v = 
U - F2x = 0. This uniquely minimizes ( 1  T,, 112 and makes 11 T,, 112 

H 
We shall also prove a slightly stronger result. Let w be a fixed 

impulse, wo6, and allow U to be an arbitrary function in C2+ 
instead of restricting it to be generated through y .  It turns out that 
the optimal U is actually obtained by state-feedback. 

Proposition I :  For each w ( t )  = wo6(t) there exists a unique 
U in C2+ minimizing ( I z ( ( ~ ,  namely, U = F2x. Moreover, 

= I( G,BI ( I 2  and K ( s )  = [F2 01. 

min IJzJJ2= I)GcBIw~))2= ~ ~ B , ' X ~ B I W O .  

Proof: Consider (7) and observe that v is a free function in 
X2: from any v in X2 we can recover U via U = v + F2x, and 
then U E X2. It follows from Lemma 17 that the functions 
GcB1 wo and Uvare orthogonal for every v in Xz. Hence, with U 

inner 

l l ~ I l : =  IIGcBIwoll;+ II uvIl:= IlG~BlwoII:+ IIYII:. 

This equation gives the desired conclusion immediately: the 
optimal v is v = 0 (i.e., U = F2x) and the minimum norm of z 

H 

B. Item FI.3 

equals II GCBI WO 112. 

The set of all admissible controllers such that 11 T,, 112 < y is 
described by 

K ( s ) = [ F 2  Q(s)l, Q E aX2, IIQII:<Y'- IIGcBiII:. (23) 

Proof: Let K be an admissible controller such that 11 Tzw1(2 
< y. Denote by Q the transfer matrix from w to v ;  it belongs to 
(RX, by internal stability. Then U = F2x + Y = F2x + Qw so K 
= [F2 Q l t  and from (8), 11 Tzwll~ = II G ~ I  11: + II Q I I  i j  and 
hence 

II Q II = II T z w  II ; - II GCBI II :< Y' - II GcBi I1 ;. 
Likewise, one can show that every controller of the form (23 )  is 
admissible and suboptimal. H 

C. Item FI.4 and FI.5: Necessity 

then 
If there exists an admissible controller such that 11 T,, 11, < 1, 

H, E dom(Ric), Ric(H,)>O. (24) 

As in the X2 case, we will also prove a slightly stronger result. 
Before beginning the proof, however, we will show that we can, 
without loss of generality, strengthen the assumption on ( C1, A )  
from detectable to observable. Suppose there exists a controller 

K- [ A  I B I B 2 ]  
c DID, 

such that 11 T,, I( , < 1. If ( CI, A )  is detectable but not observable, 
then change coordinates for the state of G to [:;I with x2 
unobservable, (CI1, A l l )  observable and A,, stable, giving the 
following closed-loop state equations: 

XI = A I ~ x ~ +  BII w + B ~ I u  

Z = C I I X I  + D ~ I u  

X , = A ~ ~ X ~ + A ~ ~ X ~ + B ~ ~ W + B , , U  

P = Aa + B,  1x1 + B12X2 + B2w 

U = ca + D,  I XI + D12x2 + D, w. 

If we group the first two equations as a new plant Gobs with state X I  
and group the last three equations as a new controller Kobs with 
state made up of x2 and .f, then 

still satisfies the assumptions of the FI problem and is stabiljzed by 
Kobs with (1  T,, (1, < 1 .  If we now show that there exists X ,  > 0 
solving the X, Riccati equation for Gobs, then 

Ric(H,)=X,= [ {m :] r O  
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exists for G. We can therefore assume without loss of generality 
that ( C1, A )  is observable, which by Lemma 3 implies that XZ > 
0. feedback connection 

with K and JlmP are equivalent. Now suppose Q E BXm, 1 1  Q 11, 
< 1 ,  and Klmp(s) = Q ( s )  [ - B ;  X ,  Z ]  so U = Qr. This gives the 

Proposition2: IfsupWEmC2+ minuEc2+ llzl12 < 1 ,  then H, E 
dom(Ric) and Ric(H,) > 0. 

Proof: Again define v : = U - F2x to get z = G,BI w + 
Uv, and note that by Lemma 3 ,  (Cl, A )  observable implies that 
X2 > 0. The hypothesis implies that 

(25) By Lemma 18, P is inner and P i '  E BX,. Hence, by Lemma 
15 T,, E B X ,  with 11 T , , ~ ~ ,  < 1 iff Q E (RX, with IIQll, < 
1. Hence, the stated class of controllers has the desired properties. 

To verify that this class incorporates all admissible controllers 
such that 11 T,, 11, < 1 ,  let K be any such controller. Then Tu, E 
BE,  and T,, = P I 1  + P12Tu,.  Now define Q = ( Z  + 
TuwP;1P~2)-1TuwP;1 so that Q ( 1  - P22Q)-1P21 = Tu, and T,, 
= P I I  + PI2Q(Z - P22Q)-1P21.  Since P22 is strictly proper all 
the above are well-posed and Q is real-rational and proper. 
Hence, Lemma 15 implies that Q E B X ,  with IIQll, < 1 .  

sup sup llzlt2< 1. 
W E B K 2  "EK2 

With W from (15) define the operator r:W -+ X2 as 

r [;;I = P + ( B ; G ; ( U q I + U , q z ) )  

[ ;;I = P ,  B ;  Gc-[U U1] 

where [ U  U,] is from (20) and G; [ U  UL] E BX2 has the 
realization in (21). Note that from (18) the adjoint operator 
r*:C2+ + W is 

VIII. PROOFS FOR PROBLEM DF: DISTURBANCE FEEDFORWARD 

Given DF, the OE problem results follow by duality. We will 
show how to produce the DF results directly from the correspond- 
ing FI results. Specifically, we will prove two propositions that 
show that the two problems are equivalent. It is then a routine 
exercise to apply these propositions to obtain the DF results, and 
the details are omitted. 

Denote the G for the FI problem in Section IV-A as GFI and the 
G for the DF problem in Section IV-C as GDF, so 

r * w =  P - ( U - G , B 1 w ) ]  = [ pby-] G,Blw. [ U GcBI w 

Since is square and inner by L~~~~ 17, ( (z( (z  = 
JI[U uLl-zII23 and 

U-G,BI W +  v 
[ U  uLl-z= 

Together with (25) ,  this implies that supwEaK2 IlI'*wl12 < 1 or 
equivalently, that 

This is just the condition (16), so from Lemmas 3 and 13 and (21) 
we have that 

and W = Ric(Hw) I 0. Furthermore, the controllability 
Gramian for (21) is X;l since 

AF2X;  I + X; IAk2 + B 2 ~ ;  + x; I C ;  cIx; = 0. 

Lemma 13 also implies p (  W X ; l )  < 1, or equivalently X 2  > W 
Using the Riccati equation for X2, one can verify that 

L - 
- I  x-' 

T : =  0' 1 
provides a similarity transformation between H, and Hw,  i.e., 
Ha = THwT-' ,  so that H, E dom(Ric). Also, 

s o x ,  = X,(X2 - W ) - I X ,  > 0. 

D. Item F1.4 and FZ.5: Sufficiency 

admissible controllers such that I( T,,I[, < 1 equals 
If Ha E dom(Ric) and X ,  = Ric(H,) I 0, then the set of all 

K(s)=[F, -Q(s)B, 'Xm Q(s)l, Q E I I Q I I m < l .  

Note that this contains the only if part of FI.4. 
Proof: We will again change variables to U : = U - F,x 

and r : = w - B,' Xax  with the corresponding controller K,,(s) 
: = K ( s )  - [Fa 01. The internal stability of the feedback systems 

A 

t] B2 1 BI 
0 0 1 7  

[ij 

Recall that both have assumptions i)-iii) from Section IV-A but 
that the GDF has the additional assumption that A - BlC2 is 
stable. Suppose that we have controllers KFI and KDF and let TFI 
and TDF denote the closed-loop T,, in 

YE1 

We will assume throughout that any controller realizations are 
stabilizable and detectable. This is easily verified for all the DF 
controllers. The following proposition is obvious. 

Proposition 3: The controller KDF internally stabilizes GDF iff 
KFI = K D F [ C ~  11 internally stabilizes GFI. Furthermore, in this 
case TFI = TDF. 

To complete the equivalence, suppose that we have a controller 
for the FI problem, denoted by KFl and let KDF be the transfer 
function generated by 

K F I  

Proposition 4: The controller KFI internally stabilizes GFI iff 
KDF internally stabilizes GDF. Furthermore, in this case TF1 = 
TDF. 
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Proof: Apply KDF to GDF and let x and 2 denote the state of 
GDF and PDF, respectively. Then the overall equations in terms of 
e : = x - 2 and 2 are 

e =  ( A  - BlC2)e 

.i?= A f +  B1 w + B2u + BIC2e U = KFIE= KFI [ i] 
B = y - C 2 f =  w + C2e. 

The proposition is then easily seen by _comparing these equations 
to the corresponding equations when KFI is applied to GFI. 

IX. ADDITIONAL INTERPRETATIONS 

This section considers some additional connections with the 
1984 approach and with the work of Whittle, and will be of 
interest primarily to readers already familiar with them. Section 
IX-A presents a 2 x 2-block generalization of Lemma 13, and 
gives some indication of how it could be used in the 1984 
procedure to provide alternative proofs of Theorems 3 and 4.  For 
further discussion of 2 X 2-block mixed Hankel-Toeplitz 
operators, see [12] and the references therein. 

Section IX-B gives another separation interpretation of the 
central X, controller of Theorem 3 in the spirit of Whittle [35]. It 
has been shown in [14] that the central controller corresponds 
exactly to the steady-state version of the optimal risk sensitive 
controller, derived by [35], who also derives a separation result 
and a certainty equivalence principle (see also [36]). 

A .  Mixed Hankel-Toeplitz Operators: The 2 x 2-Block Case 

Given the historical role that mixed Hankel-Toeplitz operators 
have played in X, thecory, especially within the context of the 
1984 approach, it is interesting to consider the 2 x 2-block 
generalization of Lemma 13. The proof of Lemma 19 below is 
completely straightforward and fairly short, given the other 
results in Section VI-A, and is omitted. Suppose that 

Define W = X; 8 .L2, Z = X2 8 .C2, and I':W + Z as 

Lemma 19: supwEallr7 Ill? w [ I 2  < 1 holds iff the following three 

i) Hx E dom(Ric). 
ii) HY E dom(Ric). 
iii) p ( X Y )  < 1 for .Y = Ric(Hx) and Y = Ric(Hy). 
To see how this lemma might be used in the 1984 procedure to 

prove Theorems 3 and 4, suppose we begin with G as in Section 
111 with state dimension n. If we then use M2 from Theorem 2 we 
can obtain a parametrization of all admissible controllers in terms 
of Q E CRX, and the affine parametrization TJQ) = To + 
UQV. It is easily shown that To is the 32.2 optimal closed-loop 
system from Theorem 1 ,  U (from Sections V-E and VI-D) is 
inner, and V (the dual of U )  is coinner ( V' is inner). 

Finding Q E CRX- such that 11 Tzw(Q)llm < y is called the X, 
model-matching problem and is clearly a special case of the 
problem considered in this paper. The next step in the 1984 
approach is to form [ U  UI ] from Section VI-D and the aual for 

conditions hold. 

V and transform to the 2 x 2 block general distance problem. 
- -  

r 

L J 

Note that I( Tzw(Q)llm is the same as the X, norm of the quantities 
in (26). It can be shown with a little algebra that R in (26) is 
antistable and has state dimension 2n. We may now use Lemma 
19 and some additional arguments to construct a Q E CRX, from 
Xand Y such that 11 Tzw(Q)\l, < y. In fact, it turns out that X in 
Lemma 19 for R is exactly Win the FI proof in Section VII-C. 

The final step is to obtain the controller from M2 and Q. Since 
M2 has state dimension n and Q has 2n, the apparent state 
dimension of K is 3n, but some tedious state space manipulations 
produce cancellations resulting in the n-dimensional controller 
formulas in Theorems 3 and 4 .  This approach is exactly the 1984 
procedure with Lemma 19 used to solve the general distance 
problem. Although this approach is conceptually straightforward, 
and was in fact used to obtain the first proof of the results in this 
paper, it seems unnecessarily cumbersome and indirect. The 
simplicity of the resulting formulas suggested the more elegant 
separation argument that is used in this paper. 

B. Relations with Separation in Risk Sensitive Control 

Although [35] treats a finite horizon, discrete-time, stochastic 
control problem, his separation result has a clear interpretation for 
the present infinite horizon, continuous-time, deterministic con- 
trol problem, as given below; and it is an interesting exercise to 
compare the two separation statements. This discussion will be 
entirely in the time-domain. 

We will consider the system at time, t = 0, and evaluate the 
past stress S -, and future stress S + , as functions of the current 
state x.  Firstly define the future stress as 

S+(X) := sup inf(l(P+zl(2-y-21(P+w112) 

then by the completion of the squares and saddle point argument 
of Section V-E, where U is not constrained to be a function of the 
measurements (FI case), we obtain 

s + (x) = X'X,X. 

The past stress S-(x) is a function of the past inputs and 
observations U( t), y(  t )  for - 03 < t < 0, and the present state x 
and is produced by the worst case disturbance w that is consistent 
with the given data 

w u  

S-(X) :=  sup (IIP-zll2-y211P-w112). 

In order to evaluate S- we see that w can be divided into two 
components, D2,w and Dtlw, with x only dependent on D i w  
(since BID,,' = 0) and D2, w = y - C2x. The past stress is then 
calculated by a completion of the square and in terms of a filter 
output. In particular, let .f be given by the stable differential 
equation 

. f=AX+ B2u+Lm(C2.f- y )  + Y,C,'C,.f 

Then it can be shown that the worst case w is given by 

with .f( - w)=O. 

DAw=D; ,B , 'Y; I (x ( t ) -Z( t ) )  for t < O  

and that this gives, with e : = x - x, 
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The worst case disturbance will now reach the value of x to 
maximize the total stress, S-(x )  + S+(x), and this is easily 
shown to be achieved at the current state 

.f= Z,X(O). 

The definitions of X ,  and Y,  can be used to show that the state 
equations for the central controller can be rewritten with state A? 
: = Z - 2 ,  and with X as defined above. The control signal is then 

U = F,2= F,Z,X. 

The separation is between the evaluation of future stress, 
which is a control problem with an unconstrained input, and the 
past stress, which is a filtering problem with known control input. 
The central controller then combines these evaluations to give a 
worst case estimate 2 and the control law acts as if this were the 
perfectly observed state. 
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