
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

Copyright © 2012 Brambilla, Cabot, Wimmer.

www.mdse-book.com

DEVELOPING YOUR OWN

MODELING LANGUAGE

Chapter 7

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Content

• Part A

• Introduction

• Abstract Syntax

• Part B

• Concrete Syntaxes

• Graphical Concrete Syntax

• Textual Concrete Syntax

• Summary

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

INTRODUCTION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
What to expect from this lecture?

Motivating example: a simple UML Activity diagram
 Activity, Transition, InitialNode, FinalNode

Question: Is this UML Activity diagram valid?

Answer: Check the UML metamodel!
 Prefix „meta“: an operation is applied to itself

 Further examples: meta-discussion, meta-learning, …

ad Course workflow

Study content Write exam Attend lecture

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Overview

 What is a modeling language?
 It is a modeling language for create modeling languages​​.

 Based on a object-oriented structure (with classes, attributes and
associations).

 What is a metamodeling?
 Prefix “meta”: an operation is applied to herself.

 Examples: meta-discussion, meta-learning, ...

 Classes, attributes and associations define the concepts and properties
of modeling. Describe basic constraints.

 What is a meta-metamodeling?
 Language how to build metamodels.

 Capable of representing all valid models.

 Describe the abstract syntax of the languages they represent.

“Learning how

to learn..”

“Discussing how

to discuss..”

“Modeling how

to model”

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Anatomy of formal languages 1/2

 Languages ​​have goals and divergent fields of applications, but

still having a common framework

Semantics

Abstract Syntax

Concrete Syntax

Formal languages

Meaning of

language elements
Language elements,

i.e., grammar

Notation of

language elements

1..1

1..*

1..*

1..*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Anatomy of formal languages 2/2

 Main components

 Abstract syntax: Language concepts and how these concepts can be
combined (~ grammar)

 It does neither define the notation nor the meaning of the concepts

 Concrete syntax: Notation to illustrate the language concepts intuitively

 Textual, graphical or a mixture of both

 Semantics: Meaning of the language concepts

 How language concepts are actually interpreted

 Additional components

 Extension of the language by new language concepts

 Domain or technology specific extensions, e.g., see UML Profiles

 Mapping to other languages, domains

 Examples: UML2Java, UML2SetTheory, PetriNet2BPEL, …

 May act as translational semantic definition

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Excursus: Meta-languages in the Past
Or: Metamodeling – Old Wine in new Bottles?

 Formal languages have a long tradition in computer science

 First attempts: Transition from machine code instructions to

high-level programming languages (Algol60)

 Major successes

 Programming languages such as Java, C++, C#, …

 Declarative languages such as XML Schema, DTD, RDF, OWL, …

 Excursus

 How are programming languages and XML-based languages

defined?

 What can thereof be learned for defining modeling languages?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Overview

 John Backus and Peter Naur invented formal languages for the

definition of languages called meta-languages

 Examples for meta-languages: BNF (Backus-Naur Form), EBNF

(Extended Backus-Naur Form), …

 Are used since 1960 for the definition of the syntax of programming

languages

 Remark: abstract and the concrete syntax are both defined

 EBNF (Extended Backus-Naur Form)

 Code that expresses the grammar of a formal language.

 Composed by terminal symbols and production rules for non-terminals that are

restrictions on how terminal symbols can be combined into a sequence.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Overview

 EBNF Example

Java := [PackageDec] {ImportDec} ClassDec;

PackageDec := “package” QualifiedIdentifier;

ImportDec := “import” QualifiedIdenfifier;

ClassDec := Modifier “class” Identifier [“extends” Identifier]

 [“implements” IdentifierList] ClassBody;

production rule terminal

option sequence non-terminal

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Example: MiniJava

 Grammar

 Program

 Validation: does the program conform to the grammar?
 Compiler: javac, gcc, …

 Interpreter: Ruby, Python, …

Java := [PackageDec] {ImportDec} ClassDec;

PackageDec := “package” QualifiedIdentifier;

ImportDec := “import” QualifiedIdenfifier;

ClassDec := Modifier “class” Identifier [“extends” Identifier]

 [“implements” IdentifierList] ClassBody;

Modifier := “public” | “private” | “protected”;

Identifier := {“a”-”z” | “A”-”Z” | “0”-”9”}

package mdse.book.example;

import java.util.*;

public class Student extends Person { … }

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Meta-architecture layers

 Four-layer architecture

M1-Layer

M2-Layer

M3-Layer

Execution of the

program

package big.tuwien.ac.at;

public class Student

 extends Person { … }

Java := [PackageDec]

 {ImportDec} ClassDec;

PackageDec := “package“

 QualifiedIdentifier; …

 EBNF := {rules};

 rules := Terminal | Non-Terminal |...

Definition of EBNF in

EBNF – EBNF grammar

(reflexive)

Definition of Java in

EBNF – Java grammar

Program – Sentence

conform to the grammar

M0-Layer

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

<!ELEMENT cookbook (title, meal+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT meal (ingredient+)>

<!ELEMENT ingredient>

<!ATTLIST ingredient name CDATA #REQUIRED

 amount CDATA #IMPLIED

 unit CDATA #IMPLIED>

 attributes

1..1

element

0..1

contentParticle 1..*

XML-based languages
Overview

 XML files require specific structures to allow for a standardized and
automated processing

 Examples for XML meta languages

 DTD, XML-Schema, Schematron

 Characteristics of XML files

 Structured representation of the data

 DTD Example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

XML-based languages
Example: Cookbook DTD

 DTD

 XML

 Validation

 XML Parser: Xerces, …

<!ELEMENT cookbook (title, meal+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT meal (ingredient+)>

<!ELEMENT ingredient>

<!ATTLIST ingredient name CDATA #REQUIRED

 amount CDATA #IMPLIED

 unit CDATA #IMPLIED>

<cookbook>

 <title>How to cook!</title>

 <meal name= „Spaghetti“ >

 <ingredient name = „Tomato“, amount=„300“ unit=„gramm“>

 <ingredient name = „Meat“, amount=„200“ unit=„gramm“> …

 </meal>

</cookbook>

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

XML-based languages
Meta-architecture layers

 Five-layer architecture (was revised with XML-Schema)

M1-Layer

M2-Layer

M4-Layer

Concrete entities (e.g.: Student “Bill Gates”)

 <javaProg>

 <packageDec>big.tuwien.ac.at</packageDec>

 <classDec name=„Student“ extends=„Person“/>

</javaProg>

<!ELEMENT javaProg (packageDec*,

importDec*, classDec)>

<!ELEMENT packageDec (#PCDATA)>

Definition of EBNF

in EBNF

Definition of Java in

DTD – Grammar

XML –

conform to the DTD

M0-Layer

M3-Layer

ELEMENT := „<!ELEMENT “ Identifier „>“

 ATTLIST;

ATTLIST := „<!ATTLIST “ Identifier …

Definition of DTD

in EBNF

EBNF := {rules};

 rules := Terminal | Non-Terminal |...

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
What to expect from this lecture? (1/2)

1. Metamodel-centric language design

2. Define the abstract syntax of the modeling language with

its restrictions

3. Define concrete syntaxes (textual and graphical) based

on the abstract syntax

4. Show how the resources of Eclipce can be used to

perform previous activities.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
What to expect from this lecture? (2/2)

Metamodel

Textual

Concrete Syntaxes

Graphical

Concrete Syntaxes

Models

Model 2 Model

Transformations

Model 2 Text

Transformations

Modeling

Constraints

Chap. 8

Chap. 9

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

ABSTRACT SYNTAX

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Spirit and purpose of metamodeling 1/4

 Metamodel-centric language design

All aspects of language going beyond abstract syntax of a
modeling language have in common that they are defined in terms
of the metamodel

Metamodel

Textual

Concrete Syntaxes

Graphical

Concrete Syntaxes

Models

Model 2 Model

Transformations

Model 2 Text

Transformations

Modeling

Constraints

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Spirit and purpose of metamodeling 2/4

 Example

 Actor has properties and relationships, this

context can be understood as an abstraction of

something (e.g. player)

 When this actor is associated with a use case

diagram, it receive a semantic representation in

some contexts (e.g. join game or leave game),

i.e. we give a meaning to it.

 However, to create this use case diagram, we

must to follow a rules defined to this kind of

modeling language, its metamodel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Spirit and purpose of metamodeling 3/4

 Advantages of metamodels

 Precise: There is a formal definition of the language syntax which is
processable by machines

 Accessible: The knowledge of UML class diagrams is sufficient to
read and understand

 Evolvable language definition: Have an accessible language
definition further contributes to an easy adaptation of modeling
languages

 Generalization on a higher level of abstraction
by means of the meta-metamodel

 Language concepts for the definition of metamodels

 MOF, with Ecore as its implementation, is considered as a universally
accepted meta-metamodel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Spirit and purpose of metamodeling 4/4

Meta-Metamodel
Meta-

Language

Metamodel

Model System

Language

represents

defines

defines

MOF, Ecore

UML, ER, …

Examples

Model

Instance

System
Snapshot

represents

UniSystem, …

A UniSystem

Snapshot

L
a

n
g

u
a

g
e

E
n

g
in

e
e

ri
n

g

D
o

m
a

in

E
n

g
in

e
e

ri
n

g

«conformsTo»

M3

M2

M1

M0

4-layer Metamodeling Stack

«conformsTo»

«conformsTo»

«conformsTo»

Reflexive

M0: there are the instances of the domain concepts which represents real-word entities

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF - Meta Object Facility
Introduction 1/2

 OMG standard for the definition of metamodels

 MOF is an object-orientated modeling language
 Objects are described by classes

 Intrinsic properties of objects are defined as attributes

 Extrinsic properties (links) between objects are defined as associations

 Packages group classes

 MOF itself is defined by MOF (reflexive) and divided into
 eMOF (essential MOF)

 Simple language for the definition of metamodels

 Target audience: metamodelers

 cMOF (complete MOF)
 Extends eMOF

 Supports management of meta-data via enhanced services (e.g. reflection)

 Target audience: tool manufacturers

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF - Meta Object Facility
Introduction 2/2

 OMG language definition stack

MOF Model

Models

Models UML

Models

IDL

Metamodel

CWM

Metamodel

Models

Models IDL

Interfaces

Models

Models CWM

Models

M3-Layer

Meta-Metamodel

UML

Metamodel

M2-Layer

Metamodel

M1-Layer

Model

M0-Layer

Instances

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Why an additional language for M3
… isn‘t UML enough?

 MOF only a subset of UML
 MOF is similar to the UML class diagram, but much more limited

 No n-ary associations, no association classes, …

 No overlapping inheritance, interfaces, dependencies, …

 Main differences result from the field of application
 UML

 Domain: object-oriented modeling

 Comprehensive modeling language for various software systems

 Structural and behavioral modeling

 Conceptual and implementation modeling

 MOF
 Domain: metamodeling

 Simple conceptual structural modeling language

 Conclusion
 MOF is a highly specialized DSML for metamodeling

 Core of UML and MOF (almost) identical

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Language architecture of MOF 2.0

 Abstract classes of eMOF

 Definition of general properties

 NamedElement

 TypedElement

 MultiplicityElement

 Set/Sequence/OrderedSet/Bag

 Multiplicities

Object

TypedElement Type

isInstance(element:Element): Boolean

MultiplicityElement

isOrdered: Boolean = false

isUnique: Boolean = true

lower: Integer

upper: UnlimitedNatural

NamedElement

name:String

type

0..1

Element

Taxonomy of

abstract classes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Language architecture of MOF 2.0

 Core of eMOF

 Based on object-orientation

 Classes, properties, operations, and parameters

Type

Property

isReadOnly: Boolean = false

default: String [0..1]

isComposite: Boolean = false

isDerived: Boolean = false

* superclass

TypedElement MultiplicityElement

Operation

TypedElement MultiplicityElement

Parameter

TypedElement MultiplicityElement

Type

ownedParameter

*

ownedAttribute

0..1 *

ownedOperation

0..1

raisedException

*

isAbstract: Boolean

Class

*

opposite

0..1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Classes

 A class specifies structure and behavior of
a set of objects

 Intentional definition

 An unlimited number of instances (objects) of a
class may be created

 A class has an unique name in its
namespace

 Abstract classes cannot be instantiated!

 Only useful in inheritance hierarchies

 Used for »highlighting« of
common features of a set of subclasses

 Concrete classes can be instantiated!

Class

MOF

Transition

Activity

Event

Example

name : String

isAbstract : boolean

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Generalization

 Generalization: relationship between

 a specialized class (subclass) and

 a general class (superclass)

 Subclasses inherit properties of their

superclasses and may add further

properties

 Discriminator: „virtual“ attribute used for the

classification

 Disjoint (non-overlapping) generalization

 Multiple inheritance

...

TimeEvent

Event

CallEvent

0..* superclasses

Class

MOF

Example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF

MOF – Meta Object Facility
Attributes

 Attributes describe inherent characteristics
of classes

 Consist of a name and a type (obligatory)

 Multiplicity: how many values can be
stored in an attribute slot (obligatory)
 Interval: upper and lower limit are natural

numbers

 * asterisk - also possible for upper limit
(Semantics: unlimited number)

 0..x means optional: null values are allowed

 Optional
 Default value

 Derived (calculated) attributes

 Changeable: isReadOnly = false

 isComposite is always true for attributes

* ownedAttribute

TimeEvent

Event

CallEvent

Example

id: Integer [1..1]

kinds: String
[1..*]

synchronized
: boolean =
true [0..1]

Property

isReadOnly: Boolean

default: String[0..1]

isComposite:

Boolean

isDerived: Boolean

Class

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Associations

 An association describes the common structure of a set of
relationships between objects

 MOF only allows unary and binary associations, i.e., defined
between two classes

 Binary associations consist of two roles whereas each role has

 Role name

 Multiplicity limits the number of partner objects of an object

 Composition

 „part-whole” relationship (also “part-of” relationship)

 One part can be at most part of one composed object at one time

 Asymmetric and transitive

 Impact on Multiplicity: 1 or 0..1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 Association

 Composition

MOF – Meta Object Facility
Associations - Examples

A B
1..* *

multiplicity

role name

b

A B
0..1 *

C

A
0..1

*

B

*

{xor}
0..1

Syntax

Semantics

C

A
1

*

B

*

Syntax

Semantics

1

Example 1 Example 2 Example 3

a only allows

unary and

binary

associations

 




Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example

MOF – Meta Object Facility
Packages

 Packages serve as a

grouping mechanism

 Grouping of related types, i.e., classes,

enumerations, and primitive types.

 Partitioning criteria

 Functional or information cohesion

 Packages form own namespace

 Usage of identical names in different

parts of a metamodel

 Packages may be nested

 Hierarchical grouping

 Model elements are contained by

one package

Package

NamedElement

name:String

Type
0..*

+nestingPackage

+nestedPackage

0..*

0..1

0..1

X

MOF

Y Z

X

A B

C

A B

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Types 1/2

 Primitive data types: Predefined types for integers, character strings

and Boolean values

 Enumerations: Enumeration types consisting of named constants

 Allowed values are defined in the course of the declaration

 Example: enum Color {red, blue, green}

 Enumeration types can be used as data types for attributes

NamedElement

name:String

Type

DataType

PrimitiveType

Enumeration

EnumerationLiteral

enumeration ownedLiteral

{ordered} 0..* 0..1

<<primitive>>
Integer

<<primitive>>
Boolean

<<primitive>>
String

<<primitive>>
UnlimitedNatural*

*) represents unlimited number (asterisk) – only for

the definition of the upper limits of multiplicities

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MOF – Meta Object Facility
Types 2/2

 Differentiation between value types and reference types

 Value types: contain a direct value (e.g., 123 or ‘x‘)

 Reference types: contain a reference to an object

 Examples

Types

Value types Reference types

Primitive types Enumerations Classes

user-defined types
Boolean Integer String

Car
color: String

Car
color: Color • red

• green

• blue

 «enumeration»
Color

Car Person

Primitive types Enumerations Reference types

owner 1..1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel development process
Incremental and Iterative (1/2)

Modeling
domain
analysis

Modeling
language

design

Modeling
language
validation

Identify purpose, realiza-

tion, and content of the

modeling language

Sketch reference

modeling examples

Formalize modeling

language by defining

a metamodel

Formalize modeling

constraints using OCL

Instantiate metamodel

by modeling reference

models

Collect feedback for

next iteration

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel development process
Incremental and Iterative (2/2)

 To get feedback from domain experts, a concrete syntax is

also needed

 Both syntactical concepts are encouraged to be developed

together in practical settings

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 sWML Example

 Company is repeatedly building simple Web applications, which all

comprise similar functionality.

 Web applications uses MVC pattern => Java (Model), JSF (View),

Servlets (Controller) and Apache Tomcat (Server).

 For each table, the Web applications implements a simple CRUD.

Example
Context

Company Goals
Web pages with same interface and

functionality

Easy transition through platforms

Agile development process

Eliminate repetitive tasks

MDE Helping
Model always generate the same kind of

implementation

Provided by additional transformations

Prototypes are faster generated from models

Concise DSML and transformations

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel development process
Incremental and Iterative

Modeling
domain
analysis

Modeling
language

design

Modeling
language
validation

Identify purpose, realiza-

tion, and content of the

modeling language

Sketch reference

modeling examples

Formalize modeling

language by defining

a metamodel

Formalize modeling

constraints using OCL

Instantiate metamodel

by modeling reference

models

Collect feedback for

next iteration

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML

 Several sources of information must be exploited (use

interviews, document analysis, …)

Web application of a conference management system.

Purpose: Should modeling the

content and hypertext layer.

Realization: a graphical syntax

should be defined to allow the

discussing with domain experts and

also a textual syntax to allow the

transition from model-driven to

programming languages.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML

Content: Content

 Not limit for classes

 Classes must have a unique name

and multiple attributes

 Types: String, integer, Float, Boolean

and Email

 Must select one of its attributes as its

representative attribute

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML

Content: Hypertext

 Different kinds of pages

 One identified homepage

 Subdivided into static and dynamic

pages

 Dynamics are subdivided into details

and index pages

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML

Content: Links

 Navigations between pages

 NCLinks: standard links

 Clinks: transport information

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel development process
Incremental and Iterative

Modeling
domain
analysis

Modeling
language

design

Modeling
language
validation

Identify purpose, realiza-

tion, and content of the

modeling language

Sketch reference

modeling examples

Formalize modeling

language by defining

a metamodel

Formalize modeling

constraints using OCL

Instantiate metamodel

by modeling reference

models

Collect feedback for

next iteration

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Syntax Concept

Web Model

Content Layer

Class

Attribute

Hypertext Layer

Static Page

Index Page

Details Page

NC Link

C Link

Example: sWML
Identification of the modeling concepts

Example model

Notation table

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML
Determining the properties of the modeling concepts

Modeling concept table

Example model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML
Object-oriented design of the language

Concept Intrinsic properties Extrinsic properties

Attribute Association Class
MOF

Types

Compositions, represents

whole–part relationships

Reuse attributes and

associations

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML
Overview

M
e
ta

m
o

d
e
l

1

M
o

d
e
l

Abstract

syntax

Concrete

syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML
Applying constraints

M
e
ta

m
o

d
e
l

O
C

L
 C

o
n

s
tr

a
in

ts

context ContextLayer

inv: self.classes -> forAll(x,y|x <> y, implies x.name <> y.name)

context Class

inv: self.attributes -> includes (self.representativeAttribute)

context Page

inv: not self.links -> select (l | l.oc1IsTypeOf (NCLinks)) ->

exits (l|l.target = self)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel development process
Incremental and Iterative

Modeling
domain
analysis

Modeling
language

design

Modeling
language
validation

Identify purpose, realiza-

tion, and content of the

modeling language

Sketch reference

modeling examples

Formalize modeling

language by defining

a metamodel

Formalize modeling

constraints using OCL

Instantiate metamodel

by modeling reference

models

Collect feedback for

next iteration

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML

Models are a collection of objects

Use a object diagrams to instantiate class diagram,

following the rules above:

 Objects -> Classes

 Values -> Attributes

 Links -> Associations

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example: sWML
Instance of

metamodel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 1/9

 Activity diagram example

 Concepts: Activity, Transition, InitialNode, FinalNode

 Domain: Sequential linear processes

 Question: How does a possible metamodel to this language look

like?

 Answer: apply metamodel development process!

ad Course workflow

Study

content
Write

exam

Attend

lecture

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Syntax Concept

ActivityDiagram

FinalNode

InitialNode

Activity

Transition

name

ad name

Example 2/9
Identification of the modeling concepts

ad Course workflow

Study

content
Write

exam

Attend

lecture

Example model = Reference Model

Notation table

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 3/9
Determining the properties of the modeling concepts

Concept
Intrinsic

properties
Extrinsic

properties

ActivityDiagram Name 1 InitialNode

1 FinalNode

Unlimited number of Activities and Transitions

FinalNode - Incoming Transitions

InitialNode - Outgoing Transitions

Activity Name Incoming and outgoing Transitions

Transition - Source node and target node

Nodes: InitialNode, FinalNode, Activity

Study

content
Write

exam

Attend

lecture

ad Course workflow

Example model

Modeling concept table

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 4/9
Object-oriented design of the language

Concept Intrinsic properties Extrinsic properties

ActivityDiagram Name 1 InitialNode

1 FinalNode

Unlimited number of Activities and Transitions

FinalNode - Incoming Transition

InitialNode - Outgoing Transition

Activity Name Incoming and outgoing Transition

Transition - Source node and target node

Nodes: InitialNode, FinalNode, Activity

Attribute Association Class
MOF

FinalNode
InitialNode

ActivityDiagram

name : String

Metamodel

1

1

1..*

1..*

1

1

0..1

1 incoming outgoing

incoming

outgoing

target source

source

target

0..1

0..1

Transition

Activity

name : String

0..1

0..1

1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

name=“Course workflow”

Example 5/9
Overview

FinalNode
InitialNode

ActivityDiagram

name : String

M
e
ta

m
o

d
e
l

1

1

*

*

1

1

1 1 incoming outgoing

incoming

outgoing

target source

source

target

0..1

Transition

Activity

name : String

Study

content
Write

exam

Attend

lecture

ad Course workflow

M
o

d
e
l

Abstract

syntax

Concrete

syntax

2:InitialNode

1:ActivityDiagram

3:FinalNode

4:Activity 5:Activity 6:Activity

7:Transition 8:Transition 9:Transition 10:Transition

name=„Attend..” name=„Study…“ name=„Write…“

0..1

0..1

0..1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 6/9
Applying refactorings to metamodels

FinalNode InitialNode

ActivityDiagram

name : String

M
e
ta

m
o

d
e
l

*

*

0..1 0..1 incoming outgoing

target source 1

Transition

Node

name : String

O
C

L
 C

o
n

s
tr

a
in

ts

1

context ActivityDiagram

inv: self.transitions -> exists(t|t.isTypeOf(FinalNode))

inv: self.transitions -> exists(t|t.isTypeOf(InitialNode))

context FinalNode

inv: self.outgoing.isOclUndefined()

context InitialNode

inv: self.incoming.isOclUndefined()

context ActivityDiagram

inv: self.name <> '' and self.name <> OclUndefined …

ActivityNode

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 7/9
Impact on existing models

FinalNode InitialNode

ActivityDiagram

name : String

M
e
ta

m
o

d
e
l

*

*

1..* 1..* incoming outgoing

target source 1

Transition

Node

name : String

M
o

d
e
l

1

ActivityNode

name=“Course workflow”

Abstract

syntax
2:InitialNode

1:ActivityDiagram

3:FinalNode

4:Activity 5:Activity 6:Activity

7:Transition 8:Transition 9:Transition 10:Transition

name=„Att…“ name=„Study…“ name=„Write…“

Validation errors:

 Class Activity is unknown,

 Reference finalNode, initialNode, activity are unknown

Changes:

 Deletion of class Activity

 Addition of class ActivityNode

 Deletion of redundant references

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 8/9
How to keep metamodels evolvable when models already exist

 Model/metamodel co-evolution problem

 Metamodel is changed

 Models already exist and may become invalid

 Changes may break conformance relationships

 Deletion and renamings of metamodel elements

 Solution: Co-evolution rules for models coupled to metamodel

changes

 Example 1: Cast all Activity elements to ActivityNode elements

 Example 2: Cast all initialNode, finalNode, and activity links to node links

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 9/9
Adapted model for new metamodel version

FinalNode InitialNode

ActivityDiagram

name : String

M
e
ta

m
o

d
e
l

*

*

1..* 1..* incoming outgoing

target source 1

Transition

Node

name : String

M
o

d
e
l

1

ActivityNode

name=“Course workflow”

Abstract

syntax
2:InitialNode

1:ActivityDiagram

3:FinalNode

4:ActivityNode 5:ActivityNode
6:ActivityNode

7:Transition 8:Transition 9:Transition 10:Transition

name=„Attend…“ name=„Study…“
name=„Write…“

More on this topic in Chapter 10!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Excursus: Metamodeling – everything new? 1/2
Correspondence between EBNF and MOF

 Mapping table (excerpt)

 Example

EBNF MOF

Production Composition

Non-Terminal Class

Sequence Multiplicity: 0..*

Model

Class

1

*

* *

Grammar Metamodel

Attribute Name Method

C

Model ::= {Class}

Class ::= Name {Attribute}

 {Method}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Excursus: Metamodeling – everything new? 2/2
Correspondence between DTD and MOF

 Mapping table (excerpt)

 Example

DTD MOF

Item Composition

Element Class

Cardinality * Multiplicity 0..*

Model

Class

1

*

* *

DTD Metamodel

Attribute Name Method

C

<!ELEMENT Model (Class*)>

<!ELEMENT Class (Name,

 Attribute*, Method*)>

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Introduction

 Ecore is the meta-metamodel of the Eclipse Modeling
Frameworks (EMF)

 www.eclipse.org/emf

 Ecore is a Java-based implementation of eMOF

 Aims of Ecore

 Mapping eMOF to Java

 Aims of EMF

 Definition of modeling languages

 Generation of model editors

 UML/Java/XML integration framework

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Taxonomy of the language concepts

EObject

EModelElement

EFactory ENamedElement

EPackage EClassifier EEnumLiteral ETypedElement

EClass

EAttribute

EStructuralFeature EOpertation EParameter

EDataType

EEnum

EReference

equivalent to java.lang.object

encapsulates reflection mechanism (only

programming level)

object creation

(only programming level)

Programming concepts

Abstract modeling concepts

Concrete modeling concepts

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Core

 Based on object-orientation (as eMOF)

 Classes, references, attributes, inheritance, …

 Binary associations are represented as two references

 Data types are based on Java data types

 Multiple inheritance is resolved by one „real“ inheritance and multiple

implementation inheritance relationships

eReferences

0..*

eAttributes

EReference

name: String

containment:boolean

lowerBound: int

upperBound: int

EClass

name: String

EAttribute
name: String

EDataType

name: String 1 0..*

0..* eSuperTypes

1

0..1 eOpposite

to

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Binary associations

 A binary association demands for two references

 One per association end

 Both define the respective other one as eOpposite

eReferences

0..*

1

0..1 eOpposite

to

EClass

C1:EClass

C2:EClass

r1:EReference

r2:EReference

C1 C2
r1 r2 to

to eOpposite

eOpposite

Ecore

MM (abstract syntax) MM (concrete syntax)

name: String

containment: boolean

lowerBound: int

upperBound: int

EReference

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Data types

 List of Ecore data types (excerpt)

 Java-based data types

 Extendable through self-defined data types

 Have to be implemented by Java classes

Ecore data type Primitive type or class (Java)

EBoolean boolean

EChar char

EFloat float

EString java.lang.String

EBoolanObject java.lang.Boolean

… …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Ecore
Multiple inheritance

 Ecore supports multiple inheritance

 Unlimited number of eSuperTypes

 Java supports only single inheritance

 Multiple inheritance simulated by implementation of interfaces!

 Solution for Ecore2Java mapping

 First inheritance relationship is used as „real“ inheritance relationship using
«extend»

 All other inheritances are interpreted as specification inheritance
«implements»

EClass

name: String

0..* eSuperTypes

ClassC

ClassB

ClassA

«extend»

class ClassC

 extends ClassA

 implements ClassB

Java code

«implements»

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class diagram – Model TS

 Annotated Java (Excerpt) – Program TS

 XML (Excerpt) – Document TS

<xsd:complexType name=“Appointment”>

<xsd:element name=“description” type=“Description”

minOccurs=“0” maxOccurs=“unbounded” />

</xsd:complexType>

Ecore
Concrete syntax for Ecore models

*
Appointment

name: String

place: String

Description

text: String

public interface Appointment{

 /* @model type=“Description” containment=“true” */

 List getDescription();

}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse Modeling Framework
What is EMF?

 Pragmatic approach to combine modeling and programming

 Straight-forward mapping rules between Ecore and Java

 EMF facilitates automatic generation of different
implementations out of Ecore models

 Java code, XML documents, XML Schemata

 Multitude of Eclipse projects are based on EMF

 Graphical Editing Framework (GEF)

 Graphical Modeling Framework (GMF)

 Model to Model Transformation (M2M)

 Model to Text Transformation (M2T)

 …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process
Step 1 – Create metamodel (e.g., with tree editor)

Save XMI

Generate GenModel

Create MM

UML.ecore

UML.genmodel
M

o
d

e
l
T

S

C
o

d
e

 T
S

Code generation

MM in Memory

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process
Step 2 – Save metamodel

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

 instance"

 xmlns:ecore="http://www.eclipse.org/emf/2002/

 Ecore"

 name="uml"

 nsURI="http://uml" nsPrefix="uml">

 <eClassifiers xsi:type="ecore:EClass"

 name="NamedElement">

 <eStructuralFeatures xsi:type="ecore:EAttribute"

 name="name" eType="ecore:EDataType

 http://www.eclipse.org/emf/2002/

 Ecore#//EString"/>

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Class"

 eSuperTypes="#//NamedElement">

 <eStructuralFeatures xsi:type="ecore:EReference"

 name="ownedAttribute" upperBound="-1"

 eType="#//Property"

 eOpposite="#//Property/owningClass"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute"

 name="isAbstract"

 eType="ecore:EDataType

 http://www.eclipse.org/emf/2002/

 Ecore#//EBoolean"/>

 </eClassifiers>

</ecore:EPackage>

UML.ecore

Save XMI

Generate GenModel

Create MM

UML.ecore

UML.genmodel
M

o
d

e
l
T

S

C
o

d
e

 T
S

Code generation

MM in Memory

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process
Step 3 – Generate GenModel

GenModel specifies properties for

code generation

Save XMI

Generate GenModel

Create MM

UML.ecore

UML.genmodel
M

o
d

e
l
T

S

C
o

d
e

 T
S

Code generation

MM in Memory

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

For each meta-class we get:
 Interface: Getter/setter for attributes and references

 Implementation class:
Getter/setter implemented

 Factory for the creation of model elements,

for each Package one Factory-Class is created

Model editor generation process
Step 4 – Generate model code

public interface Class extends NamedElement {

 EList getOwnedAttributes();

 boolean isIsAbstract();

 void setIsAbstract(boolean value);

}

public class ClassImpl

 extends NamedElementImpl implements Class{

 public EList getOwnedAttributes() {

 return ownedAttributes;

 }

 public void setIsAbstract(boolean

 newIsAbstract) {

 isAbstract = newIsAbstract;

 }

}

M
o

d
e

l
T

S

C
o

d
e
 T

S

Create MM

Generate
Editor

Model Code

UML.genmodel

Edit Code Editor Code

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process
Step 5 – Generate edit code

 UI independent editing

support for models

 Generated artifacts

 TreeContentProvider

 LabelProvider

 PropertySource

M

o
d

e
l
T

S

C
o

d
e

 T
S

Create MM

Generate
Editor

Model Code

UML.genmodel

Edit Code Editor Code

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process
Step 6 – Generate editor code

 Editor as Eclipse Plugin

or RCP Application

 Generated artifacts

 Model creation wizard

 Editor

 Action bar contributor

 Advisor (RCP)

 plugin.xml

 plugin.properties

M
o

d
e

l
T

S

C
o

d
e

 T
S

Create MM

Generate
Editor

Model Code

UML.genmodel

Edit Code Editor Code

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model editor generation process

78

Start the modeling editor

Plugin.xml

RCP Applikation

Click here to start!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL support for EMF
Several Plugins available

 Eclipse OCL Project

 http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl

 Interactive OCL Console to query models

 Programming support: OCL API, Parser, …

 OCLinEcore

 Attach OCL constraints by using EAnnotations to metamodel classes

 Generated modeling editors are aware of constraints

 Dresden OCL

 Alternative to Eclipse OCL

 OCL influenced languages, but different syntax

 Epsilon Validation Language residing in the Epsilon project

 Check Language residing in the oAW project

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Content

• Part A

• Introduction

• Abstract Syntax

• Part B

• Concrete Syntaxes

• Graphical Concrete Syntax

• Textual Concrete Syntax

• Summary

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

CONCRETE SYNTAX

DEVELOPMENT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

name=“Course workflow”

Example 5/9
Overview

FinalNode
InitialNode

ActivityDiagram

name : String

M
e
ta

m
o

d
e
l

1

1

*

*

1

1

1 1 incoming outgoing

incoming

outgoing

target source

source

target

0..1

Transition

Activity

name : String

M
o

d
e
l

Abstract

syntax
2:InitialNode

1:ActivityDiagram

3:FinalNode

4:Activity 5:Activity 6:Activity

7:Transition 8:Transition 9:Transition 10:Transition

name=„Attend..” name=„Study…“ name=„Write…“

0..1

0..1

0..1

Study

content
Write

exam

Attend

lecture

ad Course workflow Concrete

syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Overview

 Metamodels only define the abstract syntax, but not the concrete

notation of the language.

 i.e., graphical or textual elements used to render the model elements in

modeling editors.

 Concrete syntax improves the readability of models

 Abstract syntax not intended for humans!

 One abstract syntax may have multiple concrete syntaxes

 Including textual and/or graphical

 Mixing textual and graphical notations still a challenge!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Overview

 For the concrete syntax definition there is currently just one

OMG standard available  Diagram Definition (DD)

specification.

DD allows to define graphical concrete syntaxes.

Concrete syntax in UML metamodel is only shown in so-

called notation tables and by giving some examples.

 A more formal definition of the UML concrete syntax is not

given.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Benefits

Having the concrete syntax formally defined allows the use
of sophisticated techniques such as automatic generation
of editors to manipulate the artifacts in their concrete
syntax.

 There are several emerging frameworks which provide
specific languages to describe the concrete syntax of a
modeling language formally.

 These framework also allows the generation of editors for
visualizing and manipulating models in their concrete
syntax.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Kinds of concrete syntaxes

GCS

Graphical Concrete Syntaxes

Encode information using spatial arrangements
of graphical (and textual) elements.

Are two-dimensional representations.

TCS

Textual Concrete Syntaxes

Enconding information using sequences of
characters in most programming languages.

One-dimensional representations.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Kinds of concrete syntaxes

Metamodel

Graphical Concrete Syntax

Textual Concrete Syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Visual notations

• The visual notation of a model language is referred as concrete

syntax

• Visual notation introduces symbols for modeling concepts.

Modeling concepts

Metamodel

contains

Concrete syntaxes

Visual notations

Graphical Concrete

syntaxes

Textual Concrete

syntaxes

are mapped into

uses

summarizes

Model Diagram/Text

visualizes

symbolizes

«conformsTo» «conformsTo»

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

GRAPHICAL CONCRETE

SYNTAX

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Anatomy of Graphical concrete syntax

label

A Graphical Concrete Syntax (GCS) consists of:

 graphical symbols,

 e.g., rectangles, circles, …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 graphical symbols,

 e.g., rectangles, circles, …

 compositional rules,

 e.g., nesting of elements, …

Class name

A Graphical Concrete Syntax (GCS) consists of:

Attribute name

Graphical concrete syntax
Anatomy of Graphical concrete syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 graphical symbols,

 e.g., rectangles, circles, …

 compositional rules,

 e.g., nesting of elements, …

 and mapping between
graphical symbols and
abstract syntax elements.

 e.g., a class in the
metamodel is visualized by a
rectangle in the GCS

A Graphical Concrete Syntax (GCS) consists of:

Graphical concrete syntax
Anatomy of Graphical concrete syntax

Class???

Attribute???

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Anatomy of Graphical concrete syntax

Outline View

Tool Palette
Modeling Canvas

Project Browser

Property View

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Features of Graphical Modeling Editors

Connection Handles:

Geometrical Shapes:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Features of Graphical Modeling Editors

Actions:

 Toolbar:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax

Abstract
syntax

Graphical
Concrete

syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-center GCS

Annotation-center GCS

API-center GCS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Abstract Syntax Concrete Syntax

AS2CS

Explicit mapping model between abstract syntax, i.e., the

metamodel, and concrete syntax

This approach is followed by the

Graphical Modeling Framework (GMF)

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

“The Eclipse Graphical Modeling Framework (GMF) provides a

generative component and runtime infrastructure for developing

graphical editors based on EMF and GEF.” - www.eclipse.org/gmf

Graphical

Editor

EMF Runtime

generate

GEF Runtime

GMF Runtime

GMF Tools

«uses» «uses» «uses»

«uses» «uses»

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

GMF is a DSML (Domain Specific Modeling Language)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Domain
Model
(ECore)

CodeGen Model
(EMF GenModel)

Java
code

Generator Model
(GMFGenModel)

Java
code

Tool Definition

(GMFTool)

Graphical

Definition

(GMFGraph)

Mapping

(GMFMap)

Domain
Model
(ECore)

EMF

GMF

M2T

M2T

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Mapping between abstract syntax and concrete syntax elements

Figure 7.7: sWML model’s abstract syntax. Page 91.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Generic Metamodel for Graphical Concrete Syntax

Line

Figure

Edge

Node Compartment

Shape

Rectangle Ellipse …

Label

DiagramElement Diagram

Metamodel Element

Mapping

1..1
1..1

1..1
1..1

Compound

Figure

1..* 1..*

Abstract

Syntax

(AS)

Concrete

Syntax

(CS)

Class

Association

Attribute

AS2CS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

 The metamodel is annotated with concrete syntax

information.

 This approaches directly annotate the metamodel with

information about how the elements are visualized.

Abstract Syntax Concrete Syntax

This approach is supported by

EuGENia framework

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

• EuGENia framework allows to annotate an Ecore-based

metamodel with GCS information by providing a high-

level textual DSML.

• From the annotated metamodels, a generator produces

GMF models

• GMF generators are reused to produce the actual

modeling editors

Be aware:

Application of MDE techniques for

developing MDE tools!!!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

In EuGENia framework there are several annotations available for

specifying the GCS for a given Ecore-based metamodel.

The main annotations are:

•For marking the root class of the metamodel that directly or transitively contains all other classes

•Represents the modeling canvas

Diagram

•For marking classes that should be represented by nodes such as rectangles, circles, …

Node

•For marking references or classes that should be visualized as lines between two nodes

Link

•For marking elements that may be nested in their containers directly

Compart-ment

•For marking attributes that should be shown in the diagram representation of the models

Label

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

WebModel

@gmf.diagram()

HypertextLayer

@gmf.compartment()

hypertext

1

@gmf.node(

figure="rectangle")

HypertextLayer

001 : WebModel

002 : HypertextLayer

Model fragment in AS Model fragment in GCS

Modeling Canvas

Metamodel with EuGENia annotations

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

HypertextLayer elements should be directly embeddable in the modeling

canvas that represents WebModels

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

WebModel

@gmf.diagram()

HypertextLayer

@gmf.compartment()

hypertext

1

@gmf.node(

figure="rectangle")

HypertextLayer

001 : WebModel

002 : HypertextLayer

Metamodel with EuGENia annotations

Model fragment in AS Model fragment in GCS

Modeling Canvas

ROOT

ELEMENT

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

WebModel

@gmf.diagram()

HypertextLayer

@gmf.compartment()

hypertext

1

@gmf.node(

figure="rectangle")

HypertextLayer

001 : WebModel

002 : HypertextLayer

Model fragment in AS Model fragment in GCS

Modeling Canvas

Metamodel with EuGENia annotations

CONTAINMENT REFERENCE

hypertext

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

WebModel

@gmf.diagram()

HypertextLayer

@gmf.compartment()

hypertext

1

@gmf.node(

figure="rectangle")

HypertextLayer

001 : WebModel

002 : HypertextLayer

Model fragment in AS Model fragment in GCS

Modeling Canvas

Metamodel with EuGENia annotations

NODE ELEMENT

represented as rectangles

If no label is specified, the

default label for a modeling

element is its type name.

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Case study: Defining a GCS for sWML in EuGENia

Fig. 7.12: GCS excerpt 2: Node and Link annotations.

TutorialList

TutorialDetails

name=“TutorialList“

005 : IndexPage

006 : EntityPage

009 : CLink

target
name=“TutorialDetails“

Model fragment in AS Model fragment in GCS

links

Link Page

target 1..1

1..*

@gmf.link(
target="target",

style="solid",

target.decoration=

"filledclosedarrow")

links @gmf.node(
label="name",

figure="rectangle")

Attributes

Metamodel with EuGENia annotations

Pages should be displayed as rectangles and Links should be represented

by a directed arrow between the rectangles

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

Concrete syntax is described by a programming language

using a dedicated API for graphical modeling editors

Abstract Syntax

Concrete Syntax MM API

This approach is supported by

Graphiti

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical concrete syntax
Approaches to GCS development

Mapping-
center GCS

Annotation-
center GCS

API-center
GCS

 Powerful programming framework for

developing graphical modeling editors

 Base classes of Graphiti have to be extended to

define concrete syntaxes of modeling languages

 Pictogram models describe the visualization and the

hierarchy of concrete syntax elements.

 Link models establish the mapping between abstract

and concrete syntax elements.

 DSL on top of Graphiti: Spray

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Every GCS is transformable to a TCS

Example: sWML

Tutorial

presenter:String

title:String

TutorialList

(Tutorial)

Content

Hypertext

ConferenceManagementSystem webapp ConferenceManagementSystem{

 hypertext{

 index TutorialList shows Tutorial [10] {...}

 }

 content{

 class Tutorial {

 att presenter : String;

 att title : String;

 }

 }

}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concrete syntax development
Visual notations

• The visual notation of a model language is referred as concrete

syntax

• Visual notation introduces symbols for modeling concepts.

Modeling concepts

Metamodel

contains

Concrete syntaxes

Visual notations

Graphical Concrete

syntaxes

Textual Concrete

syntaxes

are mapped into

uses

summarizes

Model Diagram/Text

visualizes

symbolizes

«conformsTo» «conformsTo»

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

TEXTUAL CONCRETE

SYNTAX

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Overview

 Long tradition in software engineering

 General-purpose programming languages

 But also a multitude of domain-specific (programming) languages

 Web engineering: HTML, CSS, Jquery, …

 Data engineering: SQL, XSLT, XQuery, Schematron, …

 Build and Deployment: ANT, MAVEN, Rake, Make, …

Developers are often used to textual languages

Why not using textual concrete syntaxes for modeling

languages?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Overview

 Assumption fundamental of textual specifications:

 Comprised text consistes of a sequence of characteres.

 Not every arbitrary sequence of characters represents a valid

specification

 From a metamodel, only a generic grammar may be derived which

allows the generic rendering of models textually as well as the parsing

of text into models.

 In particular, language-specific keywords enhance the readability of

textual specifications a lot.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Anatomy of textual languages

The following kinds of TCS elements can be identified:

Model
information

TCS has to support model information stored in abstract
syntaxes. (i.e., name and type)

Keywords Are used for introducing the different model elements. (i.e.,
reserved words)

Scope borders Special symbols, so-called scope borders, defines the borders of
a model element. (i.e., { })

Separation
characters

A special character is used for separating the entries of the list.

(i.e., ;)

Links Identifiers have to be defined for elements which may be used to
reference na element from another element by stating the
identifier value. (i.e., class names)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Approaches to TCS development

 Metamodels do not provide information about the other kinds of TCS

elements.

 For the definition of this TCS specific information, two approaches are currently

available in MDE:

• A textual syntax generically applicable for all
kinds of models .

• The metamodel is sufficient to derive a TCS.
Generic TCS

• Resulting artifacts:

• A metamodel for the abstract syntax.

• TCS for the models.

Language-
specific TCS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Approaches to TCS development

Language-specific TCS approaches:

Metamodel first

• 1. To define abstract syntax by
means of a metamodel.

• 2. Textual syntax is defined
based on the metamodel

• 3. To render each model
elements into a text
representation using a text
production rule.

Grammar first

• 1. Start with the language
definition developing the
grammar defining the abstract
and concrete syntax at once as
a single specification.

• 2. The metamodel is
automatically inferred from the
grammar by dedicated
metamodel derivation rules.

Xtext tool

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Case study: Defining a TCS for sWML in Xtext

• Xtext is used for developing textual domain specific languages

• Grammar definition similar to EBNF, but with additional features inspired
by metamodeling

• Creates metamodel, parser, and editor from grammar definition

• Editor supports syntax check, highlighting, and code completion

• Context-sensitive constraints on the grammar described in OCL-like
language

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext architecture overview

«component»
 Parser

«artifact»
Metamodel

«component»
 Editor

oAW

Xtend, ATL
(M2M)

Xpand, Acceleo
(M2C)

Xtext
(TCS)

«artifact»
Grammar

«artifact»
Constraints

«artifact»
Model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext production rules

 Terminal rules

 Similar to EBNF rules

 Return value is String by default

 EBNF expressions

 Cardinalities
 ? = One or none; * = Any; + = One or more

 Character Ranges ‘0’..’9’

 Wildcard ‘f’.’o’

 Until Token ‘/*’ -> ‘*/’

 Negated Token ‘#’ (!’#’)* ‘#’

 Predefined rules

 ID, String, Int, URI

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext grammar

 Examples

terminal ID :

 ('^')?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;

terminal INT returns ecore::EInt :

 ('0'..'9')+;

terminal ML_COMMENT :
 '/*' -> '*/';

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext grammar

 Type rules

 For each type rule a class is generated in the metamodel

 Class name corresponds to rule name

 Used to define modeling concepts

 Type rules contain

 Terminals -> Keywords

 Assignments -> Attributes or containment references

 Cross References -> NonContainment references

 …

 Assignment Operators

 = for features with multiplicity 0..1

 += for features with multiplicity 0..*

 ?= for Boolean features

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext grammar

Examples

 Assignment

State :

 'state' name=ID

 (transitions+=Transition)*

 'end';

 Cross References

Transition :

 event=[Event] '=>' state=[State];

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Xtext grammar

 Enum rules

 Map Strings to enumeration literals

 Are used for defining value enumerations

 Examples

enum ChangeKind :

 ADD | MOVE | REMOVE
;

enum ChangeKind :

 ADD = 'add' | ADD = '+' |
 MOVE = 'move' | MOVE = '->' |
 REMOVE = 'remove' | REMOVE = '-'
;

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Textual concrete syntax
Using Xtext

Case study: Defining a TCS for sWML in Xtext

WebModel :
 'webapp' name=ID '{'
 hypertext=HypertextLayer
 content=ContentLayer
 '}' ;

 HypertextLayer :
 'hypertext { '
 pages+=IndexPage+
 '}' ;

 IndexPage :
 'index' name=ID 'shows' displayedClass=[Class] '['resultsPerPage']' '{' ... '}' ;

 terminal resultsPerPage returns ecore::EInt: ('10' | '20' | '30') ;

 ContentLAyer :
 'content {'
 classes+=Class+
 '}' ;

 Class :
 'class' name=ID '{' attributes+=Attribute+ '}' ;

 Attribute :
 'att' name=Id ':' type=SWMLTypes ';' ;

 enum SWMLTypes :
 String | Integer | Float | Email | Boolean ;

Containm

ent

reference

cross

reference Terminal

rule

Enum

rules

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

SUMMARY

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Summary
Final remarks (1/3)

Meta-modeling language:

 It is a modeling language for create modeling languages​​.

Metamodel:

 Modeling how to model.

Meta-meta model:

 Language for defining how to build metamodels.

Meta models and meta-metamodels only define the

abstract syntaxes of the languages.

 Concrete syntaxes or semantics are not covered by them.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Summary
Final remarks (2/3)

Abstract syntax: Language concepts and how these

concepts can be combined (~ grammar)

 It does neither define the notation nor the meaning of the concepts

Concrete syntax: Notation to illustrate the language

concepts intuitively

 Textual, graphical or a mixture of both

 Semantics: Meaning of the language concepts

 How language concepts are actually interpreted

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Summary
Final remarks (3/3)

M
e
ta

m
o

d
e
l

1

M
o

d
e
l

Abstract

syntax

Concrete

syntax

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OBRIGADO

GRACIAS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

Copyright © 2012 Brambilla, Cabot, Wimmer.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com

