

MORGAN & CLAYPOOL PUBLISHERS

Chapter 7

DEVELOPING YOUR OWN MODELING LANGUAGE

Teaching material for the book

Model-Driven Software Engineering in Practice
by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

Copyright © 2012 Brambilla, Cabot, Wimmer.

Content

Part A

- Introduction
- Abstract Syntax
- Part B
 - Concrete Syntaxes
 - Graphical Concrete Syntax
 - Textual Concrete Syntax
- Summary

INTRODUCTION

What to expect from this lecture?

- Motivating example: a simple UML Activity diagram
 - Activity, Transition, InitialNode, FinalNode

- Question: Is this UML Activity diagram valid?
- Answer: Check the UML metamodel!
 - Prefix "meta": an operation is applied to itself
 - Further examples: meta-discussion, meta-learning, ...

What is a m

- It is a model
- Based on a obassociations).

"Modeling how to model"

mod ges.

tes and

to discuss.." "Learning how to learn.."

- What is a metan.
 - Prefix "meta": an ope on applied to learn
 - Examples: meta-discussion, meta-learning, ...
 - Classes, attributes and associations define the concepts and properties of modeling. Describe basic constraints.
- What is a meta-metamodeling?
 - Language how to build metamodels.
 - Capable of representing all valid models.
- Describe the abstract syntax of the languages they represent.

Anatomy of formal languages 1/2

 Languages have goals and divergent fields of applications, but still having a common framework

Anatomy of formal languages 2/2

Main components

- Abstract syntax: Language concepts and how these concepts can be combined (~ grammar)
 - It does neither define the notation nor the meaning of the concepts
- Concrete syntax: Notation to illustrate the language concepts intuitively
 - Textual, graphical or a mixture of both
- Semantics: Meaning of the language concepts
 - How language concepts are actually interpreted

Additional components

- Extension of the language by new language concepts
 - Domain or technology specific extensions, e.g., see UML Profiles
- Mapping to other languages, domains
 - Examples: UML2Java, UML2SetTheory, PetriNet2BPEL, ...
 - May act as translational semantic definition

Excursus: Meta-languages in the Past

Or: Metamodeling – Old Wine in new Bottles?

- Formal languages have a long tradition in computer science
- First attempts: Transition from machine code instructions to high-level programming languages (Algol60)

Major successes

- Programming languages such as Java, C++, C#, ...
- Declarative languages such as XML Schema, DTD, RDF, OWL, ...

Excursus

- How are programming languages and XML-based languages defined?
- What can thereof be learned for defining modeling languages?

Overview

- John Backus and Peter Naur invented formal languages for the definition of languages called meta-languages
- Examples for meta-languages: BNF (Backus-Naur Form), EBNF (Extended Backus-Naur Form), ...
- Are used since 1960 for the definition of the syntax of programming languages
 - Remark: abstract and the concrete syntax are both defined
- EBNF (Extended Backus-Naur Form)
 - Code that <u>expresses the grammar</u> of a formal language.
 - Composed by terminal symbols and production rules for non-terminals that are restrictions on how terminal symbols can be combined into a sequence.

Overview

EBNF Example

Example: MiniJava

Grammar

Program

```
package mdse.book.example;
import java.util.*;
public class Student extends Person { ... }
```

- Validation: does the program conform to the grammar?
 - Compiler: javac, gcc, ...
 - Interpreter: Ruby, Python, ...

Meta-architecture layers

Four-layer architecture

```
Definition of EBNF in
EBNF := {rules}:
                                                                M3-Layer
                                    EBNF – EBNF grammar
rules := Terminal | Non-Terminal | ...
                                    (reflexive)
Java := [PackageDec]
                                    Definition of Java in
  {ImportDec} ClassDec;
                                                                M2-Layer
PackageDec := "package"
                                    EBNF – Java grammar
  QualifiedIdentifier; ...
package big.tuwien.ac.at;
                                    Program – Sentence
public class Student
                                                                M1-Layer
                                    conform to the grammar
        extends Person { ... }
                                    Execution of the
                                                                M0-Layer
```

program

XML-based languages

Overview

- XML files require specific structures to allow for a standardized and automated processing
- Examples for XML meta languages
 - DTD, XML-Schema, Schematron
- Characteristics of XML files
 - Structured representation of the data

XML-based languages

Example: Cookbook DTD

DTD

XML

Validation

XML Parser: Xerces, ...

XML-based languages

Concrete entities (e.g.: Student "Bill Gates")

Meta-architecture layers

Five-layer architecture (was revised with XML-Schema)

```
EBNF := {rules};
                                           Definition of EBNF
  rules := Terminal | Non-Terminal | ...
                                                                        M4-Layer
                                           in EBNF
ELEMENT := ,<!ELEMENT " Identifier ,,>"
                                           Definition of DTD
          ATTLIST;
                                                                        M3-Layer
                                           in EBNF
ATTLIST := "<!ATTLIST " Identifier ...
<!ELEMENT javaProg (packageDec*,</pre>
                                           Definition of Java in
importDec*, classDec)>
                                                                        M2-Layer
                                           DTD – Grammar
<!ELEMENT packageDec (#PCDATA)>
 <iavaProg>
                                           XMI -
   <packageDec>big.tuwien.ac.at</packageDec>
                                                                        M1-Layer
   <classDec name="Student" extends="Person"/>
                                           conform to the DTD
</iavaProg>
```

M0-Layer

What to expect from this lecture? (1/2)

- 1. Metamodel-centric language design
- Define the abstract syntax of the modeling language with its restrictions
- 3. Define **concrete syntaxes** (textual and graphical) based on the **abstract syntax**
- 4. Show how the **resources of Eclipce** can be used to perform previous activities.

What to expect from this lecture? (2/2)

ABSTRACT SYNTAX

Spirit and purpose of metamodeling 1/4

Metamodel-centric language design

All aspects of language going beyond abstract syntax of a modeling language have in common that they are defined in terms of the metamodel

Spirit and purpose of metamodeling 2/4

Example

- Actor has properties and relationships, this context can be understood as an abstraction of something (e.g. player)
- When this actor is associated with a use case diagram, it receive a semantic representation in some contexts (e.g. join game or leave game), i.e. we give a meaning to it.
- However, to create this use case diagram, we must to follow a rules defined to this kind of modeling language, its metamodel

Delete characte

Spirit and purpose of metamodeling 3/4

- Advantages of metamodels
 - Precise: There is a formal definition of the language syntax which is processable by machines
 - Accessible: The knowledge of UML class diagrams is sufficient to read and understand
 - Evolvable language definition: Have an accessible language definition further contributes to an easy adaptation of modeling languages
- Generalization on a higher level of abstraction by means of the meta-metamodel
 - Language concepts for the definition of metamodels
 - MOF, with Ecore as its implementation, is considered as a universally accepted meta-metamodel

Spirit and purpose of metamodeling 4/4

M0: there are the instances of the domain concepts which represents real-word entities

Introduction 1/2

- OMG standard for the definition of metamodels
- MOF is an object-orientated modeling language
 - Objects are described by classes
 - Intrinsic properties of objects are defined as attributes
 - Extrinsic properties (links) between objects are defined as associations
 - Packages group classes
- MOF itself is defined by MOF (reflexive) and divided into
 - eMOF (essential MOF)
 - Simple language for the definition of metamodels
 - Target audience: metamodelers
 - cMOF (complete MOF)
 - Extends eMOF
 - Supports management of meta-data via enhanced services (e.g. reflection)
 - Target audience: tool manufacturers

Introduction 2/2

OMG language definition stack

Why an additional language for M3

... isn't UML enough?

- MOF only a subset of UML
 - MOF is similar to the UML class diagram, but much more limited
 - No n-ary associations, no association classes, ...
 - No overlapping inheritance, interfaces, dependencies, ...
- Main differences result from the field of application
 - UML
 - Domain: object-oriented modeling
 - Comprehensive modeling language for various software systems
 - Structural and behavioral modeling
 - Conceptual and implementation modeling
 - MOF
 - Domain: metamodeling
 - Simple conceptual structural modeling language
- Conclusion
 - MOF is a highly specialized DSML for metamodeling
 - Core of UML and MOF (almost) identical

Language architecture of MOF 2.0

- Abstract classes of eMOF
- Definition of general properties
 - NamedElement
 - TypedElement
 - **MultiplicityElement**
 - Set/Sequence/OrderedSet/Bag
 - Multiplicities

Taxonomy of

abstract classes

Object

Element

Language architecture of MOF 2.0

Core of eMOF

- Based on object-orientation
- Classes, properties, operations, and parameters

Classes

- A class specifies structure and behavior of a set of objects
 - Intentional definition
 - An unlimited number of instances (objects) of a class may be created
- A class has an unique name in its namespace
- Abstract classes cannot be instantiated!
 - Only useful in inheritance hierarchies
 - Used for »highlighting« of common features of a set of subclasses
- Concrete classes can be instantiated!

Generalization

- Generalization: relationship between
 - a specialized class (subclass) and
 - a general class (superclass)
- Subclasses inherit properties of their superclasses and may add further properties
- Discriminator: "virtual" attribute used for the classification
- Disjoint (non-overlapping) generalization
- Multiple inheritance

Attributes

- Attributes describe inherent characteristics of classes
- Consist of a name and a type (obligatory)
- Multiplicity: how many values can be stored in an attribute slot (obligatory)
 - Interval: upper and lower limit are natural numbers
 - * asterisk also possible for upper limit (Semantics: unlimited number)
 - 0..x means optional: null values are allowed

Optional

- Default value
- Derived (calculated) attributes
- Changeable: isReadOnly = false
- isComposite is always true for attributes

Associations

- An association describes the common structure of a set of relationships between objects
- MOF only allows unary and binary associations, i.e., defined between two classes
- Binary associations consist of two roles whereas each role has
 - Role name
 - Multiplicity limits the number of partner objects of an object

Composition

- "part-whole" relationship (also "part-of" relationship)
- One part can be at most part of one composed object at one time
- Asymmetric and transitive
- Impact on Multiplicity: 1 or 0..1

Associations - Examples

Association

Packages

- Packages serve as a grouping mechanism
 - Grouping of related types, i.e., classes, enumerations, and primitive types.
- Partitioning criteria
 - Functional or information cohesion
- Packages form own namespace
 - Usage of identical names in different parts of a metamodel
- Packages may be nested
 - Hierarchical grouping
- Model elements are contained by one package

Types 1/2

- Primitive data types: Predefined types for integers, character strings and Boolean values
- Enumerations: Enumeration types consisting of named constants
 - Allowed values are defined in the course of the declaration
 - Example: enum Color {red, blue, green}
 - Enumeration types can be used as data types for attributes

Types 2/2

- Differentiation between value types and reference types
 - Value types: contain a direct value (e.g., 123 or 'x')
 - Reference types: contain a reference to an object

Metamodel development process

Incremental and Iterative (1/2)

Modeling domain analysis

Modeling language design

Modeling language validation

Identify purpose, realization, and content of the modeling language

Sketch reference modeling examples

Formalize modeling language by defining a metamodel

Formalize modeling constraints using OCL

Instantiate metamodel by modeling reference models

Collect feedback for next iteration

Metamodel development process

Incremental and Iterative (2/2)

- To get feedback from domain experts, a concrete syntax is also needed
- Both syntactical concepts are encouraged to be developed together in practical settings

sWML Example

- Company is repeatedly building simple Web applications, which all comprise similar functionality.
- Web applications uses MVC pattern => Java (Model), JSF (View), Servlets (Controller) and Apache Tomcat (Server).
- For each table, the Web applications implements a simple CRUD.

Metamodel development process

Incremental and Iterative

Modeling domain analysis

Modeling language design

Modeling language validation

Identify purpose, realization, and content of the modeling language

Sketch reference modeling examples

Formalize modeling language by defining a metamodel

Formalize modeling constraints using OCL

Instantiate metamodel by modeling reference models

Collect feedback for next iteration

- Several sources of information must be exploited (use interviews, document analysis, ...)
- Web application of a conference management system.

Purpose: Should modeling the content and hypertext layer.

Realization: a graphical syntax should be defined to allow the discussing with domain experts and also a textual syntax to allow the transition from model-driven to programming languages.

Content: Content

- Not limit for classes
- Classes must have a unique name and multiple attributes
- Types: String, integer, Float, Boolean and Email
- Must select one of its attributes as its representative attribute

Content: Hypertext

- Different kinds of pages
- One identified homepage
- Subdivided into static and dynamic pages
- Dynamics are subdivided into details and index pages

Content: Links

- Navigations between pages
- NCLinks: standard links
- Clinks: transport information

Metamodel development process

Incremental and Iterative

Modeling domain analysis Modeling language design

Modeling language validation

Identify purpose, realization, and content of the modeling language

Sketch reference modeling examples

Formalize modeling language by defining a metamodel

Formalize modeling constraints using OCL

Instantiate metamodel by modeling reference models

Collect feedback for next iteration

Identification of the modeling concepts

Example model

Notation table

Syntax	Concept
	Web Model
Content	Content Layer
1 - Novel State St	Class
presenter:String	Attribute
Hypertext	Hypertext Layer
RegistrationInfo	Static Page
→ 3	Index Page
▶ E Tui	Details Page
	NC Link
	C Link

Determining the properties of the modeling concepts

Example model

Modeling concept table

Concept	Intrinsic Properties	Extrinsic Properties
Web Model	name : String	One Content Layer One Hypertext Layer
Content Layer		Arbitrary number of Classes
Class	name : String	Arbitrary number of Attributes One representative Attribute
Attribute	name : String type : [String Integer Float]	н өдөө жашында амында күндө үш асын анын даныну аң орган аң араасын ауулада актооруу актооруу актооруу актоору
Hypertext Layer		Arbitrary number of <i>Pages</i> One <i>Page</i> defined as homepage
Static Page	name : String	Arbitrary number of NCLinks
Index Page	name : String size : Integer	Arbitrary number of NCLinks and CLinks One displayed Class
Details Page	name : String	Arbitrary number of NCLinks and CLinks One displayed Class
NC Link		One target Page
C Link		One target Page

Object-oriented design of the language

Overview

Abstract syntax

Metamodel

Model

Concrete syntax

Applying constraints

context ContextLayer

inv: self.classes \rightarrow forAll(x,y|x \leftrightarrow y, implies x.name \leftrightarrow y.name)

context Class

inv: self.attributes -> includes (self.representativeAttribute)

context Page

inv: not self.links -> select (l | l.oc1IsTypeOf (NCLinks)) ->
exits (l|l.target = self)

Metamodel development process

Incremental and Iterative

Modeling domain analysis Modeling language design

Modeling language validation

Identify purpose, realization, and content of the modeling language

Sketch reference modeling examples

Formalize modeling language by defining a metamodel

Formalize modeling constraints using OCL

Instantiate metamodel by modeling reference models

Collect feedback for next iteration

- Models are a collection of objects
- Use a **object diagrams** to instantiate class diagram, following the rules above:
 - Objects -> Classes
 - Values -> Attributes
 - Links -> Associations

Figure 7.7: sWML model's abstract syntax.

Example 1/9

- Activity diagram example
 - Concepts: Activity, Transition, InitialNode, FinalNode
 - Domain: Sequential linear processes

- Question: How does a possible metamodel to this language look like?
- Answer: apply metamodel development process!

Example 2/9

Identification of the modeling concepts

Example model = Reference Model

Notation table

Syntax	Concept
ad name	ActivityDiagram
	FinalNode
•	InitialNode
name	Activity
	Transition

Example 3/9

Determining the properties of the modeling concepts

Example model

Modeling concept table

Concept	Intrinsic properties	Extrinsic properties
ActivityDiagram	Name	1 InitialNode 1 FinalNode Unlimited number of Activities and Transitions
FinalNode	-	Incoming <i>Transitions</i>
InitialNode	-	Outgoing <i>Transitions</i>
Activity	Name	Incoming and outgoing <i>Transitions</i>
Transition	-	Source node and target node Nodes: <i>InitialNode</i> , <i>FinalNode</i> , <i>Activity</i>

Example 4/9

Object-oriented design of the language

MOF Class	Attribute	Association
Concept	Intrinsic properties	Extrinsic properties
ActivityDiagram	Name	1 InitialNode 1 FinalNode Unlimited number of Activities and Transitions
FinalNode	-	Incoming <i>Transition</i>
InitialNode	-	Outgoing <i>Transition</i>
Activity	Name	Incoming and outgoing <i>Transition</i>
Transition	-	Source node and target node Nodes: <i>InitialNode, FinalNode, Activity</i>

Example 6/9

Applying refactorings to metamodels


```
context ActivityDiagram
```

```
inv: self.transitions -> exists(t|t.isTypeOf(FinalNode))
```

inv: self.transitions -> exists(t|t.isTypeOf(InitialNode))

context FinalNode

inv: self.outgoing.isOclUndefined()

context InitialNode

inv: self.incoming.isOclUndefined()

context ActivityDiagram

inv: self.name <> '' and self.name <> OclUndefined ...

Example 8/9

How to keep metamodels evolvable when models already exist

- Model/metamodel co-evolution problem
 - Metamodel is changed
 - Models already exist and may become invalid
- Changes may break conformance relationships
 - Deletion and renamings of metamodel elements
- Solution: Co-evolution rules for models coupled to metamodel changes
 - Example 1: Cast all Activity elements to ActivityNode elements
 - Example 2: Cast all initialNode, finalNode, and activity links to node links

More on this topic in Chapter 10!

Excursus: Metamodeling – everything new? 1/2

Correspondence between EBNF and MOF

Mapping table (excerpt)

EBNF	MOF
Production	Composition
Non-Terminal	Class
Sequence	Multiplicity: 0*

Example

Excursus: Metamodeling – everything new? 2/2

Correspondence between DTD and MOF

Mapping table (excerpt)

DTD	MOF
Item	Composition
Element	Class
Cardinality *	Multiplicity 0*

Example

- Ecore is the meta-metamodel of the Eclipse Modeling Frameworks (EMF)
 - www.eclipse.org/emf
- Ecore is a Java-based implementation of eMOF
- Aims of Ecore
 - Mapping eMOF to Java
- Aims of EMF
 - Definition of modeling languages
 - Generation of model editors
 - UML/Java/XML integration framework

Ecore

Taxonomy of the language concepts

- Based on object-orientation (as eMOF)
 - Classes, references, attributes, inheritance, ...
 - Binary associations are represented as two references
 - Data types are based on Java data types
 - Multiple inheritance is resolved by one "real" inheritance and multiple implementation inheritance relationships

A binary association demands for two references

- One per association end
- Both define the respective other one as eOpposite

- List of Ecore data types (excerpt)
 - Java-based data types
 - Extendable through self-defined data types
 - Have to be implemented by Java classes

Ecore data type	Primitive type or class (Java)
EBoolean	boolean
EChar	char
EFloat	float
EString	java.lang.String
EBoolanObject	java.lang.Boolean

Ecore

Multiple inheritance

- Ecore supports multiple inheritance
 - Unlimited number of eSuperTypes
- Java supports only single inheritance
 - Multiple inheritance simulated by implementation of interfaces!
- Solution for Ecore2Java mapping
 - First inheritance relationship is used as "real" inheritance relationship using «extend»
 - All other inheritances are interpreted as specification inheritance «implements»

Ecore

Concrete syntax for Ecore models

Class diagram – Model TS

Annotated Java (Excerpt) – Program TS

```
public interface Appointment{
    /* @model type="Description" containment="true" */
    List getDescription();
}
```

XML (Excerpt) – Document TS

Eclipse Modeling Framework

What is EMF?

- Pragmatic approach to combine modeling and programming
 - Straight-forward mapping rules between Ecore and Java
- EMF facilitates automatic generation of different implementations out of Ecore models
 - Java code, XML documents, XML Schemata
- Multitude of Eclipse projects are based on EMF
 - Graphical Editing Framework (GEF)
 - Graphical Modeling Framework (GMF)
 - Model to Model Transformation (M2M)
 - Model to Text Transformation (M2T)
 - · ...

Model editor generation process

Step 1 – Create metamodel (e.g., with tree editor)

Step 2 – Save metamodel

```
UML.ecore
<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"</pre>
                                                                              Create MM
   xmlns:xmi="http://www.omg.org/XMI"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-
           instance"
                                                                            MM in Memory
   xmlns:ecore="http://www.eclipse.org/emf/2002/
           Ecore"
   name="uml"
                                                                              Save XMI
   nsURI="http://uml" nsPrefix="uml">
                                                       Model
 <eClassifiers xsi:type="ecore:EClass"</pre>
           name="NamedElement">
                                                                              UML.ecore
   <eStructuralFeatures xsi:type="ecore:EAttribute"</pre>
            name="name" eType="ecore:EDataType
                 http://www.eclipse.org/emf/2002/
                                                                         Generate GenModel
                      Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Class"</pre>
                                                                           UML.genmodel
          eSuperTypes="#//NamedElement">
    <eStructuralFeatures xsi:type="ecore:EReference"</pre>
                name="ownedAttribute" upperBound="-1"
                eType="#//Property"
                eOpposite="#//Property/owningClass"/>
                                                       ode
                                                                           Code generation
    <eStructuralFeatures xsi:type="ecore:EAttribute"</pre>
                name="isAbstract"
                                                       Ö
                      eType="ecore:EDataType
                   http://www.eclipse.org/emf/2002/
                      Ecore#//EBoolean"/>
 </eClassifiers>
</ecore:EPackage>
```


Step 3 – Generate GenModel

GenModel specifies properties for code generation

Step 4 – Generate model code

For each meta-class we get:

Interface: Getter/setter for attributes and references

```
public interface Class extends NamedElement {
    EList getOwnedAttributes();
    boolean isIsAbstract();
    void setIsAbstract(boolean value);
}
```

 Implementation class: Getter/setter implemented

Factory for the creation of model elements, for each Package one *Factory-Class* is created

Step 5 – Generate edit code

- Ul independent editing support for models
- Generated artifacts
 - TreeContentProvider
 - LabelProvider
 - PropertySource

Step 6 – Generate editor code

- Editor as Eclipse Plugin or RCP Application
- Generated artifacts
 - Model creation wizard
 - Editor
 - Action bar contributor
 - Advisor (RCP)
 - plugin.xml
 - plugin.properties

Start the modeling editor

Plugin.xml

OCL support for EMF

Several Plugins available

Eclipse OCL Project

- http://www.eclipse.org/projects/project.php?id=modeling.mdt.ocl
- Interactive OCL Console to query models
- Programming support: OCL API, Parser, ...

OCLinEcore

- Attach OCL constraints by using EAnnotations to metamodel classes
- Generated modeling editors are aware of constraints

Dresden OCL

Alternative to Eclipse OCL

OCL influenced languages, but different syntax

- Epsilon Validation Language residing in the Epsilon project
- Check Language residing in the oAW project

Content

- Part A
 - Introduction
 - Abstract Syntax

Part B

- Concrete Syntaxes
 - Graphical Concrete Syntax
 - Textual Concrete Syntax
- Summary

CONCRETE SYNTAX DEVELOPMENT

Overview

- Metamodels only define the abstract syntax, but not the concrete notation of the language.
 - i.e., graphical or textual elements used to render the model elements in modeling editors.
- Concrete syntax improves the readability of models
 - Abstract syntax not intended for humans!
- One abstract syntax may have multiple concrete syntaxes
 - Including textual and/or graphical
 - Mixing textual and graphical notations still a challenge!

Overview

- For the concrete syntax definition there is currently just one OMG standard available → Diagram Definition (DD) specification.
- DD allows to define graphical concrete syntaxes.
- Concrete syntax in UML metamodel is only shown in socalled notation tables and by giving some examples.
- A more formal definition of the UML concrete syntax is not given.

Benefits

- Having the concrete syntax formally defined allows the use of sophisticated techniques such as automatic generation of editors to manipulate the artifacts in their concrete syntax.
- There are several emerging frameworks which <u>provide</u> <u>specific languages to describe the concrete syntax of a</u> <u>modeling language formally.</u>
- These framework also allows the <u>generation of editors for</u> <u>visualizing and manipulating models</u> in their concrete syntax.

Kinds of concrete syntaxes

GCS	TCS
Graphical Concrete Syntaxes	Textual Concrete Syntaxes
Encode information using spatial arrangements of graphical (and textual) elements.	Enconding information using sequences of characters in most programming languages.
Are two-dimensional representations.	One-dimensional representations.

Kinds of concrete syntaxes

Graphical Concrete Syntax

Visual notations

- The visual notation of a model language is referred as concrete syntax
- Visual notation introduces symbols for modeling concepts.

GRAPHICAL CONCRETE SYNTAX

Anatomy of Graphical concrete syntax

A Graphical Concrete Syntax (GCS) consists of:

- graphical symbols,
 - e.g., rectangles, circles, ...

label

Anatomy of Graphical concrete syntax

A Graphical Concrete Syntax (GCS) consists of:

- graphical symbols,
 - e.g., rectangles, circles, ...
- compositional rules,
 - e.g., nesting of elements, ...

Anatomy of Graphical concrete syntax

A Graphical Concrete Syntax (GCS) consists of:

- graphical symbols,
 - e.g., rectangles, circles, ...
- compositional rules,
 - e.g., nesting of elements, ...
- and mapping between graphical symbols and abstract syntax elements.
 - e.g., a class in the metamodel is visualized by a rectangle in the GCS

Anatomy of Graphical concrete syntax

Features of Graphical Modeling Editors

Geometrical Shapes:

Features of Graphical Modeling Editors

Actions:

Abstract syntax

Graphical Concrete syntax

Approaches to GCS development

Mapping-center GCS

Annotation-center GCS

API-center GCS

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Explicit mapping model between abstract syntax, i.e., the metamodel, and concrete syntax

This approach is followed by the

Graphical Modeling Framework (GMF)

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

"The Eclipse Graphical Modeling Framework (GMF) provides a generative component and runtime infrastructure for developing graphical editors based on EMF and GEF." - www.eclipse.org/gmf

GMF is a DSML (Domain Specific Modeling Language)

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Mapping between abstract syntax and concrete syntax elements

Figure 7.7: sWML model's abstract syntax. Page 91.

Generic Metamodel for Graphical Concrete Syntax

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

- The metamodel is annotated with concrete syntax information.
- This approaches directly annotate the metamodel with information about how the elements are visualized.

Abstract Syntax Concrete Syntax

This approach is supported by

EuGENia framework

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

- EuGENia framework allows to annotate an Ecore-based metamodel with GCS information by providing a highlevel textual DSML.
- From the annotated metamodels, a generator produces GMF models
- GMF generators are reused to produce the actual modeling editors

Be aware:
Application of MDE techniques for developing MDE tools!!!

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

In **EuGENia framework** there are several annotations available for specifying the GCS for a given Ecore-based metamodel.

The main annotations are:

Diagram

- For marking the **root class** of the metamodel that directly or transitively contains all other classes
- · Represents the modeling canvas

Node

• For marking classes that should be represented by **nodes** such as rectangles, circles, ...

Link

• For marking references or classes that should be visualized as lines between two nodes

Compart-ment

• For marking elements that may be nested in their containers directly

Label

• For marking attributes that should be shown in the diagram representation of the models

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Case study: Defining a GCS for sWML in EuGENia

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Case study: Defining a GCS for sWML in EuGENia

HypertextLayer elements should be **directly embeddable** in the **modeling canvas** that represents WebModels

Metamodel with EuGENia annotations

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Fig. 7.11: GCS excerpt 1: Diagram, Compartment, and Node annotations.

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Case study: Defining a GCS for sWML in EuGENia

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Case study: Defining a GCS for sWML in EuGENia

Pages should be displayed as **rectangles** and *Link*s should be represented by a directed **arrow** between the rectangles

Fig. 7.12: GCS excerpt 2: Node and Link annotations.

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

Concrete syntax is described by a programming language using a dedicated API for graphical modeling editors

This approach is supported by

Graphiti

Approaches to GCS development

Mappingcenter GCS

Annotationcenter GCS

API-center GCS

- Powerful programming framework for developing graphical modeling editors
- Base classes of Graphiti have to be extended to define concrete syntaxes of modeling languages
 - Pictogram models describe the visualization and the hierarchy of concrete syntax elements.
 - Link models establish the mapping between abstract and concrete syntax elements.
- DSL on top of Graphiti: Spray

Every GCS is transformable to a TCS

Example: sWML


```
webapp ConferenceManagementSystem{
  hypertext{
   index TutorialList shows Tutorial [10] {...}
}

content{
  class Tutorial {
   att presenter : String;
   att title : String;
}
}
```

Concrete syntax development

Visual notations

- The visual notation of a model language is referred as concrete syntax
- Visual notation introduces symbols for modeling concepts.

TEXTUAL CONCRETE SYNTAX

Overview

- Long tradition in software engineering
 - General-purpose programming languages
 - But also a multitude of domain-specific (programming) languages
 - Web engineering: HTML, CSS, Jquery, ...
 - Data engineering: SQL, XSLT, XQuery, Schematron, ...
 - Build and Deployment: ANT, MAVEN, Rake, Make, ...
- Developers are often used to textual languages
- Why not using textual concrete syntaxes for modeling languages?

Overview

- Assumption fundamental of textual specifications:
 - Comprised text consistes of a sequence of characteres.
- Not every arbitrary sequence of characters represents a valid specification
- From a metamodel, only a generic grammar may be derived which allows the generic rendering of models textually as well as the parsing of text into models.
- In particular, language-specific keywords enhance the readability of textual specifications a lot.

Anatomy of textual languages

The following kinds of TCS elements can be identified:

Model information	TCS has to support model information stored in abstract syntaxes. (i.e., name and type)
Keywords	Are used for introducing the different model elements. (i.e., reserved words)
Scope borders	Special symbols, so-called scope borders, defines the borders of a model element. (i.e., { })
Separation characters	A special character is used for separating the entries of the list. (i.e., ;)
Links	Identifiers have to be defined for elements which may be used to reference na element from another element by stating the identifier value. (i.e., class names)

Approaches to TCS development

- Metamodels do not provide information about the other kinds of TCS elements.
- For the definition of this TCS specific information, two approaches are currently available in MDE:

Generic TCS

- A textual syntax generically applicable for all kinds of models.
- The metamodel is sufficient to derive a TCS.

Languagespecific TCS

- Resulting artifacts:
 - A metamodel for the abstract syntax.
- TCS for the models.

Approaches to TCS development

Language-specific TCS approaches:

Xtext tool

Metamodel first

- 1. To define abstract syntax by means of a metamodel.
- 2. Textual syntax is defined based on the metamodel
- 3. To render each model elements into a text representation using a text production rule.

Grammar first

- 1. Start with the language definition developing the grammar defining the abstract and concrete syntax at once as a single specification.
- 2. The metamodel is automatically inferred from the grammar by dedicated metamodel derivation rules.

Using Xtext

Case study: Defining a TCS for sWML in Xtext

- Xtext is used for developing textual domain specific languages
- Grammar definition similar to EBNF, but with additional features inspired by metamodeling
- Creates **metam**1 + 2*3

 Parsing

 1 + 2*3
- Editor supports syntax check, highlighting, and code completion
- Context-sensitive constraints on the grammar described in OCL-like language

Using Xtext

Xtext architecture overview

Using Xtext

Xtext production rules

Terminal rules

- Similar to EBNF rules
- Return value is String by default

EBNF expressions

Cardinalities

? = One or none; * = Any; + = One or more

Character Ranges \(\cdot 0' \cdot \cdot 9' \)

Wildcard \(\frac{1}{2}\): \(\frac{1}\): \(\frac{1}{2}\): \(\frac{1}{2}\): \(\frac{1}{2}\

• Until Token
\'*' -> \'*'

Negated Token \\(\psi \' (!'\#') * \\\ \\ '\#'

Predefined rules

ID, String, Int, URI

Using Xtext

Xtext grammar

Examples

```
terminal ID:
    ('^')?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;

terminal INT returns ecore::EInt:
    ('0'..'9')+;

terminal ML_COMMENT:
    '/*' -> '*/';
```

Using Xtext

Xtext grammar

Type rules

- For each type rule a class is generated in the metamodel
- Class name corresponds to rule name
- Used to define modeling concepts

Type rules contain

- Terminals -> Keywords
- Assignments -> Attributes or containment references
- Cross References -> NonContainment references
- ...

Assignment Operators

- = for features with multiplicity 0..1
- += for features with multiplicity 0..*
- ?= for Boolean features

Using Xtext

Xtext grammar

Examples

AssignmentState:'state' name=ID(transitions+=Transition)*'end';

Cross References

```
Transition:

event=[Event] '=>' state=[State];
```

Using Xtext

Xtext grammar

Enum rules

- Map Strings to enumeration literals
- Are used for defining value enumerations

Examples

```
enum ChangeKind:
   ADD | MOVE | REMOVE
;

enum ChangeKind:
   ADD = 'add' | ADD = '+' |
   MOVE = 'move' | MOVE = '->' |
   REMOVE = 'remove' | REMOVE = '-'
;
```


SUMMARY

Meta-modeling language:

It is a modeling language for create modeling languages.

Metamodel:

Modeling how to model.

Meta-meta model:

- Language for defining how to build metamodels.
- Meta models and meta-metamodels only define the abstract syntaxes of the languages.
 - Concrete syntaxes or semantics are not covered by them.

- Abstract syntax: Language concepts and how these concepts can be combined (~ grammar)
 - It does neither define the notation nor the meaning of the concepts
- Concrete syntax: Notation to illustrate the language concepts intuitively
 - Textual, graphical or a mixture of both
- Semantics: Meaning of the language concepts
 - How language concepts are actually interpreted

Summary Final remarks (3/3)

target hypertext E HypertextLayer 🗎 Page links 🗎 Link 무 name : EString □ DynamicPage ☐ StaticPage ☐ NCLink CLink ☐ WebModel T name: EString ☐ IndexPage ☐ DetailsPage size : EInt <enumeration>> representativeAttribute displayedClass - String Integer content ContentLaver ☐ Class Attribute classes attributes [- Float name: EString P name: EString - Email ₽ type: SWMLTypes - Boolean

Metamodel **Abstract** homepage syntax 008: NCLink 004 : StaticPage name≈"StartPage" 005 : IndexPage 009 : CLink name="TutorialList" 002 : HypertextLayer @ links 006 : EntityPage target name="TutorialDetails" 001: WebModel 010: Attribute name="Conference... displayed attributes name="presenter" displayed Class Class type = String 007 : Class 003 : ContentLayer Model 011: Attribute name="Tutorial" classes name≅"title" act representativeAltribute type = String Concrete Conference Management System 001 syntax Hypertext 002 TutorialDetails TutorialList StartPage (Tutorial) (Tutorial) Tutorial 007 Content presenter:String 010 title:String 011

webapp ConferenceManagementSystem{
 hypertext{
 index TutorialList shows Tutorial [10] {...}
 }
 content(
 class Tutorial {
 att presenter : String;
 att title : String;
 }
}

OBRIGADO

GRACIAS

MORGAN & CLAYPOOL PUBLISHERS

MODEL-DRIVEN SOFTWARE ENGINEERING IN PRACTICE

Marco Brambilla, Jordi Cabot, Manuel Wimmer. Morgan & Claypool, USA, 2012.

www.mdse-book.com www.morganclaypool.com

