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Feedback  and  Optimal  Sensitivity:  Model 
Reference  Transformations,  Multiplicative 

Seminorms, and Approximate  Inverses 

Ahsfruct-In this paper,  the  problem of sensitivity  reduction by feed- 
back is formulated as an  optimization problem  and separated  from  the 
problem of stabilization.  Stable  feedback  schemes  obtainable  from  a given 
plant are parameterized.  Salient  properties of sensitivity  reducing  schemes 
are derived,  and it is shown that plant uncertainty  reduces  the  ability of 
feedback to reduce  sensitivity. 

The theory is developed for  input-output  systems in a  general  setting of 
Banach  algebras. and then  specialized to a class of multiirariable, time- 
invariant  systems  characterized by n X n  matrices of H“ frequency re- 
sponse  functions,  either with or without zeros in the  right  half-plane. 

The approach is based  on the use of a Icvighted seminorm on  the  algebra 
of operators to measure  sensitivity, and on  the  concept of an approximate 
intwse. Approximate  invertibility of the  plant is shown to be a  necessary 
and  sufficient  condition  for  sensitivity  reduction. An indicator of approsi- 
mate  invertibility,  called  a measure of singularity, is introduced. 

The measure of singularity of a  linear  time-invariant  plant is shown to be 
determined by the  location of its right  half-plane  zeros. In the  absence of 
plant  uncertainty,  the  sensitivity to output disturbances  can  be  reduced to 
an  optimal value approaching  the  singularity measure.  In particular, if there 
are no  right  half-plane  zeros.  sensitivity  can be made arbitrarily small. 

The feedback  schemes used in the  optimization of sensitivity  resemble 
the lead-lag networks of classical  control design. Some of their  properties, 
and  methods of constructing  them in special  cases  are  presented. 

I .  INTRODUCTION 

N THIS  paper we shall be  concerned  with the effects I of feedback  on uncertainty, where uncertainty  occurs 
either in the form of an additive  disturbance d at  the 
output of a linear plant P (Fig. l), or an additive  perturba- 
tion in P representing  “plant uncertainty.” We shall ap- 
proach this subject from the point of view of classical 
sensitivity theory, with the difference that  feedbacks will 
not only reduce  but actually optimize sensitivity in an 
appropriate sense. 

The theory will be developed at two  levels  of generality. 
At the higher  level. a framework  will  be sought in  which 
the essence of the classical ideas can be  captured. To this 
end. systems will be  represented  by mappings belonging to 
a normed algebra.  The object here  is to  obtain general 
answers to such questions as: how does the usefulness of 
feedback depend  on  plant invertibility? are there measures 

December 17,  1980. Paper  recommended by A. Z. Manitius,  Past  Chair- 
Manuscript received October 8,  1979;  revised December 4, 1980 and 

man of the Optimal  Systems  Committee. An earlier  version of this paper 
[23] was presented  the 17th Allerton  Conference,  October 1979. 

University,  Montreal,  P.Q.,  Canada. 
The  author is with the  Department of Electrical  Engineering.  McGill 

d 

FILTER - 
Fig. 1. 

of sensitivity or plant  uncertainty  that  are  natural  for 
optimization? how does  plant  uncertainty affect the possi- 
bility of designing a  feedback scheme to reduce plant 
uncertainty? 

At  a  more  practical level, the  theory will be  illustrated  by 
simple examples  involving single variable  and  multivari- 
able  frequency responses. The questions here are:  can  the 
classical “lead-lag”  controllers  be derived from  an  optimi- 
zation  problem? How do  RHP (right  half-plane) zeros 
restrict sensitivity? in multivariable systems without RHP 
zeros1 can sensitivity be made  arbitrarily small, and if so 
how? 

A.  Motivation 

A few observations might serve to  motivate this reex- 
amination of feedback theory. 

One way of attenuating  disturbances is to  introduce  a 
filter of the  WHK  (Wiener-Hopf-Kalman)  type in the 
feedback  path.  Despite  the  unquestioned success of the 
WHK  and  state-space  approaches, the classical methods, 
which  rely on lead-lag “compensators” to reduce sensitiv- 
ity. have continued to  dominate  many  areas of design. On 
and off, there have  been attempts to develop analogous 
methods for multivariable systems. However, the classical 
techniques  have  been difficult to pin  down in a  mathemati- 
cal theory. partly because the purpose of compensation  has 
not been clearly stated.  One of our objectives is to for- 
mulate the compensation problem as the solution  to a well 
defined  optimization  problem. 

Another  motivating  factor is the  gradual  realization that 
classical theory is not  just  an old-fashioned way of doing 
WHK,  but is concerned  with a different  category of 
mathematical problems. In a typical WHK problem,  the 
quadratic  norm of the  response to a disturbance d is 
minimized by  a  projection  method (see Sections 111’-A’ and 
IV-C); in  a  deterministic version, the power spectrum 

0018-9286/81/0400-0301$00.75 01981 IEEE 



302 IEEE TRANSACTIONS  ON  AUTOMATIC  COKTROL. VOL. AC-26. NO. 2. APRIL 1981 

(d(jo)( is a single,  known vector in, e.g., the  space 
L,( - 00, w ) ;  in  stochastic versions, d belongs to a single 
random process of known covariance properties. However, 
there  are many practical  problems  in which Id( j w ) (  is 
unknown but belongs to a prescribed set,  or d belongs to a 
class of random processes  whose  covariances are  uncertain 
but belong to a prescribed set. For example, in  audio 
design, d is often  one of a set of narrow-band signals in  the 
20-20K Hz interval, as opposed  to  a single, wide-band 
signal  in  the  same  interval.  Problems involving  such more 
general  disturbance  sets  are  not  tractable by WHK  or 
projection techniques. In  a  feedback  context, they are now 
usually handled by  empirical methods resembling those of 
classical sensitivity. One objective here is to find  a sys- 
tematic  approach to problems involving such  sets of dis- 
turbances. 

Another  observation is that  many  problems of plant 
uncertainty  can  be  stated easily in  the classical theory, e.g., 
in terms of a  tolerance-band on a frequency  response as in 
123, but are difficult to express in a  linear-quadratic-state- 
space framework. One reason for t h s  is that frequency- 
response  descriptions and, more generally, input-output 
descriptions preserve the  operations of system addition  and 
multiplication, whereas state-space  descriptions do not. 
Another  reason  is  that  the  quadratic  norm is hard  to 
estimate  for system products (see Sections 111’-A’ and 
IV-Bl), whereas the  induced  norm  (or  “gain”)  that is 
implicit in the classical theory is easier to estimate. We 
would like to exploit these advantages  in the study of plant 
uncertainty. 

Finally. sensitivity theory is  one of the few tools availa- 
ble  for  the  study of organization  structure: feedback  versus 
open-loop, aggregated  versus disaggregated, etc. For exam- 
ple, feedback  reduces  complexity of identification roughly 
for  the same reason that it reduces sensitikity [ 121. [ 131. 
However, it is hard to draw definitive conclusions about 
the effects of organization  without  some  notion of optimal- 
ity, and such  a  notion is missing in the old  theory. 

B.  Weighted  Seminorms and Approximate Inuerses 

One way  of defining  the  optimal sensitivity of a feed- 
back system, and of addressing some of the issues men- 
tioned in Section I-A, is in terms of an induced  norm of the 
sensitivity operator. However, it will be shown  in  Section 
111’-B’ that  the  primary  norm of an  operator in a  normed 
algebra is useless for this purpose.  Perhaps  that is  why 
operator  norm  optimization  has  not been pursued  exten- 
sively in the  past. 

Instead, we shall  introduce an auxiliary “weighted” 
seminorm.  which retains some of the multiplicative proper- 
ties of the induced  norm,  but is amenable  to  optimization. 
Plant  uncertainty will be described in terms of belonging to 
a  sphere  in  the weighted seminorm. 

Approximate invertibility of the plant is one of the 
features which distinguishes control from. say. communi- 
cation  problems. We shall define the concept of an  ap- 
proximate inverse under  a weighted  seminorm. and show 

that sensitivity reduction is possible if there is  such an 
inverse. 

C. Background 

Many of the ideas in this  paper  are foreshadowed in the 
classical theory [I].  [2] of single-input single-output  con- 
volution systems. especially as presented  by Horowitz [2], 
who  derived  various limits on sensitivity imposed  by the 
plant.  and stressed the need to consider  plant  uncertainty 
in design. The  author posed the feedback problem in a 
normed  algebra of operators on a Banach space. and 
introduced [4]. [ 5 ]  perturbation  formulas of the  type 

( z - P ) - l - ( z - P o ) - l = ( z - P ) - l (  P-Po)(z-Po)-’  

(1.1) 

which  were  used to show that high-gain feedback  reduces 
the sensitivity of linear amplifiers to large  nonlinear per- 
turbations [3]-[5] .  Desoer studied  a related problem in [6] ,  
and recently [7] has  obtained results for  the  case of P and 
Po both nonlinear (also see footnote 8). Perkins  and Cruz 
[8] used perturbation  formulas similar to (1.1) to calculate 
the sensitivity of linear  multivariable systems. Porter [9] 
posed various sensitikity problems  in  Hilbert space. and  in 
a  paper with Desantis [IO] obtained circle type  conditions 
for sensitivity reduction. Willems [ l l ]  has stressed the 
Banach algebraic aspects of feedback theory. 

In [1]-[10]. the disturbance is either  a fixed vector. or 
lies in some band of frequencies. and sensitivity is  mea- 
sured in terms of an output norm. as opposed  to  an 
induced  operator  norm.  The  approach of using  weighted 
operator  norms.  and  relating  optimal sensitivity to weighted 
invertibility via a fractional transformation was  used in 
[ 121. but  has since been  rea.orked and  expanded. 

D. Two Problems 

We shall be concerned with the system of  Fig. 1. Here, P 
is a given plant with a single (possibly multivariable)  input 
c accessible to control.  and  an  output J’ to which a dis- 
turbance d .  not accessible to control.  has been added.  The 
plant  input u is  generated  by a filter whose  only inputs 
consist of observations on the plant  output J. and  a refer- 
ence input u. Two types of problems will  be considered. 

Problem I -Disturbance  Atrerzuation: This  problem will 
be the subject of Sections V-VII.  Suppose  that u=O. The 
input-output behavior of the system  between the  nodes 
(2.3) can  be  modeled by the flowgraph of Fig. 2. which 
consists of the plant P and  a single additional  operator F 
in the feedback path.  The  disturbance d is uncertain in the 
sense that it  can  be  any one of a set of disturbances. 
Iniiiall?  (through Section V I )  P is  assumed to be  known 
exactly. but later (Section V 1 1 )  to be uncertain. We lvould 
like to characterize the  feedback operators F btAich attetluate 
the response j. to d in  some appropriately optimal sense. and 
esanline rhe ejjects of  rmcertainr!.  about P on disturbance 
uttenuation. 
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Problem 2-Plant C'ncertainty Attenuation: (Problem 2 is 
the subject of Section VIII.)  Suppose  that d=O, and  the 
plant P is uncertain to the extent that it can be any one of 
a "ball" of possible plants centered around  some nominal 
value P,. If the  filter is linear, the behavior of the system 
between nodes (1,2,3) can be modeled  by the flowgraph of 
Fig. 4. The filter can be characterized by a pair of opera- 
tors ( U .  F ) .  We would  like to find operators (U. F )  which 
shrink  the  ball of uncertaint~~ but leaoe the  nominal  plant 
invariant;  to find bounds on the  optimal  shrinkage  and to 
look  at its dependence on plant  uncertainty. 

E. Outline of the Paper 

See Synopsis following Appendixes. 

11. SPACES AND ALGEBRAS OF SYSTEMS 

The  purpose of this section is to specify the meaning 
which will be attached to the terms "frequency-response'' 
and "linear system." and  to  summarize their properties for 
later use. 

A feature of the  input-output  approach is that systems 
can be added. multiplied by other systems or by scalars, 
and the sums or products  obtained  are still  systems.  i.e., 
they form  an algebra. Frequently, i t  will be assumed  that 
the largest amplification produced by a system can be 
measured by a  norm, typically the maximum frequency 
response amplitude over some region of analyticity:  under 
this assumption the algebra of systems becomes a normed 
algebra. Normed algebras provide the  natural  setting for 
the study of system interconnections such as feedback. 
Their elementary properties will be used  freely here, and 

v Fig. 4. 

may be found in  such texts as Naimark [19]. Occasionally, 
it will  be assumed  that a normed  algebra is a Banach 
algebra, i.e., has the  property  that every convergent se- 
quence of elements of the algebra  has a limit in the algebra. 

I t  will be assumed  that all linear spaces and algebras are 
over the real field. 

A. Algebras of Frequency Response  Systems 

The frequency response of a stable, causal, linear time- 
invariant system is a function analytic  in  the right-half of 
the complex  plane. An accepted setting for such functions 
involves the H P  Hardy spaces [15],  which we shall  employ 
with some  modifications  to  accommodate  unstable sys- 
tems. 

The algebra H," consists of functions $( .) of a complex 
variable s= u +jw,  each of which is  analytic in some  open 
half-plane  Re(s)>u, possibly depending  on p ( . ) ,  and is 
bounded  there, i.e., #(s)<const. for  Re(s)>u,.  The  func- 
tions  in H," will be referred to  as causal frequency re- 
sponses. If $ is  in H r ,  then  the  domain of definition of $ 
can be extended by analytic  continuation  to  a  unique, 
maximal, open  half-plane of analyticity  Re(s)>u,,,  where 
up, <up. In general, p need not be bounded  on this maxi- 
mal  open RHP,  but if it is, then  it  can  further  be  extended 
to  the  boundary by the limit $(up, +jo lim,,,,,p(o+ 
j w ) ,  which exists for almost all w provided u+jw ap- 
proaches  the  boundary  nontangentially  from  the  right. 
Assume that all functions  in H," have been so extended. 

The algebra H" (of stable causal frequency responses) 
consists of functions p of H," for which up GO, i.e., the 
region of bounded  analyticity  includes  the RHP. The  norm 
II$II=sup{l#(s)l:  Re(s)>O} is defined  on H", making 
H" a normed  and,  indeed,  Banach algebra. 

A strictly proper function in H," satisfies the condition 
p(s)+O as (s (+co in Re(s)>u,.  The symbols H,", and 
H," will denote  the algebras of strictly  proper  frequency 
responses in H," and H", respectively. By a straightfor- 
ward  application of the  maximum  modulus  principle, the 
normed  algebra H," of strictly  proper stable frequency 
responses has  the  property that II $ I I  =esssup { 1 $ ( j w ) ( :  w 
real}  for any$ in H,", i.e., the  norm  can be computed  from 
jw-axis measurements. 

Spaces of Inputs and Outputs: For any integer 1 d q< co, 
the  linear  space H,4 consists of functions fi( .) of a complex 
variable, each fi being analytic in some  open  half-plane 
Re(s) > uu in which the  restriction of fi to  any vertical line 
is in L4 and loC,) l i (u+jw)Jqdw~const.  for all u>u,. 
Again, the  domain of definition of each fi in H," is extended 
by analytic  continuation to  a maximal  open RHP of ana- 
lyticity and then, if li is L.4-bounded in this RHP, to  its 
boundary  by  a  nontangential limit. The  space Hq consists 
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of functions fi in H," for which a, GO, and is a Banach 
space  under  the  norm II li II = sup,,o {I", I fi( u + 

Inputs  and  outputs will belong either to H: or one of 
the H," spaces, 1 G q <  x .  In the special  case q= 2 i t  follows 
from  the Paley-Wiener theory that every function of H' is 
a Laplace transform of a time function in L'(0. ,x )  and 
vice  versa.  In the general  case of Hq.  some functions can be 
viewed  as transforms of time functions. and the others  as 
frequency functions  that do not  appear in  physical applica- 
tions and can be disregarded. 

Frequenc). Response Operarors: Let q be any integer, 
1 <q<x. which  will be held  fixed. For any causal 
frequency response p( .) in H : z  operator P: H,4 4 H: is 
defined by the multiplication Pu(s )=j j ( s )B(  5). P will be 
called a causal frequency response operator.  and the alge- 
bra of all  such operators will be denoted by the bordered 
capital HIP. Similarly, for each of the algebras of frequency 
responses H". H Z .  and H,". an algebra of operators 
mapping H: into itself  is defined and denoted by the 
corresponding bordered capital. i.e.. W ". HFo. or W;. In 
the case of normed frequency response algebras. the corre- 
sponding  operator algebras are similarly normed. e.g., 

The  stable operators in W" map H 4 .  which  is a proper 
subspace of HZ. into Hq, and are in fact completely de- 
termined by their behavior  on H 4 .  They can therefore be 
represented by their restrictions of the form P: H q  -+ H 4 .  

In sections devoted entirely to  stable systems. we shall 
concentrate on operators of the form P: H q  + H 4  without 
distinguishing them as restrictions of operators on Hz.  

j 4 p d d W } l / 9 .  

l l P l ! H = = l I ~ ~ i ~ = .  

B. More General Algebras of SJxrems 

We  would  like to take an axiomatic approach  to the 
problem of sensitivity reduction by feedback. i.e.. to single 
out  the relevant properties of linear systems and postulate 
them  as axioms. For example. the related properties of 
causality.  realizability. and  strong  or strict  causality  have 
definitions [see,  e.g.. [ 141 and [ 111) reflecting the fact that 
the response to a sudden input to a physical  system can not 
anticipate the input.  and  cannot occur instantaneously. 
These properties of physical  systems preclude the patho- 
logical phenomena associated  with instantaneous response 
around a feedback  loop. and ensure that the feedback 
operator ( I t  P ) - '  is  well defined. However.  these details 
are not relevant  here. The only  items of interest are  that 
causal systems  form an algebra of mappings. and that 
strictly causal systems  form a subalgebra whose salient 
feature is the existence of the inverse ( I t  P ) - '  for  all  of its 
members. i t . .  a '-radical."  Accordingly ~ v e  postulate the 
following. 

?x is a linear space whose elements wil l  be called irlputs 
or outputs. A is a linear algebra of linear mappings P: 
<x-+:X with identity I. whose elements will be called causal 
operarors. A is a radical of A,  Le..' a proper nontrivial 

inverse ( I+P)- '  exists in A. and for any F in A the 
products PF and FP are in A ,. The elements of A ,  will be 
called strictly causal operators. (The concept of  an algebra 
of "realizable"  systems  was introduced by the author in 
[ 141; the related notions of strong causality of Willems [ 111, 
and  later strict causality of Porter, Saeks, and  Desantis are 
compared in a paper of Feintuch [20].) 

An example of the space :X of inputs  and  the algebra A 
of causal operators is provided by the space H," of (trans- 
forms of) inputs  and the algebra WT of causal frequency 
response operators. In  this context the algebra H z  of 
strictly proper frequency response operators is an example 
of an algebra A, of strictly causal operators. Henceforth, 
we  shall refer to the strictly proper  operators  as strictly 
causal. 
. In the case of stability. we shall  need the fact that a 
stable  input-output system produces a finite amplification 
of inputs  that  can be measured by a suitable norm. and 
that stable systems  form an algebra (see,  e.g. [j]). Accord- 
ingly. we postulate the  following. 

is a Banach subspace of 3 whose elements will be 
called bourlded inputs or outputs [for example. H' or 
L, (O,x ) ] .  5 is a normed subalgebra of A containing  the 
identity 1. whose elements will be called stable causal 
operators. under the following assumption: the  norm of 
any P in B is the  $-induced  norm.  that is, 
IIPII = sup{lIPuJl,~llulI: 14 in 55. u # 0 } ,  the sup being 
finite.' 

I f  WF is taken as  an example of A. then W" is an 
example of B. 

B, is the subalgebra of 5 obtained by intersecting A ,  
and B. consisting of srricr(pcausu1  stable operators.  It 
should be noted that 5, is not a radical of 5. as P stable 
does not  imply that ( I  A P ) - I  is stable. 

For the purpose of estimating the effects of small per- 
turbations. i t  will  be assumed that B, has the small-gain 
propert).. i.e..  for any P in B,. i f  II PI1 < 1 then ( I +  P)-' is 
in B. If 5 is complete. i.e.. a Banach space, this assumption 
is redundant for  thcn the series I -  P+ P' - . . . converges 
to the inverse in 5 of ( I t  P ) .  However. we have applica- 
tions in mind in which completeness of B is replaced  by 
other assumptions. 

A frequency response p E H" which  is  not strictly proper 
can not be realized  exactly. but  can be approximated by a 
sequence of strictly proper responses of the form n(s+ 
/ I ) - ' ~ ( . Y ) .  H= 1.2. . . .  . The sequence n ( ~ + 1 7 ) - '  is an 
example of an "identity sequence." More generally. iden- 
ti ty sequences wil l  be used to construct strictly proper 
approximations  to  improper responses. and  are defined as 
follows: an ideruir).  sequence {I,,}:=' for 5 is a sequence of 
operators in 5 with the propert>-  that for any F in B the 
sequences I1 I,, F- F I I  and :! FI,, - F I !  approach 0 as t7 - rx. 
I t  is assumed that B, contains  an identity sequence for B. 

The following  well-known (cf. Naimark [19. p. 1621) 
properties of a normed algebra will be crucial in many 

subalgebra of A with the property that for an?: P in A ,. the 
'Whenever the norm of .Y i b  not identified b! a subscript. it should be 

'The properties of radicals are discussed in Naimark [ 19. p. 1611. taken t o  be the  principal norm of the space to \vhich I belongs. 
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parts of the  paper. For convenience  they are proved in 
Appendix  I. 

Let P and Q be in B. 
Proposition 2.1: a) If ( I+PQ)- '  is in B, then ( I +  

QP)- '  is in B, and  the  formula P ( I + Q P ) - ' = ( I +  
PQ)-'P is valid. b) If R is a  radical  in B and P is in R ,  
then P has  no inverse in B. (Strictly  causal  operators  have 
no inverses in B.) c) If P and ( I +  P ) -  ' are  in B and 
IIPII<l, then l l ( I+P)~ ' l l~( l - l lP l l )~ ' .  

111. FEEDBACK  DECOMPOSITION:  STABILIZING AND 
STABILIZED STAGES 

We  proceed to derive a  decomposition  principle to  be 
employed  in disturbance  attenuation.  Suppose  that  there is 
no  plant uncertainty,  and  that  the  plant  and feedback are 
constrained not to  be  simultaneously  unstable.  Under  these 
hypotheses, any closed-loop stable feedback  design  can be 
decomposed  into two stages: a  first  stage involving plant 
stabilization (which  can  be omitted for stable  plants);  and 
a second stage. involving a model reference scheme in 
which only stable elements are used, and which is auto- 
matically closed-loop stable. The choice of a stabilizing 
stage is independent of. and  does  not  prejudice the choice 
of the second stage. Having established this fact, we shall 
be free to  concentrate  on  the second stage of the dis- 
turbance  attenuation  problem  under the condition  that  the 
plant is stable (or has been stabilized). without loss of 
generality. 

Consider  the system of  Fig. 2. The  plant  input c,  output 
y. and  disturbance d are all in !X and satisfy the  equations 

y=Pu+d (3.la) 
c= -Fy (3.lb) 

in which P and F are  operators in A s  [see Remark  3.lc)l. 
We shall refer to (3.1) as  a feedback  scheme with plant P 
and feedback F. Since P is strictly  causal, the inverse 
( I + P F ) - '  exists in A. Therefore,  for each d in X, (3.1) 
have  unique  solutions  for v and y in X, given by  the 
formulas 

J = ( f + P F ) - ' d  (3.2a) 

c=  - F( I + P F ) - ' d .  (3.2b) 
Let K,,: ? x ~ $ i '  denote the "closed-loop" operator  map- 
ping d to c.  K,, is an  operator in A given  by K,, = - F( I+ 
P F ) - ' .  

The flowgraphs in this  paper  are simple. and will be 
approached informally  in order  to avoid  lengthy defini- 
tions. Expressions for some of the subsidiary c.1. (closed- 
loop)  operators. which  can be  found by inspection, will be 
listed without derivation as needed. 

For a system to be physically realizable on an  infinite 
time interval, i t  is  usual to  postulate [I41 that all c.1. 
input-output  operators must  be stable. though  "open-loop'' 
operators such as  the  plant P and feedback F may be 
unstable.  The set of  c.1. operators for (3.1)  consists  of: 
K z , = ( f + F P ) - ' .  K,:=PK,,, K , , = ( f + P F ) - I .  and K,, 
specified above.  Accordingly, the feedback  scheme (3.1) 
will  be called c.1. stable if K i j  is in 5 for i. j = 2  or 3. 

We shall be  interested in situations in  which P is at or 
near  some  nominal value PI  ~ and the feedback F appears  as 
an operator  variable in an  optimization  problem  whose 
object is to minimize  response to d. Unstable  operator 
variables are difficult to handle. and so our first  step will 
be  to show that F has  an equivalent realization in terms of 
a  stable  operator. 

A. . The  Model  Reference  Transformation 

The flowgraph of Fig. 3 is described  by the  equations 

y=Pv+d (3.3a) 

U = - Q ( ~ - P , O )  (3.3b) 

in which y .  u,  and d are in and P ,  P I ,  Q are  in A,. 
Equation (3.3) will  be called a model reference scheme with 
comparator Q, as the output of the  plant P with dis- 
turbance d added is compared to the output of a model PI  
of the  plant without disturbance.  and the difference actu- 
ates Q. 

The two sets of equations (3.1) and (3.3) are called 
equicalent iff every input-output  triple ( d ,  F ,  y )  in X3 
satisfying (3.1) satisfies (3.3). and vice versa. Their equiva- 
lence will be  established  under the assumption  that  the 
equations 

Q = F ( I i P , F ) - '  (3.4a) 

(3.4b) 

hold. If either  equation in (3.4) is valid, then so is the  other, 
and 

( f - P , Q ) = ( f + P , F ) - ' .  (3.5) 

To derive (3.5), suppose (3.4a) is valid. Therefore, 

f -P ,Q=l -P ,F( I+P,F) - '  

= ( f + P , F ) ( I + P , F ) - I - P , F ( I + P , F ) - '  

= ( f + P I F ) - '  

and (3.5) is true; here the expression f = ( I + P , F ) ( I +  
P ,F) - '  and the distributive law for multiplication on the 
right was used. Equations (3.4a) and (3.5) can now be used 
to give the identities 

Q(I-P,Q)-'=F(f+P,F)-'(I+P,F)=F, 

so (3.4b) is true as claimed. The converse proposition is 
proved similarly. 

Assumption: For the  present,  and  until  the  end of Section 
Vi ,  assume  that P= P,, i.e., there is no plant uncmainty. 

Theorem I : 
a) Any  closed-loop stable feedback  scheme (3.1) with 

stable  plant P E B ,  and  (not necessarily stable) feedback 
F E A ,  is equivalent to a model reference scheme  whose 
branches  are all stable, i.e.. Q €5, and P I   = P ,  where F and 
Q are related by (3.4). Conversely. any model reference 
scheme  with stable  branches is  closed-loop stable, and 



306 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-26, NO. 2, APRIL 1981 

equivalent to  a closed-loop stable feedback  scheme subject 
to (3.4). 

b) If (3.4) holds, and d and y satisfy either  the feedback 
or model reference equations they satisfy the equation 

y = ( I - P , Q ) d .  (3.6) 

Proof: 
a) For any  feedback  scheme  (3.1). if ( d ,   c .  y )  € ' X 3  

satisfies (3.1) and F is  given  by (3.4b).  then ( d .  e .  y )  
satisfies (3.3), and conversely. Therefore, (3.1) is equivalent 
to (3.3). If the feedback  scheme is c.1. stable,  then Q must 
be stable as it  equals -K3,. If, in addition. P is assumed 
stable,  then all branches in (3.3) are  stable. as claimed. 

Conversely.  by a similar argument,  any model reference 
scheme (3.1) is equivalent to a feedback  scheme (3.3). 
Suppose  that  the  branches of (3.3), namely. P I .  Q1 and 
P E P ,  are all stable.  Then, all the c.1. operators of (3.3), 
namely. { K I J } , .  j=2.3.4. j, must be  stable because  they can  be 
expressed  in terms of sums and  products of the stable 
operators P,  P I .  Q. and I .  The last assertion follows from 
the expressions for the diagonal c.1. operators K,, of (3.3). 
namely. 

K,,=I-QP,,  K3,=Z-PlQ, K,=K,,=I 

and the fact, easily  checked  by inspection,  that the remain- 
ing c.1. operators K I J .  i#J,  are  products of the K,, by P. 
P I ,  Q. or I .  I t  follows that (3.3) is c.1. stable. 

b) I f  P=  PI and ( d ,  y)  satisfies (3.1) or (3.3), and (3.4) 
holds, then (3.6) is obtained by substitution of (3.5) into 
(3.2a). Q.E.D. 

The  operator ( I - P I Q )  appearing in (3.6) will reappear 
as a  factor in  most  expressions for sensitivity. It will be 
called the sensiticity operator and  denoted by E .  For equiv- 
alent schemes E = ( I + P , F ) - ' .  

Remarks 3.1 : 
a)  The model-reference  scheme has  some  remarkable 

features.  Unlike  most feedback arrangements, it is a reali- 
zation which cannot  be  made  unstable by any choice of Q ,  
at least  for  stable  plants in the  absence of plant uncer- 
tainty.  Under  these  assumption^,^ any allowable feedback 
law  can be realized in  the  form of an equivalent model 
reference scheme,  with the  guarantee  that  all  branches will 
be stable, and  the closed-loop  system automatically  stable. 
The design  of Q, whether for small sensitivity  or  other 
purposes, can  be  accomplished  without  concern for closed-loop 
stabiliy. 

In engineering applications, model reference schemes are 
realizable in principle. but may  have undesirable  features. 
For example.  they  may  have  high sensitivity to errors in the 
realization of Q. Unstable  inner loops, obtained whenever 
( I -  P ,Q)- '  is unstable. may present reliability problems. 
Even then,  the  fractional  transformation  remains  advanta- 
geous  from the viewpoint of theory. as  potentially  unstable 
feedbacks F are replaced  by stable  operators Q. In later 
sections  on  plant  uncertainty,  the flowgraph interpretation 
of the model reference scheme  will  provide a convenient 

operator Q is obL4ously still possible. However. some of our other 
31f P is unstable,  the  parameterization of c.1. stable schemes by a single 

conclusions.  concerning  existence of a  feedback  realization with stable 
elements,  structural  stability,  or  decomposition  properties, may no longer 
be valid. 

guide to  perturbation analysis. I t  will also  appear  that 
model-reference  schemes  have a useful plant-invariance 
property. 

b) Implicit in our notion of an allowable  feedback is the 
view that each  feedback realization involves a  graph,  and 
that  although most of the  internal  details of the realization 
may  be unimportant. closed-loop stability at all internal 
nodes is essential. 

c) Theorem 1 holds even if F and Q are  in A but  not 
strictly causal. However, strict  causahty is a  prerequisite 
for physical realizability, and will therefore have to be 
assumed in subsequent theorems. 
3. Unstable PIants 

The assumption in Theorem 1 that  the  plant P is stable 
will  now  be relaxed. Consider  a  plant Po EA, with dis- 
turbance d at the output. which  is unstable  but for which 
there exists a stabilizing feedback. i.e., an  operator Fo E A ,  
which  gives a c.1. stable feedback  scheme on being fed back 
around Po. The stabilized system  can be  incorporated  in  a 
model reference scheme,  by letting P be the stabilized c.1. 
operator Po( I +  FOPo)-' and d be the stabilized dis- 
turbance ( I +  PoFo)-ldo. and Q (or F )  can be selected as 
for  a  stable  plant. At this point  the  question  arises: "can Fo 
be selected independently of Q (or F ) .  or could  the  prior 
choice of Fo prejudice the class of achievable  systems?" 

I n  general. the choices are  not  independent, even for 
stable  plants, because the  application of two unstable 
feedbacks  in  succession  may  give a result different from the 
application of a single feedback  equal to their sum.  Con- 
sider  the following  frequency  response example in HI:. Let 
P ( s ) =  1 andf,(s)=f,(s)*=s-'.  The application of a single 
feedback f(s) equal to f ,(s)+f,( s)  gives a c.1. stable feed- 
back  scheme.  with c.1. responses I ,  (s+Z)-'. ands(s+Z)-]. 
However, if the feedback  is split into two  branches,  the c.1. 
response across  either  one of these branches is (s+ l)/s(s 
+2). i.e., the system  is not c.1. stable.  Popular belief 
notwithstanding, c . I .  stable systems  do not form an additiue 
group under feedback if the complete set of c.1. operators is 
considered. 

However. if  feedbacks are  constrained  to  be  stable  then 
choices are  independent.  as the following construction 
shows. 

Let Po EA, be an unstable  plant which can  be stabilized 
by either one of two  feedbacks. F, and Fh in A,, and label 
the resulting feedback  schemes ( a )  and ( b ) .  respectively. 
We  would like to find an  operator K h  E A s  which  on  being 
fed back around scheme (a ) ,  as shown  in Fig.  3(a),  pro- 
duces  a tnlo-stage feedback  scheme equivalent to scheme 
( 6 ) .  (Observe  that the two-stage  feedback  scheme has  extra 
nodes in the feedback branches to allow for the possibility 
of noise sources there.) 

Proposition 3.2: If F, and Fh are  stable,  then the stable 
feedback FUrh Fh - F, makes the two-stage  feedback 
scheme c.1. stable  and equivalent to scheme ( b ) .  

Proof: The two-stage  scheme  is  obviously equivalent 
to scheme ( h ) ,  and is  c.1. stable because its c.1. operators 
consist of: i )  the c.1. operators K,,,  K,,, K,,, and K,, of 
scheme ( a )  or scheme ( b ) ,  which are  stable by hypothesis, 
or ii) sums and  products of the operators listed in i), and 
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the  operators Fa or Fb which are  stable  by hypotheses. inverses is hard to study.  This is a  serious  limitation in 
Q.E.D. feedback  problems in  which  expressions  such as ( I+PF)- ’  

immediately from Theorem 1 and  Proposition 3.2. Let By contrast,  the “M,” spec which is widely  used in 
Po E A be any  unstable  plant  stabilizable by a set of stable classical design measures  the  maximum  frequency  response 
feedbacks  in B,. An]’ closed-loop stable feedback scheme magnitude,  and is essentially the induced  operator norm 

The following decomposition principle can  be  obtained  play  a  major role. 

employing a stable feedback around theplant Po is equivalent 1 1  pi1 4 sup { I I P ~ I I  L , / ~ ~ x ~ ~  L,:- x ~ ~ , ~ ,  which has  the multi- 
to a closed-loop stable scheme consisting of: i )  a stabilizing 
feedback F, €5, which can be selected arbitrarib, followed in cascaded systems. By describing plant uncertainty in 

plicative property,  and is therefore convenient to estimate 

by i i)  a model reference scheme with stable operators Q and terms of a sphere of specified radius in a having  such 
n 

= I .  
It follows that  under our hypo these^,^ and in particular 

under  the  assumption that  plant  and  feedback  are  not 
simultaneously  unstable,  the  problem of sensitivity reduc- 
tion  can  be decomposed into two  independent  problems: 
stabilization followed by  desensitization of a stable system. 
Henceforth, we shall confine ourselves to the  second  prob- 
lem. 

111’. APPROACHES TO FEEDBACK-SENSITIVITY 
MINIMIZATION 

A‘. Quadratic versus Induced Norms 

The main properties of feedback cannot be  deduced 
without  some  notion of uncertainty.  Suppose  that  the 
disturbance d is uncertain  but belongs to some subset Q of 
possible disturbances in X. From (3.6) it is clear that for 
disturbances to  be  attenuated, ( I - P , Q )  must  be small on 
‘3: i.e.. Q must act as  an  approximate inverse of PI on 9. 
The various  approaches  to  the  disturbance  attenuation 
problem  are  differentiated by the way in which uncertainty 
is described. and this approximate inversion is metricized 
and calculated. 

A typical WHK approach in a  deterministic version 
could be viewed as follo<vs: 3 consists of the set of 
disturbances d in L,(O. cx)) possessing a single, fixed, known 
power spectrum I J(ju)I in L2( - x ,  a), and the object of 
design  is to find a filter Q that minimizes the  quadratic 
distance II d-P,Qd II !-:. where in general Q depends  on 
Id( jo)(. In  the  stochastic  analog of this  problem 9 is a 
random process characterized by probability-covariance 
functions  and metricized  by a  quadratic norm. This 
description of uncertainty  has  certain  limitations  that we 
would like to circumvent.  namely, the following. 

1 )  The  covariance  properties of the  random process 
must be  known. In practice. they are  often  unknown 
elements of prescribed sets. 

This is merely a  limitation on the class of random 
processes for which WHK is valid. More serious from the 
point of  view  of feedback  theory  is the following  observa- 
tion. 

2) The  quadratic norm  on plants employed  in the WHK 
method lacks the multipiicative property 1 )  PQll L z  G 
I1 P (I L,  II Q II and in general i t  may be difficult or impos- 
sible t o  estimate the norm of a  product PQ from the norms 
of P and Q. The product  norm II PQ 1 1  L 2  may  be large even 
though II P II L,  and I lQ  (I L3 are small. 

Consequently. if plant-uncertainty is metricized by the 
quadratic  norm,  its  propagation  through  products  and 

a multiplicative property, it is possible to obtain  a general 
approach  to  problems involving disturbances/random 
processes  which are unknown  but belong to prescribed sets, 
as we shall see in  Section IV. 

Minimization of an induced  norm in effect amounts to a 
minimax  solution. Minimax methods do not necessarily 
represent uncertainty with greater fidelity than  quadratic 
methods. However, the  concern here is less with fidelity 
than with the  ability to  handle  product systems. 

B’. Constraints on the Norm of a Sensitivity Operator 

It is natural  then  to try to pose sensitivity reduction 
problems in terms of the minimization of norm of the 
sensitivity operator,  and  to employ a  norm having multi- 
plicative properties. The primary  norm of a Banach algebra 
has such properties,  but  the following propositions show it 
to  be useless for this  purpose. 

Proposition 3.3: If P and Q are in a Banach  algebra B 
and III-PQII< 1 ,  then PQ has  an inverse in B. 

Proof: Denote ( I - P Q )  by E.  As I 1  E I I  < 1, the  power 
series I -  E +   E 2  - - - . converges to an operator which 
inverts (Z-E) .  As ( I - E ) = P Q ,   ( P Q ) - ’  exists. Q.E.D. 

Proposition 3.3 has occasionally been  interpreted as 
showing that  invertibility is necessary for sensitivity reduc- 
tion. This interpretation is empty. In fact, since strongly 
causal  operators never have inverses in B [see Proposition 
2.lb)], we have  the following. 

Corollary 3.4: If PQ is in B,, then llI-PQll>l. 
It is  impossible to make  the sensitivity operator less than 

1 in the  original B norm. In If,” this simply means that  the 
frequency  response of PQ approaches 0 at infinite  frequen- 
cies and ( I -  PQ) approaches 1. 

An obvious idea at this  point is to make (I-P,Q) small 
in  norm over some  finite frequency band, i.e., over an 
invariant subspace. The next  proposition shows that  norms 
over  invariant  subspaces usually are  not useful measures of 
sensitivity for  optimization purposes. Let 93, be  a  subspace 
of 93, II a  projection  operator onto a1, and suppose that 
93, is invariant4  under B, Le., RII=IlRII for each R in B. 
Let (Y denote  the  norm of ( I - P , Q )  restricted to  the 
subspace a1 and optimized  over  all  Q, i.e., a 
- - infp,,~sup{ll(l-P,Q)IldII: d E 9  and Ildll=l}. 

Proposition 3.5: For any P in B,, a = 1 or a = 0. 
The proof is in Appendix I. If a=O, sensitivity can  be 

made  arbitrarily small  over the subspace 3,. In practice 
there  are special cases involving “minimum  phase” systems 

norm  preserving  extensions. Note that Il is not necessarily in the  algebra 
More  generally,  Proposition 3.5 holds if B is replaced  by  any of its 

B or causal. 

a 

4 .  
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in  which solutions  that  approach a=O may  be useful. More 
typically, this result is  achieved at the expense of increasing 
the sensitivity without  bound  on  complements of uxl: in 
such cases, the  norm of a restriction of ( I - P , Q )  is  not a 
candidate for minimization. 

Corollary 3.4 and  Proposition 3.5 delineate some of the 
peculiarities of the sensitivity optimization problem. In  one 
form or  another these peculiarities were  recognized  in the 
classical theory, and  are  probably  the reason  why it stopped 
short of optimization. We shall try to circumvent  them  by 
introducing an auxiliary (semi)  norm to which  they do not 
apply. 

Iv. MULTIPLICATIVE SEMINORMS AND 
APPROXIMATE INVERSES 

Uncertainty in a  disturbance (or plant) in a linear space 
can be specified in terms of belonging to  a ball of dis- 
turbances (or plants)  centered at some  nominal value, and 
of radius specified in some  norm. Such a  description of 
uncertainty may  be cruder  than  a  probabilistic  description. 
but is usually more tractable in  feedback problems. 

One of the axioms of a  norm asserts that only the zero 
element  has zero norm.  This axiom  is often not needed, 
and with its elimination  a norm  is  replaced by the slightly 
more general concept of a  seminorm. 

A ball in any seminorm  can  be shown to  be  a convex 
set.4 Conversely, any convex  set’ in a  linear  space gener- 
ates  a  seminorm (see Rudin [22, p. 241) known  as  the 
Minkowslu functional of that set. In  linear spaces  convex 
sets4 of uncertainty  can therefore always be described in 
terms of seminorms. We shall employ  seminorms to  obtain 
a  systematic  approach to such  sets of uncertainty (cf. the 
objectives outlined in Section I-A). 

In the next section, we shall define classes of left and 
right seminorms. To motivate  the  definitions, let us  find 
seminorm  descriptions for two disturbance  sets which can 
be generated by the  interaction of filters and  certain  “flat” 
disturbance sets. 

Henceforth, W will denote  a  stable  causal  operator of 
unit  norm, which  will play  the  role of a weighting filter. 
For concreteness, W can be thought of as  an  operator in 
HI?, W: H“ + H ” ,  with response G ( s ) = k ( s + k ) - ’ .  will 
denote  a  flat  disturbance set (analogous to white noise) 
consisting of the unit ball in the  space of inputs, in t h s  
case in H “ :  

whose  elements are frequency functions  of  unknown  but 

2) Let 4 be the set into which W maps flat disturbances, 
i.e.. WL?, = ~ 2 .  G$ is also the set 

c$={dErange(W): l J ( j a ) l < l ~ * ( j w ) \ } .  

can be  described as  the unit ball in the seminorm 1 1 .  (1,  
defined  on the range of W (which  is a  proper  subspace of 
fig) by the equation Ild II, II W -‘d I / .  

There  are many  engineering problems in which the apriori 
information  about  disturbances is in the form of an  upper 
bound  to  the  magnitudes  of  their possible frequency re- 
sponses. The seminorm  description 2 )  is natural for such 
problems. and 1) occurs in inverse problems. 

The seminorm II II employs an up-weighting, and ( I .  II E 

employs  a down-weighting. These  two examples generalize 
into the  notion  of left and right seminorms,  defined as 
follows. 

A. Seminorms for  Inputs and Outputs6 

Let 9 be  a ( I .  Il-normed linear space. Let II. II be  any 
seminorm  defined  on  all of %$ and 1 1 .  ( I r  a  seminorm 
defined  on  some  nontrivial  subspace %r of 9. The semi- 
norm II * II is said to dominate 1 1 .  I1 iff II y I1 E < I1 y I1 for ally 
in ?+; this  dominance is denoted by II * II G 1 1 .  (I r .  

Definition: A left  seminorm is any  seminorm  defined  on 
all of % with the  property that (I ( I F <  I1 * 11. A right semi- 
norm is any  seminorm  defined on a  nontrivial  subspace 
of 3 with the  property  that II . I1 d II . II r .  

For example, if W is any W” filter of unit norm,  the 
expressions I1 y I 1  I I1 Wy II and I1 yll II W -’yll define 
left  and  right seminorms, on H“ and  the  range of W, 
respectively. The range of W is a  subspace of H “ .  proper 
whenever G(s) has zeros in the right half-plane or at CG. 

B. Weighted  Seminorms for Plants 

Definition: A weighted seminorm is any  seminorm 1 1 . 1 1  
on the U3 with the  property  that II II < II . \ I .  

The terms “weighted” and ‘‘left’’ are  synonymous. We 
shall use the  term “weighted” to distinguish the  left semi- 
norms on B used as measures of plant sensitivity from  the 
others. 

A weighted seminorm on B is induced by a  pair 
( 1 1 .  II El II . I1 r ) ,  where ( 1 .  I1 E is a left seminorm  on  the  space $3 
(of outputs),  and 1 1 .  (I is a right seminorm on a  subspace 
u3r C% (of inputs), iff II. II is defined for A EB by the 
equation 

IIAIIw=sup{IIAuIIf/IIuIIr: uE%,and I luI Ir#O}. 
bounded  magnitude.  Consider  two  situations. 

1) Let 9 be the set mapped  by W into flat  disturbances, 
i.e., WQ= q1. 9 can  be described as the  unit ball in  the 
seminorm 11. ( I f ,  defined  on H“ by the  equation Ild I1 

It follows that I I  I I1 d 1. 
In control problems,  weightings are  often  introduced  by 

filters, which act on disturbances  either  before  entering  a 
plant  or  after leaving it. For example. let W, and W, be 
linear  mappings  in 3 X 3, each of unit %-induced norm. A 

’Satisfyhg  the  follov,ing  additional  assumptions: 1) if x is in  the  linear 6Conoenriorz: Whenever x belongs to a space on  whch several n o m  are 
space,  then ax is in  the set for  some  real a; 2) if J’ is in the set then so is defined.  the  unsubscripted  norm II x I1 denotes  the  principal norm. 

2 ( 1  Wd 11. 

- b’. Weighted  norms will be  designated by subscripts. 
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left  seminorm is defined on 3 by the  equation ll yll, 
= I1 W,yll. Let 93, be the range of W,; if W is 1 : 1, a right 
seminorm is defined  on 93, by the  equation (lull , 
= IlW,-‘ull. The  pair (II-II,, 1 1 - 1 1 , )  induces the weighted 
seminorm II A I1 = I1 W,A W, I1 on the  space B. 

Although weightings produced by filters will  be em- 
phasized in this paper, they can be produced by other 
means. For example, a weighted seminorm  on Wg is  given 
by the  supremum over a shifted half-plane, 

a 

A 

lIPII,=sup{I$(s)l:  Re(s)>a},cw>O 

I j Multiplicatice  Seminorm-Symmetric Case: In gen- 
eral. weighted seminorms lack the multiplicative property 
I1 CD II < 1 )  C II II D 1 1  ,,, of algebra norms: In problems in- 
volving the  attenuation of a single disturbance  (or single 
random process) this need not  matter, as multiplications 
can be avoided. However, in problems involving plant 
uncertainty, closed-loop perturbations have the product 
form ( I -  P Q )  A P. We shall employ  seminorms with  weaker 
multiplicative  properties  suitable for such products. 

Definition: A symmetric (weighted) seminorm on  the  al- 
gebra B is a weighted seminorm 1 1 . 1 1  on the space B 
which satisfies  the multiplicative inequahties 

Y 

IIC~IlwGllCllwIIDll, I I C D I l w ~ l l C I l ~ l l ~ l l , .  (4.1) 

Any operator W: %+!X of unit %-induced  norm which 
commutes with  all operators of B defines a symmetric 
(weighted)  seminorm by the equation II All , = I1 WAII = 
IIAWII. . 

Symmetric seminorms have the  property  that II I I1 ,+, = 1. 
2)  Multiplicative  Seminorms-General  Case: In multi- 

variable systems the  plant  perturbation A P always appears 
on the right of the  product ( I - P Q ) A P ,  and often does 
not  commute with (I-PQ). In such cases a more general 
class of multiplicative seminorms will be used. If A P  is 
strictly causal, then the  product ( I -PQ)AP lies  in a 
proper  subspace of B (which is a left ideal, although we 
have no  immediate use for this fact). With  such products in 
mind. we make  the following definition. 

Definition: Let B, be any  subspace of B, and B * B, 
denote  the  space of products {CD: C in B and D in B,}. A 
multiplicative  seminorm on the  space of products B - B, is 
any weighted seminorm  on  the  space B . B, with the follow- 
ing additional  property:  there  is a left  seminorm \\. \ I  wF 
defined  on B, a  seminorm ( 1 .  )I w1 defined  on B,, and the 
inequality I1 CDll < IlCll WEII D II holds7 for all C in B 
and D in B,. 

Note that I1 . II is not necessarily a right seminorm. 
An  example of a multiplicative  seminonn is obtained as 

follows. Let 1 1 .  II be  the  seminorm  produced by operators 
WE and W, in  the example of Section IV-B [preceding 
Section 1V-Bl)]; V: X-+% be  any 1 : 1 map of unit norm; 
and B, {VDl:  Dl EB}. Define  the  seminorms IIC I( w f  

0 

tions appearing on the left. 
’The definition  can  obviously be generalized for the  case of perturba- 

A Jymmetric seminorm  can  be viewed as a special case of 
a multiplicative  seminonn  on  the  space of products B . B,, 
in which B, = B, and the  multiplicative  inequality  holds  for 
each of two pairs of seminorms, namely, ( 1 1 .  I I  w, II 11) and 
(I1 * II, I1 II rv). 

C. Approximate  Inverses and  SinguIarity  Measures 

Many  problems of feedback theory, both classical and 
modem,  can be reduced to  the  construction of an  ap- 
proximate inverse. Let I1 e II be  a fixed, weighted seminorm 
on the  space B. 

Definition: For  any  operator P in B, an approximate 
right inverse (in Bs) of P is  any  operator Q in 5, for which’ 
II I -  PQII , < II I II w ;  the right singularity  measure (in Bs) 
of P (under (I - I[), denoted by p( P),  is 

p( P)=inf { I I  I -  PQ II w: Q in Bs} . 

In general, p(  P )  is a  number  in  the  interval 0 < p( P )  G 1. 
The last  inequality follows from  the  observation that Q=O 
gives I1 I -  PQ I1 = II I I1 ,. 

In all of the following W 33 examples, 11. I1 wa will be the 
symmetric weighted norm defined by II A II = II WAII for 
A E W m, where W E  W is a fixed (strictly  causal)  operator 
of unit  norm. For example, W can be the “low-pass” 
frequency response $ ( s ) = k ( s + k ) - ‘ ,  k>O. As l I - l l w  is 
symmetric, it  has  the  multiplicative  properties  defined  in 
Section IV-Bl). 

Example 4.1: P, is a plant  in Wr with frequency re- 
sponse~~(s )=a ( s+a ) - ’ ,  a>O. The sequence of operators 
Q, in with frequency responses i j , (s )=ol - ’ (s+a)  
-n*(s+n)-‘,  n= 1,2; * -, satisfies the  equation 

The  right-hand  side  (RHS) of (4. I )  approaches 0 as FI + 03. 
Therefore,  the singularity measure in ‘H; of P, under 11. I 1  
is p( Po)=O.  The operators Q,, are  approximate inverses, 
and the sequence Q, is an example of what will be called 
an inverting sequence. 

Exumple 4.2: P, is the  operator of Example 4.1; Pb is 
the  “nonminimum phase” operator in W“ with frequency 
response $h(s)=(p-s)(#?+s)- l ,  @>O; PI is the  product, 
P, PbPo. For any (2 in WF, G ( ~ ) [ l - $ ~ ( s ) ~ ( s ) ]  has the 
value ~ ? ( p )  at the zero of ph(s) .  Therefore, III-P,QII ,+, 3 
IG(@)[. and we get the lower bound p(  PI)> I$#( p)I. In 

*Recall  that l lZll~v<l,and I I I l l w = l  if II.Ilwissymmetric. 



Section V-A and Corollary 6.1 i t  will be established that in 
fact p ( P I ) = I B ( p ) l .  

In these examples we have emphasized approximate 
inverses under  a multiplicative seminorm. In passing, it 
may be worth mentioning  that WHK problems  can  be 
viewed  as approximate inversion problems in which the 
weighted seminorm of ( I -  P Q )  is obtained by weighting 
by a fixed vector dEL'(0, m), to  obtain I1 I-PQII = 
I\( I- PQ)d I1 L:. Here p( P )  is  the  irreducible error. How- 
ever, 1 1 .  II ,+, lacks the multiplicative properties. 

No matter which seminorm is used p( 0 )  has  the follow- 
ing  property. 

Proposition 4.3: For any P, and Pb in B1 p( PbPa) b 

Proof: If the  contrary is assumed  to be true,  there is a 
Q in B, for which II I-Pbpa& II <b(Pb); P,Q now acts  as 
an  approximate inverse for Pb, and  there is a contradiction. 

p(pb) .  

v. SENSITIVITY TO DISTURBANCES AND 
APPROXIMATE  INVERTIBILITY 

We shall show that  approximate  invertibility of the  plant 
is a necessary and sufficient condition  for  the existence of a 
feedback to attenuate disturbances, and the optimal sensi- 
tivity depends on the measure of singularity of the plant. 

Consider  the feedback scheme, (3.1), and  suppose  the 
plant P in Ei equals  the nominal PI .  Let II . II be a fixed 
right seminorm  defined  on  some  subspace Gr of (inputs), 
( 1 .   ( 1  a fixed left seminorm on (outputs) 9, and I1 - I1 the 
resulting weighted seminorm  induced  on 5.  The sensitivity 
to disturbances q1 is defined by the  equation q1 

sup{llyll~/lldll,: d in 5,, Ildll,#O}. From (3.2a) it 
follows that 9 ,  = Il(I+ P,F)- 'I l  w. Whenever the equiva- 
lence  equations (3.4) hold, q 1  also equals III-PIQII w. 

The sensitivity q, obtained when F=O will  be called the 
open-loop sensitivity. As qo= I I  I I1 w, qo S 1, and q o =  1 
whenever II . I1 is symmetric. 

Theorem 2: 
a)  A necessary and sufficient condition  for  the existence 

of a feedback F in A, for which (3.1) is closed-loop stable 
and the sensitivity q r  is less than  the  open-loop value qo, is 
that PI have an  approximate  (stable) right inverse Q in  the 
algebra' B, . 

b) For any E > O .  there is a feedback F in A , for  which 
(3.1) is closed-loop stable  and for which -ql <p( PI)+<. but 
no F for which (3.1) is closed-loop stable  and q 1  < p (  PI). 
where p( PI) is the measure of right singularity in If%, of P I  
under I1 . I1 ". 

Proof: By Theorem 1, any closed-loop stable feedback 
scheme (3.1) with F in A ,  is equivalent  to a model refer- 
ence scheme (3.3) with Q in B,. Let (3.3) be equivalent to 
(3.1). q 1  can  be  expressed by q 1  = I1 I-P,QII w. Therefore. 

9The  fact  that given PED, the  closed-loop  system is stable iff F( I -  
PIF).-.' is stable is pointed  out by Desoer-Chan [2l. Theorem 31: who 
scrufime the  relationship  between  open-  and  closed-loop  stability m the 
context of convolution  algebras. 

a) q 1  <qo i f f  Q is an  approximate right  inverse of PI. Also, 
b) by definition of p(PI). there is a Q in B, for  which 
IIZ-PIQIIw<p(Pl)+~. but  none for which III-P,QII, 
<p( PI). The conclusion concerning F follows from the 
equivalence of (3.1) and (3.3). Q.E.D. 

I n  general. i t  may be impossible to  attain  the sensitivity 

Definition: A sequence Q, E A. n = I .  2 . .  . . . will be called 
oprimal for PI iff the sequence of sensitivities ' 1  I - PIP, I1 
approaches p( PI) as n x. p( P I )  will be  called the opti- 
mal  sensiticity for PI. 

A sequence of feedbacks F,, E A  , will be  called optimal 
i f f  the equivalent  comparators 0, are optimal. 

Remark: If the  disturbance d lies  in a  balanced set 3 
(i.e., d in 9 implies -d in q), it is simple to show that  no 
open-loop  control,  obtained by letting Q=O and  applying 
an input at  node 2, can make I1 y I1 I less than I1 d I1 I for all d 
in 9. It follows from  Theorem 2 that,  for right invertible 
plants,  optimal sensitivity achievable with feedback is 
smaller than  without; in other words, ability of control 
schemes to cope with unknown  disturbances  depends on 
their  configuration. Thls can be viewed  as a  continuation 
of the  internal  model  principle [16] to seminormed dis- 
turbances. 

A .  An Example of Sensitivity  Optimization 

P( PI )- 

We would  like to show that feedback optimization is 
feasible  under a seminorm  that  has  the multiplicative prop- 
erties (4.1): unlike the  quadratic  norm of WHK methods. If 
weighting is obtained  from  a  filter,  the  optimal feedback in 
W" resembles a classical lead-lag network. We shall try to 
demonstrate these points by an example. A more compre- 
hensive theory of H" optimization would take too  long to 
present here. 

Let PI  in HI? be  any  plant with a single Re( s)> 0 zero 
at s = p1 subject  to  the high frequency restriction 
I wj? j w ) l -  I <const. for \ w 1 > 1 .  Let ( 1 .  (I be  the weighted 
seminorm, I1 P ( 1  I1 W P  11, where 6 in H," satisfies the 
condition Iw '$ ( jw) l  - I  Sconst. for some integer e .  An opti- 
mal sequence of comparators Q, in HI? is sought. 

It will be  shown  that a sequence with  frequency responses 

~,(s)=c,P~l(s)[l - ~ ( ~ ) s - ' ( s ) ] ( s + m ) - ' ( s + n , ) - ~ ,  

m.n,=1,2:.. (5.1) 

in which: Pb is  the operator of Example 4 .2 ;  c ,   =m'n i ;  and 
for each m ,   n ,  is a sufficiently large integer, is such an 
optimal sequence. In  fact, p( PI ) = I Ll( p) [ ,  and  the sequence 
of sensitivities I1 I -  P,Q, I1 approaches p( P I )  as m -+ cc. 

Q, will be constructed here. but some of the proof 
details will be  postponed  until Section VI. P I  can be 
factored into the  product" PI =PUP,, in  which P b ( s ) = ( p  
- s ) (P+s)- ' ,  and I @ b ( j w ) l = l ;  and@, is in H ~ . p , ( j o ) =  

loPo / P h  are often  referred to as all-pass/minimum  phase or inner/outer 
factors. 
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f31(ju)/J?b(jo) for all real o, and J?, has no zeros in 
Re(s)>O.  Optimal sequences will be constructed for P, 
and Pb separately. 

P,, coincides with the operator of Example 4.2. By the 
reasoning of that example we get the lower bound p( P I ) >  
I $ ( j 3 ) I ;  in fact, for the p h  factor alone, 1 1  fi( 1 -lh4)II H2 2 
1 $(p)I whenever i j  preserves the analyticity of %Pb4 in 
Re(s)2O. 

We observe next that  the  function gh: -+ c, 
gh p h i ( s ) [ 1 - ~ ( ~ ) ~ - ' ( s ) 1  exactly minimizes Ilfi(1- 

@ b ~ h ) I l .  since G(s)[l - j ? , , ( ~ ) 4 ~ ( ~ ) ]  equals the lower bound 
$(p )  for all s in d'. Also, ijh is analytic in Re(s)kO, as 
[ I  -%(p)fi-'(s)] has  a zero at f l  to cancel the pole ph'.  
We now combine g h  with enough high frequency attenua- 
tion to obtain  an H" sequence: 

~,,(s)=p,'(s)[l-u;(/3)$-'(s)]mf(s+m)-' 
m=1,2,. . e .  

(It will become apparent  that  the  attenuation mt(s+m)-' 
will be at  a high enough frequency to have arbitrarily  little 
effect on weighted sensitivity.) The factor P,(s) can be 
inverted  by  the sequence in HF, 

4, , (s)=~,-1(s)n2(s+n)-2,  n= 1,2,. . . . 

The sequence 4, of (5.1)  is constructed from the  product of 
Q,, and dhm. The validity of this construction  is established 
in  Corollary 6.1, 

Remarks: It may be worth looking at a special case of 
(5.1) to get a  better feel for the kind of feedbacks our 
approach generates. Let Po( x )  = a( s + a)- I and r+( s) = 
k ( s + k ) - ' ,  a>O, k>O. Equation (5.1)  gives 

~,,(s)=c,,(s+j3)(s+m)-'(s+n,)-2. (5.2) 

c,, rn2n,(k+fl)-'. This  optimal 4, consists of the 
"lead" factor c(s+ f l ) ,  and high frequency poles whose 
purpose is to make q,,(s) strictly proper. The feedback law 
f ( s )  produced by Q,(S> [via (3.4b)l is a lead-lag network 
typical of classical control. 

If the high frequency poles are neglected, the sensitivity 
operator E I- P,Qm has  the frequency response C(Jo) 
=fi( p)K ' (  s); P is small at highly weighted frequencies 
and vice  versa. If C(jo) is compared to the value that 
would be obtained by letting i j ( s )=  1, it appears  that 4,(s) 
has the effect of trading undesirable low-frequency phase 
lags  arg ~ ( J w ) ,  for  undesirably  large  magnitudes 
1 B (  j w ) 4 ( j o ) I  at high frequencies, where they matter less, 
at least if the specified weighting is correct. This, too, is a 
typical strategy of classical design. 

The growth of I C( j o ) ]  as w + co depends on the decay 
of 1 G( j o ) J ;  if the  former is too high, the choice of the  latter 
was inappropriate, if II G( jo)l is bounded  from below, then 
I C ( j w ) l  is  bounded  from above. The  dependence of the 
optimal filter on the weighting W is not surprising, as W 
describes the convex set of disturbances  to be attenuated. 

Filters  optimal  in this sense are known to  be very 
sensitive to  plant  uncertainty, and are  practical only where 
accurate  plant models are available. 

B. Unstable  Plants 

If Po is an unstable  plant in A ,  with output  disturbance 
do in $21, and there is a stabilizing  feedback Fo with the 
property  that Po(Z+FoPo)-' and (l+PoFo)- '  are  in B, 
then we can let PI in Theorem 2 be  the stabilized system 
Po(Z+FoPo)-', and d be the stabilized disturbance ( I +  
PoF,)-'do. In  that case, (3.6) takes the form 

y=( Z-P,Q)( I +  PoFo)-'do. ( 5  -3) 

The term ( I +  PoFo)-' contributed by stabilization appears 
in  (5.3) as an extra right weighting on ( I - P I Q ) .  Provided 
1 1 .  II is modified to inlude the extra weighting, Theorem 2 
remains valid. 

Remark: We have preferred to  separate feedback 
synthesis into two consecutive stages: 1) stabilization  and 
2) desensitization of  (input-output)  stable systems. From 
the  point of view  of input-output sensitivity theory, the 
separation is in a  certain sense unavoidable, as  the  per- 
turbations allowed for robust stabilization are radically 
different from those for desensitization. This  point is 
elaborated in Appendix 11, 

C. Optinzal  Sequences: Symmetric Case 

Usually, optimal filters for sensitivity reduction are  not 
strictly proper  and can not be  attained,  although they can 
be  approached by sequences of filters of increasing band- 
width. The behavior of such sequences is conveniently 
described in terms of the concept of an "identity sequence," 
or "approximate identity" drawn from Banach algebras. 
Here we shall summarize those properties of identity se- 
quences which are employed in our filter construction. 

Let I( - I I  be  a fixed, symmetric" weighted seminorm on 
the algebra B. A weighted identity sequence (widseq) is  any 
sequence I,, m= 1,2, . in [E% with the  property  that 
I1 I, II = 1  and,  for  any A in B, II A -1,A II and I 1  A -AI,  II 
approach 0 as n + m. For  any P in A, a sequence Q,, 
n = 1,2,. . , is a right weighted inverting sequence (winvseq) 
iff PQ, is a widseq. 

Whenever llZ-PQ,~llLv-+O as n + m ,  Q, must be  a 
right winvseq for P ;  for then, the inequalities 

I1 A - pQ,, A I 1  I I  1 - PQ, I I  II A 1 1 ,  
l l ~ - A P Q , l l l w ~ l l ~ l l ~ l l ~ - ~ Q n l l w ,  

obtained using the multiplicative property of symmetric 
seminorms, have left-hand sides which converge to 0 as 
n-+ XI. 

For example, in W M  the sequence of operators with 
frequency responses nr(s+n)-'. n = 1,2, . . . and r>O any 
constant integer, is a widseq for the weighted norm of 

"Without  symmetry a distinction  between left and right identity  se- 
quences, etc., must  be  made. 
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Theorem 3 is an  application of Lemma 5.1. Q, will be 
constructed out of separate  optimal sequences for P, and 
P,,, both  under the symmetric 1 1 .  II norm. First. however. a 
lemma will be proved. 

For  any integer r>O, let J,' denote  the sequence in W"" 
with "low-pass" frequency responses 

Lemma 6.1: I I  J,'(( = 1; J,' is a weighted identity se- 

Proof: First ofall, IIJ,'II=IIIlIsup,~n(jo+n)-'~'=l. 
quence,I2 i.e., for any r>O,  llI-J,'ll w 4 0  as n-  00. 

Second, we have 

6>0 being any  number. Let E > O  be given. As $ is in HF> 
there is a S>O for which the  first term in (6.2) is less than 
c/2; for fixed 6 there is an  integer n for which the second 
term is less than ~ / 2 ;  i.e., limn+m I1 I-J,' ) I  =O. Q.E.D. 

Proof of Theorem 3: First,  let us  show that the sequence 
Qan with frequency responses 

is a right weighted inverting sequence in  for Pa. As 
det($a(s))#O, p;'(s) is analytic in  Re(s), P O .  The  in- 
equality 1 s 1 k~ [ Pa( s)] > c ensures that the  functions  defined 
by  (6.3) are in H,"". Now, II I-PuQanII = II I-J,k+' I I  
+ O  as n+ c x ,  by Lemma 6.1. Therefore, p(Pa)=O and 
Qan is a right winvseq in Wr" for Pa. 

Next,  consider Pb. By hypothesis, i b  has  a minimal 
approximate right inverse Q,, in (1 +s)'HmN. The frequency 
responses 

Q,,,,,g obi;, m = 1 , 2 , - - .  (6.4) 

lie in HmN,  and  determine  operators Qb, in W"". Let us 
show that Qbm is optimal.  Certainly, III-PbQbm II 2 

p( Pb). Now, 

1 1  I-PbQh, 11 w = It( I-pbQb)JL  +I-JL 1 1  w 

by the  triangle  inequality  and  the  multiplicative  property 
of symmetric seminorms. As I1 I-P,,Qb I1 =p( Pb)  by hy- 
pothesis,  and by Lemma 6.1 I I  JF'II= 1 and  lim,+m 1 1 1 -  
J: ( 1  +O, we obtain lim,*x I1 I-PbQbm I I  <p( Pb). As 
this upper  bound coincides with the lower bound  obtained 
above, limm+x, (I r-PbQb,nI/ =p(Pb), i.e., e,,, is a right 
winvseq in W"" for P b .  

J,'AII ivrTO*whenever I1 I-J,'II wz does; s d h y  for IIA--AJ,'II w. There- 
I2For a  svmmetric  weighting, llA-J,:AII ~ l l Z - J ~ l l i v l l A l l ,  so I IA-  

fore, J, IS a wdseq iff I-JLII iv =O. 

The conclusions of Theorem 3 are now true by Lemma 
5.1. Here l l~ l la=l l - l lb =l l- l I  w ,  and Q, is the  product 

Q.E.D. 
Corollary 6.1: The conclusion of the  example of Section 

V-A is true.I3 That example is simply a special case of 
Theorem  3  for N = k =  1, and  gb=pb1(1-+(/3)G~-1) in 

Pa- Jn,, Qb JA* I k + l  

(1 +s)fH"O. 

C.  Sensitivity  Reduction in Near&  Invertible  Multivariable 
Systems 

Consider  the feedback scheme of equations (3.1)-(3.3). 
Suppose  that  the  plant P l ( s )  is in Wr" and satisfies the 
restrictions: det P,(s)#O for Re(s)>O,  and Islko[$,(s)] 
>c  in some region J s J  > p ,  Re(s)>O, where c, p are  con- 
stants  and k is an integer. The sensitivity q & II I -  PIQ I1 
is definedI4  as  in Section V. 

Corollaly 6.2:15 The sensitivity I I  I -  PIQn )I wean be made 
smaller  than  any E > O  by a  comparator Qn in Wr" with 
frequency response 

n being a (sufficiently large) integer. 
Pro08 The hypotheses of Theorem 3 are  satisfied, 

with P, =PI and P,, = I .  Therefore, p(P , )=O and 1)  I -  
P,QnIIw-+Oasn-+co. Q.E.D. 

D. Lower Bounds to Sensitivity 

It might be expected that  the  singularity measure of an 

location of its RHP zeros.  and that  the  optimal sensitivity 
would be similarly limited.  The following theorem shows 
this to be true. 

Let II . I1 be any weighted seminorm  on Hz" of the 
form ( 1  PI1 = I/ ( 1 ,  1;) being (a  scalar  function) in H F .  
For any plant P in WmM, let the RHP zeros of P be the 
points si in Re(s)ZO i=1,2:. .. at which det[$(si)]=O. 

Hz€ h' frequency response matrix would  be limited by the 

Theorem 4: 

Proof: For  any Q in W m N  let E 4  ( I -   P Q ) .  For  any 
RHP zero si, let ( be a unit vector in the  nullspace of the 
matrix $(si)Q(si). Let f: C-+C be  the  function f(s)= 

Now f(s) is an H," function, and by the maximum  mod- 
ulus principle  attains  its  maximum  on  the j w  axis,  i.e., 
I f ( j w ) l >  1 *(si)l for  some w.  But for  any  transformation A 
in Euclidean N-space, and  any  unit N-vector 5, a( A)>(*A<.  
The last  assertion  is  established by the  inequalities 

t*G(s)E(s)& since P(s,)Q(si)=o, f ( s i )=~*&~(s ; )=+(s , ) .  

1 3 ~ o r  simplicity we have  considered inputs  in H' here, but the conclu- 

I4Recall  that  sensitivity of a  feedback  scheme  equals I1 Z- P,Qlr i,,. by 

I 5 T h i s  corollary is based  on  results  obtained  with D. Bensoussan [17]. 

sion is easily  extended to H P ,  1 G p G  co. 

Theorem 1. 
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We employ this fact to  obtain 

p(P)>llEII= s u p u [ ~ ~ ( ; ~ ) ~ ( ~ w ) ] ~ s u p / f ( ; w ) ~ ~ ~ l i . ( s , ) ~ .  
w w 

The theorem  follows. Q.E.D. 
Remark: Theorem  4 implies that  no feedback  can pro- 

duce small sensitivity if  a  plant zero  is  present  in any 
heavily weighted part of the right half-plane. For "low-pass" 
weighting such as k ( s + k ) - ' ,  k>O. this means that if  
sensitivity is to  be reduced, the only RHP zeros possibly 
allowed are those at very  high  complex frequencies. I $, I >> k .  

VII. EFFECTS OF PLANT  UNCERTAINTY ON 
DISTURBANCE  ATTENUATION 

Two  opposing tendencies can be found in  most  feedback 
systems. On the one  hand.  to  the  extent  that feedback 
reduces sensitivity it reduces the need for plant identifica- 
tion. On  the  other  hand,  the less information is available 
about the plant.  the less possible it is to select a feedback 
to reduce sensitivity. The  balance between these tendencies 
establishes a maximum to  the  amount of tolerable  plant 
uncertainty  and, equivalently, a minimum to the amount of 
identification needed. 

I t  can be  argued  that the search for such a minimum 
should be basic to the theory of adaptive systems. Actually. 
even the existence of such a minimum appears not to have 
been stated,  perhaps because plant  uncertainty is so dif- 
ficult to  study in the WHK framework  in the absence of 
the multiplicative properties (4.l),  and because there is  no 
notion of optimality in the classical setup. 

Here. we would like to take a  step in the  direction of 
articulating these issues, by defining  the tradeoff between 
minimal sensitivity and  plant  uncertainty  and  deducing its 
simpler  properties. Sensitivity to  disturbances will  be con- 
sidered in this  section,  and  to  plant  uncertainty in the next. 

Let B, be a  subspace of the  causal  operators B,. Con- 
sider  the feedback  (3.1) and model reference (3.3)  schemes. 
Suppose that some  nominal  plant PI in B, is specified and 
(3.4) hold, so the  two schemes are  equivalent. The true 
plant P in B, will differ  from PI  in general. Let K,,: 
%+X, K,,(d)=y be the  operator in A mapping dis- 
turbances  into  outputs. K,, can be expressed in  terms of F 
[using (3.2a)], 

K,, =( I + P F ) - l  

or in terms of PI  and Q [using 3.4b)], 

= [ ( I - P I Q + P Q ) ( I - P , Q ) - l ] - '  

= ( I - P , Q ) [ I + ( P - P , ) Q ] - ' .  (7.1) 

We shall be interested in the way in which closed-loop 
operators  such  as K,, behave as functions of the  open-loop 
operators P, PI, Q, and F. In particular, let us define two 
functions  mapping  open-loop into closed-loop operators. 
Let E: At -+A, E ( P ,  P I ,   Q ) = K 3 ,  be  the  function  relating 
K,, to  the model reference variables, and Ef: At --+A, 
Ef(P. F ) = K , ,  the  function for the feedback variables. 
Any  pair ( d ,  y )  in ! X 2  satisfying (3.1) or (3.3) also satisfies 
the  equations 

J=E,(P. F ) d = E ( P .  P I . Q ) d .  (7 -2) 

The c.1. (closed-loop)  operators K,,. i. j-2.3. of the 
feedback  scheme (3.1) were introduced in Section 111. and 
are well defined for the model reference scheme (3.3) under 
the assumed equivalence. The model reference scheme 
shown in Fig. 3  has two estra nodes labeled 4  and 5.  We 
shall avoid the lengthly but  straightforward  calculation of 
the  remaining c.1. operators,  and  instead assume the follow- 
ing elementary properties of the model reference scheme: 
define the operators K ,  2 [ Z + ( P - P , ) Q ] - '  and K,, 
[ I +  Q( P -  P I ) ]  - I  and let K be the sextuplet of operators 
( K M .  KSS .  P.  P,.Q, I } ;  the set {K,,}il=2 of all c.1. opera- 
tors  consists of algebraic combinations (i.e.. involving  sums 
and  products only of) the operators in K: furthermore 
K3, = - Q K M .  

A. Stabilizing Feedbacks 

It is  well  known that any stable  plant which  is stabilized 
by  feedback  is surrounded by a ball of "admissible" per- 
turbations which  preserve  closed-loop stability. Here. the 
radius of such a ball will  be calculated.  and sensitivity will 
be defined with respect to  plant  uncertainty within the ball. 

Suppose  a right seminorm II . II , to  be  defined on B,, and 
recall that I I  II 2 11 1 1 .  The  true  plant P will be  supposed 
to lie in  a ball of uncertain& of radius 6 2 0  in B, around 
rhe nominaf P I .  b ( P l . 8 ) h  { P i n  B,:llP-P1~~,<8}. Since 
llP-P,ll~llP-Plll,, b ( P l , 6 )  is a  subset of the ball of 
radius 6 in 5. 

An  operator K in A whch depends  on P E B ,  will be 
called bounded over a ball b( PI. 6 )  iff K is  in and  there is 
a  constant c 2 0  with the property  that II K I !  < c  for all P in 
b( PI, 6). A feedback or model reference scheme  will be c.1. 
(closed-loop) bounded on b( PI. 6)  iff  all its c.1. operators  are 
bounded on b( PI, 6) .  

Proposition 7.1: The following statements  are equivalent 
on any ball b( PI,  6 ) .  i) The feedback  scheme is closed-loop 
bounded; ii)  Q is in B and K ,  = [ Z c ( P - P , ) Q ] - '  is 
bounded; iii) the model reference scheme  is  closed-loop 
bounded. 

Proof: We shall prove the sequence of implications, 
i)-ii)*iii)* i). If i)  is true. then K ,  is bounded by 
definition. Also. K,, is bounded by definition.  and there- 
fore in B for all P in b(P, .6) .  But PI is  in b( P l . 6 ) ,  and 
K,, = - Q when P = PI; therefore. Q is in B, and ii) is true. 
If  ii) is true then K j ,  is also  bounded. as the equations 
K,, = [ I + Q ( P - P , ) ] - '  = I - Q K , ( P - P I )  imply that 



11 K 5 5 1 1 ~ l  +IIQII.Il K,11-6, for any P in b ( P l , 6 ) .  There- 
fore,  and by the assumed property of the K i j ,  each c.1. 
operator Kl j .  i ,  j=2: . -.5, is an algebraic combination of 
the  operators of K. which are bounded on b(P, .  6). It 
follows that each Kl, is bounded there, and  that (3.3) is c.1. 
bounded, i.e., iii) is true. If iii) is true  then i) is true, as (3.1) 
and (3.3)  are equivalent. Q.E.D. 

Again, only stable Q need be considered. The  operators 
F in A, and  Q in 5, will be called stabilizing for b( P I ,  6)  iff 
(3.1) and (3.3), respectively. are c.1. bounded  on b(P, ,6) .  
The set of all Q in 5, stabilizing for b ( P , ,  6 )  will be 
denoted by Bs( PI, 6). For any PI and Q in 5,, the set of 
real points 6 for which Q is stabilizing for b(P, ,  6)  will be 
denoted by A( P I ,  Q),  and abbreviated to A when depen- 
dence  on (PI,  Q) is not of interest. 

The next lemma shows that  any  stable Q gives a c.1. 
bounded scheme (3.1). and is therefore stabilizing, for 6 
small enough. Let PI  and Q be in 5,. 

Proposition 7.2: If 6 satisfies O<iS<11QIl - I ,  then 6 is in 
h and for any P in b( PI,  6 )  the inequality 

I I { z+ (P-P~)Q} -~ I I< ( I -~ I IQ I I ) - '  (7.3) 

with the proviso that  the  sup is replaced by co if Q is not 
stabilizing. For any fixed nominal  plantI6 PI in B,, q( P,, S)  
is a positive-real valued function of 6 > 0. 

Theorem 5: For  any nominal plant PI in B,, the minimal 
sensitivity to  plant uncertainty r](P,, 6)  is a  monotone 
nondecreasing function of 6 for 6 2 0 ;  q( P I ,  6 )  approaches 
the singularity measure p( PI) as 6 4  0; and q( PI, 6 ) =  I1 I I1 
for 6= II P, II r. 

Lemma 7.3: For any PI  and Q in 5,, q ( P , ,  Q;  6)  is a 
monotone nondecreasing function of 620 ,  finite for 6 in 
A.  h contains  the interval [0, IlQll - I ] .  For any 6 in 
[0, IIQ I1 - I ] ,  the inequalities 

I I~ -PIQI Iw~q( f ' l ,Q :  S)GIII-PIQIIw 

+IIZ-P,QII ,~I IQII(~-~I IQII)- '  (7.4) 

and, if II . II Lv is symmetric, also the inequality 

q(P,.Q:6)G111-PlQll jv(1-611Qll)-1 (7.5) 

are satisfied. 
Proof of Lemma 7.3: The symbol t will denote  a 

monotone nondecreasing function of 620 .  By definition of 

holds. A is a half-open interval, [0, 6'). 
Proof: Under  the hypothesis, II(P-P,)Qll t l .  There- 

fore, the small gain property ensures that [ I +  (P - P,)Q] -' 
is  in B, and (7.3)  is true  by  Proposition 2 .1~ .  A is an 
interval beginning at 0, because 6 E 4 and 0 <6'<S implies 
that b( PI, 6)  contains b(P,, a'), which implies that 6' € A .  A 
is half open by a  standard  perturbation argument for  the 
openness of resolvent sets which will be  omitted,  as this E ( P .  PI,Q)=(I--P,O)[l-(Pl  -P)QII+(P-Pl)Q]- ') .  
property is not  important here. A contains [0, IlQll - I ]  (7.6) 

A ,  Q is stabilizing for any b( PI, 6)  with 6 in A,  so q( P I ,  Q; 6)  
is finite on A .  By Proposition 7.2, D is an interval contain- 
ing [0, I1 Q I1 - I ] .  6 is a t function on h since it is a  sup over 
sets b( PI, 6 )  which are nested and nondecreasing as 6 
increases. 

From (7.1) we get 

because, for any 6 in [0, (I (2 I1 - I ] ,  (7.3) implies that K ,  is 
bounded on b(P, ,  so is by Proposition 7.1. The triangle inequality and dominance  condition 1 1 .  I1 I.y G 

-~ 

1 1 .  I1 give 

Suppose  that right and left seminorms are defined on 9 
as in Section V, and induce  a weighted seminorm II.11 on 
5. For the  plant P in  any  ball of uncertainty b(P,,  6), and 
any feedback F i n  A , or  comparator Q in 5,, the sensitivity 
to disturbances  under  plant  uncertainty of the equivalent 
schemes (3.1),  (3.3) is defined to  be 

q ( P l , Q ; 6 ) =  sup sup{llyll~/lldllr:  din%r,lldllr#O} 
P E b ( P , , G )  

;II(I-P,Q)(P,-P)Q[Z+(P--P,)Q]-'. 

(7.7) 
For 6 in [O. 11 Q II -'I, the upper  bound in (7.4) is obtained 
from (7.7) by (7.3)  and the multiplicative property of 
norms. The lower bound is valid as P I  is  in b ( P 1 6 ) ,  and 
E( PI, P I . Q ) = I - P I Q .  If  ) l . IJw is symmetric. the mul- 
tiplicative property of symmetric seminorms applied to 
(7.1) gives 

if Q is (stabilizing) in 5,( PI. a), and q( PI$ Q; S ) =  other- 
wise. For any stabilizing Q,  I I ~ ( ~ , ~ ~ , Q ) l l ~ ~ I I Z - P , Q I I , l l { ~ + ( P - P l ) Q } - ' I I  

" I  

I1 I-P,QII >p( PI), it can  be concluded that  for  any Q in 

q( P I ,  Q,6) is the smallest assured sensitivity for P in the As q( PI, 6 )  = infQEaq( PI, Q; 6)  by definition, q( PI, 6 )  is 
ball. We are interested in finding Q to minimize this the inf of a set of functions with values in [p(Pl, 
sensitivity. Accordingly. we define the minimal  semiticity  to Therefore. q(Pl. is and 6 ) a p ( P l  ). Since is in 
plant  uncertainty to be 

(7.2). also' that '('9 'I* Q)=E/(P* F ) . )  B,, q(pI.p; 6 )  is a t function with values in [p* . (p , ) ,W] .  

q ( P , . 6 ) =  inf sup lIE(P, Pl,Q)llLv 
QEB,  P € h ( P , . G )  can  be relaxed in Theorem 5. Lemma 5.3, etc. 

I6Again, the  assumption  that  plant  and  feedback  are  both  strictly  causal 



316 I L E E  TRANSACTIONS ON  AUTOMATIC CONTROL. VOL. kc -26 .  NO. 2. APRIL 1981 

B,. q ( P , , O : S )  is  in the set, and q(P, .6)<q(PI,O:6)= 
II I I1 ,,,, where the last identity is true by (7.1). 

Let  us  show that l im8+o~(P l ,  6 ) = p ( P , ) .  By definition 
of p ( P , ) .  for any <>O there is a Q in B, satisfying 
I1 I-P,Qll <p( P,)fc/2;  as  the RHS of (7.4) approaches 
(I I-P,QII as 6+0, there is a 6>0 for which q(P .Q;  6 )  
d p (  PI)+€. Since E was arbitrary,  and  it  has been  shown 
that q( P I .  S)>p( PI), the conclusion follows. 

Finally, let us show that q ( p , ,  1 1  p ,  11 ,)= 1 1  I 1 1  ,,,. Suppose versions of the problem.  by  allowing the plant  invariant 
the  contrary  to  be true. I t  has been  shown that scheme to be multiplied by a  constant R, .  representing  a 
q( P I .  II PI II ,)< II I (I w, so q( PI, II PI I1 ,)< II I I1 w ,  Therefore. desired nomina1  control  law. 
there is a Q in B, for which IIE( P ,  PI. Q)ll,+, < II I 1 1  &,,. Now, 
0 is in b(P, .  I I  PIIIr)  and, by (7.l), q ( P , ,  ( 1  PIII,) 2 A .  Planr Invariant Schemes 
IlE(0. PI, Q)II ,,, = II I II which  is a  contradiction. Q.E.D. 

duces sensitivity for  the  nominal  plant P I .  there are  points  incorporating  a  plant P Mith a single accessible input,  has 

where "the less we know about P .  the less able we are to 4. This flowgraph is completely specified by the two addi- 
construct  a feedback to  attenuate disturbances." tional  operators U and F1 which  may be unstable even 

though  the  original  arrangement is closed-loop stable. Note 

Fig. 5. 

Remark: Theorem 5 implies that whenever feedback re- Any  feedback  arrangement of the type shown in  Fig- 1, 

in the interval [O. 1 1  PI I [ ]  at which q( PI.  6 )  increases, i.e.. an equivalent description in Of the  flowgraph  of Fig. 

VIII.  FILTERING OF PLANT UNCERTAINTY: 
INVARIANT SCHEMES 

We now turn to the second problem  outlined  in  the 
introduction, Section I-D. The  plant P lies in a  ball of 
~ncertainty '~ around  some  nominal value PI, and  one 
object of using  feedback is to shrink  the size of the uncer- 
tainty. Of course, uncertainty can be  reduced to zero by 
disconnecting  the  input ( u  in Fig. 4) from the system, but 
then P I  is also  transformed into zero. Clearly, the problem 
is trivial unless there is a  normalization or constraint  on 
the control law that  transforms P I  into  a closed-loop 
system. 

We  would prefer as far as possible to separate the 
reduction of uncertainty from the  transformation of P I .  
and therefore seek a  definition of uncertainty which  is 
independent of the eventual  closed-loop  system. 

I f  P I  were a real number,  uncertainty could  be normal- 
ized  by specifying it  as a  percentage of the nominal value. 
This possibility is not open for noninvertible plants. In- 
stead. we shall achieve a normalized definition of un- 

that Fig. 4 is an enlargement of Fig. 2 by a new branch, U, 
connected to a new node labeled 1. For simplicity. it 4 1  
be assumed that d=O. The new feedback scheme equations 
are 

y = Pu (8.la) 

c=  uu-Fv (8.lb) 
in which P E A ,, F E A *, and" U E A are  operators,  and u, 
u,  and J are in !X, (Equations (8.1) represent an enlarge- 
ment of (3.1)  by the  term Uu, under  the  constraint  that 
d=O.) As P is strictly  causal, ( Z + F P ) - '  exists in A, and 
for each u in 3. (8.1) have unique  solutions for D and y in 
5 ,  given  by the  equations 

r;=(I+FP)- 'Uu (8.2a) 

y=P(z+FP) - IUu .  (8.2b) 

Let KI2  and K , ,  be the operators  mapping % into 3 which 
satisfy, K,,(u)=v,  K , , ( u ) = y .  By (8.2). K l z = ( Z + F P ) - ' U  
and KI3=P( I+FP) - IU .  

The full set of closed-loop operators of (8.1) consists of 
K , 2 .  K 1 3 .  K , ,  = I ,  K , ,  = 0. and the operators K,, defined 

certainty by  employing the device of a  plant-invariant in  Section 111. where i. j=2.3. 
scheme.  which leaves the nominal  plant  invariant while A variant of the model-reference transformation of Sec- 
shrinking  the ball of uncertainty. Such a scheme  will  be tion 111-A will  be used. The flowgraph of Fig. 5 is de- 
shown  always to be realizable in the form of a model scribed by the new model reference scheme equations 
reference scheme. 

process into two  consecutive stages: 1) reduction of un- " = R L l - Q ( j . - P , t ' )  (8.3b) 
This device will also enable  us to separate the design I ,=  PC (8.3a) 

certainty  and 2) transformation ofthe nominal  plant into a 
nominal closed-loop  system (cf. the  separation  into estima- 
tion  and  control stages in Kalman filtering). 

A possible disadvantage to this  approach is that the two 
stages may  be dependent.  and yield a  suboptimal sensitiv- 
ity. We shall try to get the best of both worlds. and 
simultaneously formulate normalized and unnormalized 

in tvhich P ,  PI EB,. R E A .  and u. c. YE?. For  any ~€3. 
(8.3) have unique  solutions for t' and J in !X. as P. P I .  and 
Q are strictly causal.  (Equations  (8.3)  can be  viewed as an 
enlargement of (3.3) by the term Ru, and subject to  the 
constraint  that d=O.) 

The schemes (8.1) and (8.3) will be called equicalent iff 

"In order  to be physically  realized, ci would  have to be  approximated 

uncertain  in  some  applications; in others,  they may simply  represent  simplifies the presentation. As C is followed by a  strictly  causal  element. 
'7Departures of the  true  plant  from  the  nominal  can  be  interpreted as by a  strictly  causal  operator. We prefer  not to assume  that U€A, as this 

known  perturbations  to be attenuated.  and has no feedback  around  it.  there is no loss of generality. 
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every triple ( u1 v ,  y )  in 9 C 3  satisfying (8.1) satisfies (8.3) 
and vice versa. Equivalence  will be  established subject to 
the  equations 

Q = F ( z + P , F ) - '  (8 .4a) 

(8.4b) 

R=(I+FP,) - 'u  (8.5a) 

u=(z+FP,)R.  (8.5b) 

Equation (8.4) is a  repetition of (3.4). If either of (8.5) 
holds then, clearly, both  are true. 

For equivalent  schemes, let E ( P ,  P,, Q )  be defined as in 
Section VII; Let K be  the  function K: A ~ x A  +A, 
K( P.  P I ,  Q, R)=K,, .  which maps  operators  appearing in 
(8.3) into  the c.1. (closed-loop) operator K13.  Whenever all 
operators except P are regarded as fixed, K( P,  P I ,  Q, R )  
will  be denoted by W( P ) .  W( P )  can  be expressed in terms 
of the model-reference  scheme operators, by the  formula 

W ( P ) = P { I + Q ( P - P l ) ] - l R  (8.6a) 

which is obtained from the following sequence of equa- 
tions. For any ( u ,  c,  y )  in !X3 satisfying (8.3), we have 

U = R L ~ -  Q( P -  P , ) C  

y = P v = P I Z + Q ( P - P , ) ] - l R ~  (8.6b) 

in which the inverse exists in A as Q ( P - P I )  is strictly 
causal. Since K , ,  maps u intoy, K , ,  must coincide  with the 
last  operator of (8.6b), and (8.6a) is true. 

The set of  c.1. operators of the model reference scheme 
(8.3) is defined as in the preceding  Section VII, except that 
K is augmented by the operator R .  

For any P I  in A,, K will  be called (nominal) plant 
invariant i f f  K ( P , ) = P , ;  and, for any R ,  in A, plant in- 
variant ( X R , )  i f f  K(P,)=P,R, .  From (8.4) it is clear that 
K has these properties whenever R = I or R = R , ,  respec- 
tively. 
An  operator 0, E B is a right zero'' of PI iff P,O, =O. 
Theorem 7: 

a) Any  feedback  scheme (8.1) with ( P ,  F, U )  in At X A  
is equivalent to a model reference scheme  (8.3)  with 
( P ,  P I .  Q, R )  in A: X A, in  which ( F ,  U )  and ( P I ,  Q, R )  
are  related by (8.4)-(8.5); and vice versa. If (8.4)-(5) hold, 
then we have the following. 

b) If P assumes the  (nominal) value PI EA,, then K( P I )  
=PI R ,  and if the feedback  scheme is closed-loop stable, 
then Q and R of the model reference scheme are  stable 
(although F and U may be  unstable). 

c) The differences K ( P ) - K ( P , )  and P-PI  are related 
by the  formulas 

(8.7a) 

The term "zero" is appropriate  for a normed algebra. 
''More  simply, 0, is an operator whose range is in the nullspace of P,. 

t 

= E ( P , P , , Q ) ( P - P , ) R .  (8.7b) 

d) For any R ,  EB, K is plant  invariant (XR,) iff R = R l  
- O r ,  where 0, E B is any right zero of P I .  

Proof: 
a) If  ( u , o ,  y )  satisfies (8.1)$ then we  have 

(Z-QP,)U=(Z-QP,>(UU-F~) [by (8. W] 
~(Z-QPl)[(Z+FPl)R~-Q(I-PIQ)~'Y] 

[by (8.5b)  and  (8.4b)l 

=Ru-Qu 
where the second last  equation was obtained using the 
identity ( I+FP,)=(I-QP,)- '  [see (3.5)] and  Property 
2.la. Hence, ( u ,  O ,  y )  satisfies (8.3). The reverse assertion is 
proved similarly. It follows that (8.1) and (8.3) are equiva- 
lent. 

b)  From (8.4), M(P,)=P,R; if (8.1) is closed-loop 
stable,  then  the c.1. operators X,, =F(I+P,F)- '  and K , ,  
= ( I + F P ) - ' U  are  stable,  and  equal Q and R. 

c) From (8.4) the following sequence of equations is 
obtained: 

from which (8.7a) follows; (8.7b) is obtained  by  Proposi- 
tion 2.1 a. 

d) K is plant  invariant ( X R , )  iff K(P,) -P ,R,=P,(R 
-R,)=O, i.e., R - R ,  =Or.  Q.E.D. 

Remark: Plant  invariant schemes  allow us to divide  any 
control-law  synthesis into two stages: 1)  filtering of plant 
uncertainty P -   P I  and 2)  design of a  control law for  a 
nominal  plant P I ,  with the  assurance at least that  the 
filtering  stage will improve  the design. In general,  there is 
no "separation principle" to  guarantee  optimality of the 
division. 

Either stage may come first. Therefore, in our theorems, 
P can be  interpreted  either  as  a  plant  without  controller, 
for which a controller will be designed eventually; or, as a 
plant with controller  attached, which requires additional 
filtering only to  the  extent  that P differs from PI .  

B. Stabilizing Feedbacks 

In the rest of Section VI11 i t  will be assumed that: P and 
PI belong to a  subspace B, of the  strongly causal operators 
B,, on which a right seminorm ( I  * I I  , is defined; P lies in  a 
ball b( P I ,  S), defined  as in  Section VII-A, of what  can be 
interpreted  either as uncertainty or perturbations;  and  the 
equivalence conditions (8.4), (8.5) hold, so that the feed- 
back  and  model reference schemes (8.1), (8.3) are  equiva- 
lent. 

Q in A,  and R in A are  sought which  give  low sensitivity 
and maintain c.1. boundedness.  In view  of Theorem 7b), 
the  assumption  that Q is in B, and R in B, i.e., that both 
are stable, can  be  made  without loss of generality. 
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For any h( P I ,  6) .  the  definitions of a  bounded  operator. 
c.1. bounded scheme. and  stabilizing Q were given in  Sec- 
tion VII-A. The set Bs( P I .  6 )  of Q in B, stabilizing  for 
b( P I .  6 )  was introduced. 

Proposition 8.1: Under the  present hypotheses, Proposi- 
tions 7.1 and 7.2. are valid for  the feedback  scheme (8.1) 
and model reference scheme (8.3), and the set of Q in B, 
stabilizing  for b( PI, 6 )  coincides  with B,(P,. 6).  

Proof: As R is in B. the set K augmented by R 
consists of operators  bounded  on b(P, .  6 )  i f f  the  unaug- 
mented set K consists of operators  bounded  on h( P I .  6) .  
Therefore. {K,}:. j = l  are  bounded iff  { K,,}:,,= , are 
bounded.  The conclusion follows. Q.E.D. 

C. Sensiticity  to Plant Perturbations or Uncertaint>* 

Suppose  that  a  pair of seminorms ( 1 1 .  II w. 1 1 .  II , )  is de- 
fined on  the spaces (B,B,). respectively. We assume l l .  1 1  ,{. 
to be a left seminorm.  but leave' open  the possibility that 
I I .  II , is not a right seminorm, and assume  instead  that 
II . I1 I G I I  . II  ~, i.e.. 1 1 .  I I  , is dominated by the right seminorm 
1 1 .  I1 ,. A weighted seminorm I ( . ( (  is assumed to be defined 
on  the set of products B OB,, and  to have the  multiplicative 
property. I1 C D  I I  f I I  C II M; I I  D I1 , for all C in B and D in B,. 
The pair ( 1 1 .  ( I  i l .  I1 ,) will be called aligned iff there is a 
D E B, for which the  preceding  inequality is an equality  for 
all C in B. 

For  the  plant P in  any ball of uncertainty  b( PI, 6). and 
any ( F E  A s, U E  A), or ( Q  E B,, R E B), the sensitioity to 
plant perturbations (or  uncertainty) of the equivalent 
schemes (8.1)-(8.3) is defined to  be 

v ( P l . Q . R ; 6 ) =  SUP {IIw(P)-H(Pl) 'Ic6- '} 
P E h ( P , . 6 )  

(8.8) 
for Q stabilizing (Le..  in E,( PI. 6)). and v( PI. Q .  R.; 6 ) =  x 
otherwise. For any stabilizing Q. (8.7) gives the  equation 

v ( P , . Q .  ~ : 6 ) =  SUP { I I ~ ( P . P , . Q ) ( P - P , ) R I I , . ~ ~ ~ } .  

(8.9) 

P E h ( P , . S I  

The following lemma relates  the  disturbance  and  plant 
perturbation sensitivities. TJ and v. to each other.  and to the 
1 1 .  I1 b,.-singularity measure p ( P ,  ). when R= I. 

Lemma 8.2: v( PI, Q. I ;  6 )  is a  monotone  nondecreasing 
function of 6 2 0  satisfying the inequality 

v ( P I . Q . I : 6 ) ~ ~ ( P I , Q : 6 ) :  (8.10) 

and i f  1 1 .  II = 1 1 .  II and the  pair ( l i .  I I  ,+,. 1 1 .  I1 r )  is aligned then 

v ( P l . Q . I : 6 ) 2 p ( P I ) .  (8.1 1) 

Remurk: I I  . II  can  coincide with the  principal norm ' 1 .  I I_ 
For example. i f  kV is in B,. il W , i  = 1. 'IC'[ L,, = CW'I/. and 

1 1  D I1 , = I1 W - I D  1 1 ,  then the  principal  norm has the multi- 
plicative property II CD I '  < /IC ,I 1 1  D I1 , and may be used 
as the ' 1 .  I! I norm. Even though 1 1 .  I1 provides no lveighting. 

(8.10) shows that sensitivities v smaller than 1 can be 
achieved whenever v( PI )<  1. In  effect,  the  plant  perturba- 
tions  supply their own weighting. 

This  example  has  the  alignment  property.  as l i  C W II L' = 

Proof of Lenma 8.2: v( PI. Q, I :  6 )  is a t function of 6, 
as i t  is a sup over sets b( P , . 6 )  which are nested and 
nondecreasing with S E A ,  and is x for 6 @ A .  For any P in 
h( P I .  6 )  and stabilizing Q. we have the  inequalities 

I I  c I I  H; II U'II 1. 

:,[E( P. PI, Q ) (  P-PI)Ilc6-' 

~II[E(P.Pl.Q)llM;IIP-P,11,6-' 

llE( P .  PI. Q)II ,+ (8.12) 

by the  multiplicative  property of 1 1 .  I1 and  as 

l lP-Plll l~llP-Plll ,G6 

is obtained by taking  the sup of both sides of (8.12) over all 
P in h( PI, 6). If  1 ' .  II , = 1 1 .  ll, and ( 1 1 .  II ,+,. II . II ,.) is aligned 
there is an  operator D E B ,  for which IIIE(P, P I .  Q ) D l l ,  = 
IIIE(P.Pl.Q)II,~-IIDII~. The  operator Po P,+6DIIDIIr-l 
is in b ( P , ,  6 )  and llE(Po. PI. 6 ) ( P -  Pl)11c6p1 = 
IIE( PI. P,,Q)II w 2 p ( P l ) .  The  sup in (8.9) must have the 
lower bound ,u( P,) .  and (8.1 1) follows. Q.E.D. 

D. Asslrmptions on R 

As R = O  gives v=0.  the  attainment of a  small sensitivity 
is trivial unless R is constrained. In many problems  a  target 
value of the c.1. operator K , ,  is specified for some  nominal 
value of the plant. By Theorem  7b).  the target value can  be 
attained iff  it has  the form P,R.  We therefore  make  the 
following assumption. 

Assumption 1: An R ,  E EB is  given for which the equation 
H ( P , ) = P , R ,  must be satisfied, i.e., H is plant invariant 
( X  R,) .  By Theorem  7d), R =  R ,  + 0,. where 0, E B is any 
right zero of P I .  There  are now two variables  to  be  opti- 
mized, Q and 0,. Their  simultaneous  optimization  can  be 
difficult, and we make  the following simplifying  assump- 
tion. 

Assunzption 2: 0, =O. Assumption 2 may  constrain  the 
class of allowable  feedbacks and thereby give suboptimal 
sensitivities. However, it is clear  from  (8.7b)  that  there  is 
no such  constraint if the  condition 

( P - P J U ,  =o (8.13) 
is fulfilled. Equation  (8.13) is fulfilled \vhenever N( PI) 
(nullspace of P I )  is contained in N ( P )  for all P in b ( P , .  6): 
for then. for any u €?X. either U,u=O. or 0,u E N( PI ) and 
so O,u€N( P ) .  In either case, ( P -  P,)O,u=O. ;.e.. (8.13) is 
true. I f  N( P I )  is trivial. then. of course, (8.13) is fulfilled. 
For example, N( PI)  is trivial for any  nonzero PI in HI;, 
because  functions  analytic  and not identically zero in 
R e ( s ) 2 0  have at most a  countable  number of Re(s)>O 
zeros. 

As R in (8.6) is  now fixed. c R  can  be  absorbed  into  the 
\veighting for some  constant A in (0. I ]  by replacing I ! .  I1 
n i t h  the new seminorm IIC II = A I!CR II r .  and similarly 



for 1 ) .  )I ,. Without loss of generality, we can therefore make 
the following assumption. 

Assumption 3: R = I .  We prefer to absorb R rather  than 
to show it explicitly, as this approach reduces the  number 
of variables and allows sensitivity to be related to weighted 
invertibility. 

E. Minimal Sensitivity 

For any PI in 5, and 6>01 the minimal sensitivity to 
plant perturbations is defined to be 

v(P , ,6)=  inf {v(Pl ,Q,1 ;6) )  
P E B  

= inf  sup { I I~ (P,P, ,~ ) (P-P~) I I "~ - ' }  
QEB P E b ( P , , 6 )  

provided the  last  sup is replaced by 00 for nonstabilizing 
Q. For fixed PI, v( PI, 6) is a  function of 6>0 which 
represents the dependence of perturbation sensitivity on 
plant uncertainty. 

Theorem 8: For any nominal  plant PI  in 5,, the minimal 
sensitivity to plant  perturbations v(P, ,  6) is a  monotone 
nondecreasing  function of 6 2 0. 

v( P I ,  6) satisfies the  upper  bound  conditions v( P I ,  b)< 
q(Pl,6) and l i m 8 , 0 v ( P 1 , ~ ) ~ p ( P l ) .  If l l- l l ,=ll~ll,, and 
(Il-llw,II-II,) are aligned, then lim8,,v(P,,6)=p(P,)  and, 
for6=IlP,llr, I I P , I I ~ I I ~ , I I ~ ~ ' ~ Y ( P , , ~ ) ~ ~ ~ ~ I I ~ .  

Proof: v( P I ,  6) is a t function of 6 20 ,  as by defini- 
tion  it  is  a  sup over Q in B, of functions which are T by 
Lemma 8.2. The  inequality v ( P , ,  6)<q(Pl, 6) is obtained 
by taking supQEB of both sides of (8.10). It follows by 
Theorem 5 that lim8,0u(PI,6)<p(P,),  and that v ( P 1 , 6 )  
G I1 Z II for 6= II P I  II .. If alignment and II . II =It. II , are 
assumed, then taking the infQ,, of both sides of (8.11) 
gives the inequality v( P I ,  S)>p( P I ) ,  and  the conclusion 
that lims,ov(PI, 6 ) = p ( P l )  follows. 

As the  operator P = O  lies in b(P, ,  II PI  I1 ,) and, for each 
Q in B,, IIE(0, Pl ,Q) ( -P l ) l l~ l lP~ l l~ l~ l lP l l l~ l lP l l l~ l ;  
therefore II PI II I1 PI II r-' G v (  PI,  II PI II .). Q.E.D. 

Remark: The  ratio I I  PI l Iol l  PI  IIr-' is a measure of the 
amount by which the 1 1 .  I1 " norm weighs down the  nominal 
plant. Provided norms are used for which the weighting is 
not excessive, in fact whenever the  ratio exceeds p ( P I ) .  
there must be points in the interval [0, I1 PI II .] at which any 
increase in plant uncertainty causes a worsening of minimal 
sensitivity. 

APPENDIX I 

Proof  of Proposition 2. I: 
a) If ( I + P Q ) - '  exists in B,  let R I - Q ( I + P Q ) - ' P .  

Now, ( I + QP) R = I .  because 

(~+QP)R=I-Q(I+PQ)-'P+QP-QPQ(Z+PQ)-'P 

=Z-Q(I+PQ)-'P+Q[I-PQ(Z+PQ)-I]P 

=I-Q(I+PQ)-'P+Q<Z+~Q)-'P=I. 

Similarly, R(I+QP)=I ,  so R is the inverse of ( Z + Q P )  in 
B. The required formula is obtained by multiplying both 
sidesof theequation(Z+PQ)P=P(I+QP) by(Z+PQ)-l 
on the left, and by (Z+QP)- '  on the right. 

b) If P is in R and P - I  in B, there is a  contradiction: 
any F i n  B belongs to R as F= PP-IF, so R is not  a  proper 
subspace and not a radical. 

c) Let R ( I + P ) - '  and observe that R=Z-PR. By 
the triangle inequality, I1 R (I < 1 + II P II II R I1 and, as II P II < 
1, I1 R 11 <( 1 - 11 P It)-'. Q.E.D. 

Proof of Proposition 3.5: Since II(Z-PQ)IIII = 1 when 
Q= 0, the infimum (Y satisfies a< 1.  Suppose a# 1; then 
there is a Q in B, for which Il(I-PQ)IIll a, < 1. It will 
now be shown that given any c>O, there is a Q, in 5, for 
which II(I-PQl)IIII<c~ and so the  proposition is true. 

Let n be any integer for which an <E. Now, ( I -  PQ)" = 
I+a,PQ+ . . * +a,,( PQ)" is a polynomial in  PQ, in which 
every term except the first has P as  a left factor,  and Q in 
B, as  a factor. Therefore, there is a Q, in B, for which the 
equation ( I - P Q ) " = ( I - P Q , )  holds. Now as IIB is in- 
variant  under all operators in 5, we get II(I-PQ,)IIII= 
I I { ( I - P Q ) ~ } " I I < ~ ~ ( I - P Q ) ~ ~ ~ " ~ ~ ~ < E ,  as claimed. 

Q.E.D. 

APPENDIX I1 
UNSTABLE PLANTS: REMARKS 

Consider the  problem of input-output stabilizing an 
unstable  plant Po in Hz by  identity feedback, given that 
the a priori information  about P consists of p (  j w )  and  the 
number N+ of Re(s)>O poles of P. By Nyquist's criterion, 
uncertainty as  to N+ translates into uncertainty*' as to the 
number of unstable poles of ( I+Po) - ' .  N+ must  not  be 
underestimated if stability is to be assured. However, it is 
impossible to be sure  that N ,  has  not been underestimated 
from purely input-output measurements. For example, let 
si, i= 1,2, . .n, be any finite set of frequencies, and pn2(sI) 
a set of n measurements of p,,(s) of tolerance E ,  i.e., 
I pn2(s , ) -po(s) l  <e.  It is impossible to deduce N ,  from  the 
measurements, as it is always possible to find a  dipole, 
( s t a )  ( s+a+8) - ' ,  with 6>0  so small that multiplication 
of p o ( s )  by the dipole changes p0(s,) by  less than c, but 
increases N ,  by 1. In our  particular setting, it appears  that 
input-output stabilization cannot be accomplished using 
solely input-output  data.  The implication is that some 
information concerning internal  structure is essential, and 
that stabilization is not a legitimate problem for  a purely 
input-output theory. 

On  the  other  hand, desensitization can  be achieved using 
input-output  data. If P is  in H,", and p ( t )  satisfies ap- 
propriate restrictions on  smoothness  and convergence to 0 
as t - +  c o ,  then p ( j w )  has a  finite modulus of continuity, 
and 8 can be located in a c-ball of H" by a finite set of 
measurements [ 141. This is sufficient for the  purpose of 
desensitization, as sensitivity depends  continuously  on 6 in 
H" (see Theorems 5 and 7). 

*OA more complete discussion  is in Zames and fl-sakkary [ 181. 
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SYNOPSIS 

The main  results of this  paper  are  the  Theorems 1-7. 
Section 11: Spaces of frequency responses and algebras 

of input-output mappings  are  defined.  and  their relevant 
properties  summarized. 

Section 111: A  decomposition  principle is derived. The 
disturbance  attenuation  problem is separated  into two 
independent  stages:  stabilization, followed by desensitiza- 
tion of a  stable system. The second  stage is a model 
reference scheme. 

Section Ill’: Some  constraints on sensitivity norms  are 
displayed.  It is shown that  the  induced  operator  norm is 
useless as  a  measure of sensitivity. 

Section IV: The concepts of a weighted seminorm,  ap- 
proximate inverse, and measure of  singularity  are  in- 
troduced and illustrated by examples. 

Section V: The  plant is assumed to be stable  and  known 
precisely. Sensitivity is defined.  Approximate  invertibility 
is shown to be  a necessary and sufficient condition  for 
sensitivity reduction in Theorem 2. and  optimal sensitivity 
is shown to be  equal  to  the  measure of singularity. An 
example of sensitivity minimization is solved in Section 
V-A. Unstable  plants  are discussed in Section V-B. Identity 
and inverting  sequences  are  introduced in Section V-C. and 
a lemma on  products of inserting sequences is proved. 

Section VI: Devoted to multivariable systems. In  Theo- 
rem 3. an  optimal  sequence of compensators is derived for 
a  plant  factorable  into  a  product of nearly invertible and 
noninvertible  factors.  Corollary 6.2 specializes this result to 
a  single-input  single-output  plant with a RHP zero. 
Corollary 6.2 gives conditions  under which the sensitivity 
of multivariable systems without RHP zeros can be made 
arbitrarily small. Theorem 4 shows that sensitivity can 
never be made small if there  are zeros in any heavily 
weighted part of the  RHP. 

Section VI]: The  plant is assumed  to lie in a ball of 
uncertainty  around  a nominal value. Feedbacks  stabilizing 
over  a ball are  defined.  Optimal sensitivity is shown  to be  a 
monotone  nondecreasing  function of uncertainty in Theo- 
rem 5. and  various  bounds  are  obtained. 

Section VIII:  Problem 2 is formulated,  again in terms of 
an equivalence between feedback and model reference 
schemes, this time subject to  a  plant invariance  property. in 
Theorem 6. Sensitivity to plant  perturbations is defined, 
bounded.  and  optimal sensitivity is shown to be a  mono- 
tone  nondecreasing  function of plant  uncertainty in Theo- 
rem 7. 
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