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QUADRATIC PROGRAMMING SOLUTION OF
DYNAMIC MATRIX CONTROL (QDMC)

CARLOS E. GARCIA and A.M. MORSHEDI

Shell Development Company
P.O. Box 1380
Houston, Texas 77001

(Received June 18, 1985; in final form December 27, 1985)

QDMC is an improved version of Shell’s Dynamic Matrix Control (DMC) multivariable algorithm
which provides a direct and efficient method for handling process constraints. The algorithm utilizes a
quadratic program to compute moves on process manipulated variables which keep controlled
variables close to their targets while preventing violations of process constraints. Several on-line
applications have demonstrated its excellent constraint handling properties, transparent tuning and
robustness, while requiring minimal on-line computational load.

KEYWORDS Constraints ~ Dynamic Matrix Control (DMC)  Model-Predictive Control

Multivariable Control ~ Quadratic Programming (QFP)

INTRODUCTION

Most process control applications consist of not only keeping controlled variables
at their setpoints but also keeping the process from violating operating con-
straints. For more than a decade we at Shell have been implementing a
multivariable computer control algorithm called Dynamic Matrix Control (DMC)
with great success. The method calculates moves on manipulated variables which
minimize future projections of controlled variable errors and constraint violations
in the least-squares sense (Cutler and Ramaker, 1979, Prett and Gillette, 1979,
Cutler, 1983).

Throughout the years, however, we have been increasingly encountering
applications which demand tight constraint control. In addition, there has been an
increasing need for improved on-line tuning capabilities for DMC.

An extended method for the solution of the DMC problem is introduced here.
The method denoted as QDMC (Quadratic/Dynamic Matrix Control) consists of
the on-line solution of a quadratic program {(QP) which minimizes the sum of
squared deviations of controlled variable projections from their setpoints subject
to maintaining projections of constrained variables within bounds (Morshedi, et
al. 1982). In contrast with DMC where constraints are enforced via least squares,
the use of a QP provides rigorous handling of constraint violations by formulating
them as linear inequalities, therefore allowing tighter constraint control.

The discussion that follows is divided into three parts. For completeness, an
overview of DMC is presented first. Then the fundamentals of QDMC are
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introduced, concluding with a discussion of its implementation on a pyrolysis
furnace temperature control problem.

DMC: AN OVERVIEW

DMC is a model predictive controller which exhibits excellent properties due to
its particular structure. The technique was developed in Shell as part of its
process computer control activities and has been analyzed in the control literature
(Garcia and Morari, 1982). The method is rigorously derived for linear systems
(as is any other conventional controller) and therefore, any analysis on DMC and
its features must be done in a linear theory framework.

Linear Input—Output Model

Without loss of generality, let us consider a linear dynamic system with one
output O and an input /. In computer applications only the behavior of the
system at the sampling intervals is of interest. Therefore, a discrete repre-
sentation of the dynamics is used here. One such representation is given by;

O(k+1)=§a,-AI(k—i+1)+00+d(k+1) 1)

i=1

where k£ denotes discrete time; O, is the output initial condition; Al(k} is a
change in input {or manipulated variable) at different time intervals k; Q(k) is the
value of the controlied variable at time &; d(k) accounts for un-modelled factors
that affect Q(k); a; are the unit step response coefficients of the system; and M is
the number of time intervals required for the system to reach steady-state.
Therefore, a; = a,, for i=M.

Note that the term d(k + 1) has been added to the input—output description to
take into account unmodelled effects on the measured output, which consist of
unmeasured disturbances and/or modelling errors. Inclusion of this factor is
crucial to the derivation of DMC as we now show.

Controller Design

The objective of any controller is to find the moves of the manipulated variables,
Al(k), which would make the output O(k) best match a target value O, in the
face of disturbances. Assuming the present time interval to be k, in DMC a
projection of the output O(k) over P future time intervals (k + 1 to k + P) is
matched to the setpoint O, by prescribing a sequence of future moves.

Derivation of the DMC equations From (1) the projected output for any future
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time K +1, >0 is:

!
Ok+1)=2 a; Ak +1-1i) (effect of future moves)
i=1
M -
+ O+ 2, a; Al(k+1-1i) (effect of past moves) (2)
i=i+1
+dk+1) (predicted disturbance)

For simplicity let us define

O*(k +1)=0,+ f} a; Al(k +1—-10) 3)

i=l+1

to be the contribution to O(k + ) due to past input moves up to the present time
k. This term can always be computed from the past history of moves.

Using this definition, one can write (2) for times £ + 1 up to k + P to produce a
set of P equations for the output projections as follows:

Ok +1) O*(k+1) Al(k) d(k +1)
: : + : + :
Al(k+N—-1) d(k + P)

"y

: : 4)
Ok + P) O*(k + P)

where
- a, 0 0
a, a, B
A= ay  an-y ) a,
a:\d’ aM"—l aM—.N+1
[ A Gy - - - Oy ]

is called the “dynamic matrix” of the system. Note that in the DMC formulation
only N moves are computed, i.e.

Al(k)=0 for k>k+N

Setting these moves to zero imparts important stability properties to the resulting
controller. In particular, as a result of our experience, selecting P=N+ M
generally yields a stable controller. This is discussed below in the section on
tuning parameter selection.

Estimation of unmodelled effects d(k) in DMC The set of equations (4) requires
a prediction of the unmodelled effects d(k). Since future values of the
“disturbance’ d(k) are not available, the best one can do is to use an estimate.
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From Eq. (1) for k =k — 1, and Eq. (3) for / =0, we obtain
O(k) = O*(k) +d(k) ' &)
Therefore, d(k) can be estimated using the current feedback measurement O,,(k)
of O together with past input moves information. In the absence of any additional

knowledge of d(k) over future intervals (as is true in most cases), the predicted
disturbance is assumed to be equal to the present, “‘measured” d(k);

d(k +1)=d(k)
:OM(E)_O*(’E)y [=13:P

Solution of the DMC equations Given this set of equations the DMC control
problem is defined as finding the N future input moves Al(k)--- Al(k+ N —1)
so that the sum of squared deviations between the projections O(k + /) and the
target O, are minimized. This is equivalent to the least-squares (LS) solution of
the DMC equations:

O, — O*(k +1)—d(k)
: =e(k + 1) = Ax(k) ©)
O, — O*(k + P)— d(k)
where e(k + 1) is a P-dimensional vector of projected deviations from the target
and

x(k)=[AI{k)--- AI(k + N = 1)]"
is the vector of future moves. Such least-squares solution is given by
X(k) = (AT4)'ATe(k + 1) @

In DMC only the move computed for the current interval of time k is
implemented. The computation is repeated at every sampling time & when a new
feedback measurement is obtained and used to update e(k +1). Failure to
compute a move at each sampling time could impair the disturbance handling
features of the algorithm.

Formulation for multivariable systems It should be pointed out that the DMC
equations for a multivariable system can be derived similarily as for the
single-input single-output (SISO) case. For an r-output, s-input system, a linear
dynamic representation is given by

M
Ok +1)=2 g Al(k —i + 1) + Oy + d(k + 1)
i=1

where O(k) is an r-dimensioned vector of outputs, g, is an r X s matrix of unit
step response coefficients for the i*® time interval, AI(k) is the s-dimensioned
vector of moves for all manipulated variables at a given time interval, O, is the
initial condition vector, and d(k) is a vector of un-modelled factors. Forr=s5s =1
this equation reduces to model (1).
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We can define a multivariable system dynamic matrix 4 composed of blocks of
dimension P x N of step response coefficient matrices as in (4) relating the i
output to the j*" input as follows:

Au Ap Ay

A, A A
A= da Lz £2s

1:4rl 4r2 ’=4r.r

where elements from matrices g, have been regrouped accordingly. That is,
matrix A; contains all the ij coefficients in matrices ¢,, [ =1 to M arranged as in

(4).

The corresponding vector of moves is
x(k) = [xi(k)Txo(k)" - - - %, (k)T]"
and the output projection vector becomes:
e+ =[e(k+ 1) e;(k+1)" - -e(k+17|"

Therefore Eq. (7) is equally valid for multivariable systems.

Tuning Parameters in DMC

Number of moves (N) vs. horizon (P) It should be clear from the DMC
formulation that as the number of manipulated variable moves (N) increases,
DMC has more freedom in matching the output projections to the setpoint. That
is, DMC produces tighter control although at the expense of larger moves or, as
is well known, for processes with non-minimum phase characteristics the resulting
controller could even be unstable (Garcia and Morari, 1982). From our
experience, stability (in the case of a perfect model) is ensured in DMC by
selecting P such that the steady-state effect of the most future move shows in the
projections (see Eq. (4)); that is, P =N+ M. Therefore, DMC is capable of
handling non-minimum phase dynamic characteristics such as inverse response
and dead-time. For a more detailed discussion on this subject, the reader is
referred to Morshedi et al. (1982) and Cutler (1983). Also, a rigorous proof of
stability for DMC when P >> N is given by Garcia and Morari (1982).

Move suppression (A) In DMC it is usually necessary to restrict or suppress the
amplitude of the input moves. Thus, DMC equations are generally formulated as

[_?.(_’5. (_;t_!_)_] _ [_zf\‘_],(;;) ()

where (for multi-variable systems);
A=diag(hA; - Addy e - Ay -2 A - 4))

| =N—|
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and A, >0 is the " input move suppression coefficient. As in any other control
formulation, an increase in input penalties is equivalent to reducing the controller
gain and therefore, improves the stability properties of DMC, particularly in the
face of model inaccuracies (Morari, 1983).

Selective weighting of controlled variables (y) It is possible in DMC to give
tighter control to particular controlled variable(s) by increasing the relative
weight of the corresponding least-squares residual. This is achieved by pre-
multiplying the DMC equations with the matrix of weights y; > 0;

C=diag(vivi- - viYaY2 Y2 Va¥e s Vo)

| —P—|
Including this weighting matrix, the solution of the DMC equations becomes,
x(k) = (A'T"TA + ATAY AT Te(k +1) 9

DMC also provides the user with additional tools for control such as
feed-forward compensation of measurable disturbances, steady-state control of
manipulated variables in case s >r, and minimization of constraint violations in
the least squares sense. The new QDMC method introduced in the following
improves the constraint handling capabilities of DMC thus making the algorithm
a very powerful tool for solving complex multivariable constrained control
problems.

ODMC: QP Solution of the DMC Equations

In on-line applications, the moves computed in (9) may not be implementable
due to process operating limit violations. Three types of process constraints are
usually encountered:

Manipulated variable constraints: i.e., valve saturation.

Controlled variable constraints: overshoots in the controlled variables past
allowable limits must be avoided.

Associated variables: key process variables which are not directly controlled but
that must be kept within bounds.

The controller must be able to predict future violations and prescribe moves that
would keep these variables within bounds.

Constraints on projections of these variables can be expressed mathematically
as a system of linear inequalities:

Cx(k) = o(k + 1). (10)

The matrix C contains dynamic information on the constraints and the vector
c(k + 1) contains the projected deviations of the constrained variables from their
limits. Also, in practice, limits on individual moves are usually needed:

Xmin = X(E) = Xmax (] 1)

One can express the least-squares solution of the DMC equations as the
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following quadratic minimization problem:
min § = }[Ax(K) — e(k + D]"TTI[AX(K) — e(k + )] + $x(E)TATAx(K) (12)
x(k) == = =

yielding (9) as a solution. Subjecting this problem to the linear inequality
constraints (10) and (11), the following quadratic program (QP) results:
min F = ix(k)" Hx(k) — g(k + 1)"x(k)
x(k)
s.t. Cx(k)=c(k +1)
Xmin = X(E) = Xmax

(13)

where:
H=ATTA+ A"A (the QP Hessian matrix)
and,
gk +1)=A"TTe(k + 1) (the QP gradient vector).

Solution of (13) by a QP algorithm at each sampling interval k produces an
optimal set of moves x(k) which satisfies the constraints. Any commercially
available QP algorithm could be used for solving (13). Since in QDMC H is likely
to be fixed at all sampling intervals, a parametric QP algorithm is recommended
to reduce on-line computation time (Bazaraa and Shetty, 1979, Fletcher, 1980).

QDMC Constraint Equations

The excellent performance of DMC hinges on its particular formulation as
described above. Since constraint handling is nothing other than shifting the
control priorities to constrained variables, it is crucial that the dynamic matrix
formulation and structure are preserved in formulating the constraint equations.
In the following we show how the inequalities in Eq. (10) are formulated for each
of the constrained variables.

Manipulated variables The vector x(k) contains not only the present moves to
be implemented but also predictions of the future moves. This gives an indication
of where the manipulated variables will lie in the future.

One can bound the predicted level of the i"™ input as follows:

Iimin = I,(E) + z AII(E + l - 1) = 11' max (14)
{=1

where n =1, ..., N, that is, the total number of moves; I,(k) is the present value
of the i"™ manipulated variable; and /pin, /msx are the lower and upper limits
respectively. In matrix form, these constraints are expressed as:

-1o, (k) = I ma) 1
0 I (TR SRR |

L O - 1F) 1 (1)
- =1L (15 min ; IJ(E)) 1
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where 1=(1 1---1)" and 1, is an N X N lower triangular matrix:

100 ---0
110 .- 0

(Nt
&~

111 -1

While only one equation (14) (for n = 1) suffices to prevent violations, constrain-
ing all the affected manipulated variable projections as in (15) provides improved
performance.

Controlled variables Ulilizing the concepts described above, the QP can be
made to prescribe moves so that projections of the controlled variable responses
lie within bounds. For example, for a single output system, with respective
maximum and minimum limits Op,,, Omin, the constraint equations are formu-

lated as:
A1 - - (O; — Ol —e{k + 1)
[ =] e i) (19

Note that the error projection vector defined in Eq. (6) is employed here.
Extension to the multiple-output case is straightforward.

Associated variables As with controlled variables it is possible to have the QP
keep projections of associated variables within limits. However, a new projection
vector must be created. Analogous to (16) above, constraints on the projections
of a single associated variable ‘a’ are expressed as:

: [pho=[oh ) o
whnere: .

a*(k + 1) + [a,,(k) — a*(k)]
e (k+1)= :
a*(k + P) + [a,, (k) - a‘(E)]

is the associated variable projection vector; B is the dynamic matrix for the
associated variable; a*{(k + 1) is the effect of past inputs on the projection of a;
a..(k) is the measured feedback and @i, @max the constraint limits. Extension of

(17) to handle multiple associated variables is straightforward.

Tuning of QDMC

All tuning parameters given for DMC still apply for the constrained case.
However, in QDMC control quality is additionally influenced by the selection of
the projection interval to be constrained. In practice, only a subset of all P
projections are constrained in Egs. (16) and (17), starting with the !** projection,
where !> 1. This subset of projections form a ‘“‘constraint window” of future
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intervals of time over which QDMC will prevent constraint violations from
occurring.

In the presence of non-minimum phase behavior of controlled and associated
variables much improvement in performance is achieved by moving the ‘‘con-
straint window” further down in the horizon. The reason is that any projected
violation inside the ‘“‘constraint window” is handled rigorously by the QP, not
unlike a tightly tuned controller. Therefore, if the QP is asked to correct for
violations in the earlier projections, severe input moves might be required in the
face of non-minimum phase characteristics.

Another solution to this problem consists in having QDMC solve the controlled
and associated variable constraint equations in the least-squares sense. This is
done by appending the constraint equations to the DMC equations (4) in case
that a violation is predicted to occur. Then this augmented system of equations is
solved as in (9). Both alternatives are available to the QDMC user.

IMPLEMENTATION

An implementation of the QDMC algorithm on a pyrolysis furnace is described.
A diagram of the process is given in Figure 1. The temperature of the process gas
stream through zones A, B and C of the furnace firebox is controlled by
manipulating the fuel gas pressures to the burners. Cascaded controllers
manipulate the fuel gas flows to meet the pressure targets. Feed rate and dilution
steam rate are measurable disturbances which are fed forward to the control
algorithm.

Unit step responses of temperatures in the three zones with respect to fuel
pressures are given in Figures 2 through 4. The time unit is in 0.5 min which
means that the process settles in 15 minutes. Additional step response models are
needed in QDMC to model the effect of measurable disturbances.

Feed ————w

——

Dilution
Steam

Fuel
Gas

FIGURE 1 Pyrolysis furnace: fuel gas pressures P,, Py, Pc are manipulated to control temperatures
in zones A, B and C.
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257

Pa
201 |

2.06 |-
1.80 |~

154 |

Zone A Qutlet Temperature, °F
o
@
]

0.5t |-

Q.28

0 1 ]| fefe
o 10 20 30
0.5 min Sampling Intervals

FIGURE 2 Response of zone A outlet temperature 1o unit step changes in zone fuel gas pressure
setpoints (1°C = 1.8°F).

Problem Setup and Tuning

Besides imposing high and low limits on fuel gas pressures, bounds are also
included for the temperatures. The constraint limits in deviation variables are
given in Table 1. No associated variables are considered.

Three moves in each manipulated variable are computed and checked for

Pa

127 [~
1.13 Pa
099 [—
085 [
Q.71

0,57 |~

Zone B Outlet Temperature, ‘F

P
0 | 1 c
Q 10 20 ]
0.5 min Sampling Intervals

FIGURE 3 Response of zone B outlet temperature to unit step changes in zone fuel gas pressure
setpoiuts.
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10.00

Pe
500 |-

800 |-
2.00 |-
ol
5.00 |-

4.00 |-

Zone C Outlet Temperature °F

3.00 |- Pa
200 L Pg

100 -

0 | ]
<] 10 20 30
0.5 min Sempling Intervals

FIGURE 4 Response of zone C outlet temperature to unit step changes in zone fuel gas pressure
setpoints.

violations. This yields a move vector of dimension 9. Choosing a horizon of 30,
then matrix A is of dimension 90 X 9.

A total of 10 projections in each controlled variable are checked for high and
low limit violations, starting to check from the 5th, 3rd, and 3rd projection of
temperatures A, B and C, respectively. Output weighting parameters are selected
as y; = 1 and move suppression parameters A; as 15, 25 and 30 respectively for the
three zones. It must be realized that the particular selection of A, is a function of
the operator’s allowed manipulated variable jaggedness and the actual model
mismatch so that for large model errors, A; is increased. Therefore, A; must be
tuned on-line during the operation as is done with any other control algorithm.

On-Line Responses

In order to test the input constraint handling capabilities of QDMC, simultaneous
step changes in setpoints of Ty and T of magnitudes of +3°F and —3°F were

TABLE I

Constraint limits for the pyrolysis furnace problem in deviation variable units

Initial
High limit Low limit condition

T. (°F) 1.0 —10.0 0.0
T (°F) 10.0 -10.0 0.0
Tc (°F) 4.0 -10.0 0.0
P, (psi) 8.0 —14.0 5.0
Py (psi) 8.0 -14.0 2.5
Pc (psi) -19.0 —24.0 -23.0
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My
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e

‘e . . . .. O
o . 5 T
Te.*f S e ‘7
.

-2 Setpoint

Setpoint Y

Setpoint -\ :
! — | h S—
[ 0 [T W0 9
Tirne, min

FIGURE 5a Temperature responses to setpoint changes in T,, Ty; zone B fuel gas pressure setpoint
is high limit constrained.

F Pg Maximum Limit

&
T

Fuel Gas Zone Pressure Setpoinn, pri
M
T T

Pc

24 1 L 1 I —l
1] o] 40 80 80 100
Time, min

120

FIGURE 5b Fuel gas pressure setpoints corcesponding to responses in Figure 5a (1 psi = 6.893 kPa).

implemented (Figure 5a). Note that QDMC maintains the zone B pressure at its
bound until the limit is raised (Figure 5b). Only then were all the temperatures
able to go to their respective setpoints. It is important to note that any other
integral-action controller would have experienced reset wind-up under such input
constraint conditions. Stability in the presence of constraints is a very important
property of QDMC.

In another test, the setpoint in T, was increased by 3°F. As shown in Figure 6
QDMC kept the temperatures from overshooting the bounds. Due to the severity
of unmeasurable disturbances, temperatures were often driven out of bounds.
The algorithm provided a smooth return to the operating region.
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b3 . Tc Maximum Limit
O S, T SR L R oS IO
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......................................................... eyt
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| ¥ i | 1
70 ap [1] 80 100 120

Time, min

FIGURE 6 Temperature responses to setpoint change in T,.

CONCLUSION

QDMC is a robust algorithm for the control of multivariable processing systems
in the presence of constraints. Due to its predictive nature, it can handle systems
with difficult dynamic characteristics to control, i.e., dead-time and inverse
response processes. In addition, it contains very transparent tuning parameters of
physical meaning to the user. In particular, certain parameter selections allow for
stabilization of the controller in the presence of model mismatch.

Numerous applications of this algorithm within Shell have demonstrated its
versatility in handling many types of process control problems encountered in the
chemical process industries. It has been used to control batch as well as
continuous systems, and processes with as many as 12 manipulated and controiled
variables.

Above all, QDMC has proven itself particularly profitable in an on-line
optimization environment. Due to constantly changing market conditions and
feedstock quality the optimal operating point of a process lies invariably at an
intersection of constraints. QDMC provides smooth, violation-free transfer of the
operation from one set of constraints to another as dictated by an optimizer. In
addition, its robustness characteristics guarantee reliability of the controller over
the whole operating region.

NOMENCLATURE

a; unit step-response coefficient

a(k) system associated variable at time k

A dynamic matrix of controlled variable step response coefficients
B dynamic matrix of associated variable step response coefficients

c(k +1) vector of projected deviations of constrained variables from their
bounds
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¢ LHS matrix of QP linear inequalities
d(k) QDMC un-modelled effects term
ek +1) controlled variable projected setpoint error vector

ek +1) associated variable projected response vector
e(k+1) i controlled variable projected setpoint error vector
gk +1) QP gradient vector

H QP Hessian matrix

I(k) system manipulated variable at time £

Al(k) move of manipulated variable at time &

k discrete time

k present time

M number of discrete time intervals required for steady-state
N number of QDMC input moves

o(k) system controlled variable at time k

0, controlled variable dynamic model initial condition
O, controlted variable setpoint

P QDMC projection horizon

r number of manipulated variables

s number of controlled variables

x(k) vector of present and future moves AI(k)
x(k) i™™ manipulated variable vector of moves

r matrix of controlled variable weights y,

A matrix of move suppression factors A,
Superscripts:

* projection based on moves up to present time k
Subscripts:

m feedback measurement

max maximum bound

min minimum bound
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