USP POLI 2016

PEF2507 - Tópicos Especiais em Solos e Rocha

CENÁRIO FÍSICO COMANDA O RISCO GEOTÉCNICO

Nelson Aoki Prof. USP/SC

nelson.aoki@uol.com.br

SP-25/05/2016

SER PROFISSIONAL LIBERAL NA SOCIEDADE DE RISCO

SOCIEDADE: AGRÁRIA ⇒ INDUSTRIAL ⇒ INFORMAÇÃO ⇒ RISCO

PROFISSIONAL LIBERAL ⇒ RISCO PERDA BENS SOCIEDADE

MÉDICO ⇒ RISCO PERDA VIDA / SAÚDE / BEM ESTAR

ADVOGADO ⇒ RISCO PERDA DIREITOS / LIBERDADE

ENGENHEIRO ⇒ RISCO PERDA BENS MATERIAIS TANGÍVEIS

AMBIENTALISTA ⇒ RISCO EXTINÇÃO FAUNA/FLORA/SER HUMANO

PAPEL PROFISSIONAL LIBERAL NA SOCIEDADE DE RISCO

PROFISSIONAL LIBERAL PESSOA ESPECIALIZADA NA

AVALIAÇÃO RISCO PERDA BENS TANGÍVEIS E INTANGÍVEIS

DE INDIVÍDUOS OU GRUPOS COMPONENTES DA SOCIEDADE HUMANA

RISCO GEOTÉCNICO CONFORME CÓDIGO CIVIL BRASILEIRO

CÓDIGO CIVIL 1916: Art. 1245

Art. 1245. Nos contratos de empreitada de edifícios ou outras construções consideráveis, o empreiteiro de materials e execução responderá, durante cinco anos, pela solidez e segurança do trabalho, assim em razão dos materiais, como do solo, exceto, quanto a êste, se, não o achando firme, preveniu em tempo o dono da obra.

O Código Civil de 1916 legisla que o risco do solo não ser firme passa a ser do dono da obra se o empreiteiro **o preveniu** em tempo

CÓDIGO CIVIL 2002: Art. 618

Art. 618. Nos contratos de empreitada de edifícios ou outras construções consideráveis, o empreiteiro de materiais e execução responderá, durante o prazo irredutível de 5 (cinco) anos, pela solidez e segurança do trabalho, assim em razão dos materiais, como do solo.

O Código Civil de 2002 entendeu ser injusto que o risco do solo não ser firme, quantificado por um fator de segurança que somente o empreiteiro sabe avaliar, seja do dono da obra que não sabe quantificar o risco financeiro que este número expressa......

CENÁRIO ANÁLISE DO RISCO GEOTÉCNICO 'SOLO NÃO SER FIRME'

RECONHECIMENTO FORMAL DA EXISTÊNCIA RISCO GEOTÉCNICO

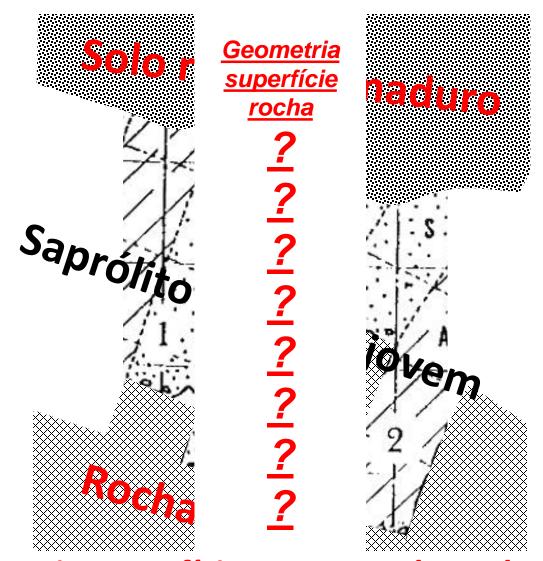
NORMA BRASILEIRA

ABNT NBR 6122:2010

Projeto e execução de fundações

1 Escopo

Esta Norma estabelece os requisitos a serem observados no projeto e execução de fundações de todas as estruturas da engenharia civil.

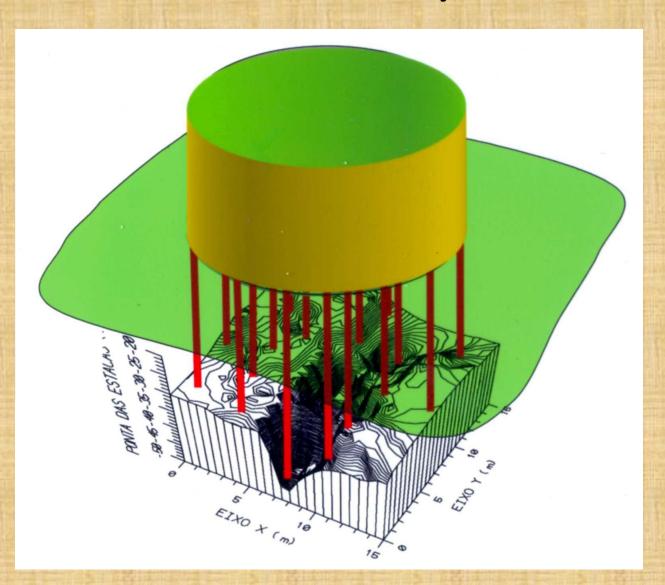

NOTA 1 Reconhecendo que a engenharia de fundações não é uma ciência exata e que riscos são inerentes a toda e qualquer atividade que envolva fenômenos ou materiais da natureza, os critérios e procedimentos constantes nesta Norma procuram traduzir o equilíbrio entre condicionantes técnicos, econômicos e de segurança usualmente aceitos pela sociedade na data da sua publicação.

"..reconhece que a Engenharia Fundações não é ciência exata e corre riscos inerentes à variabilidade de fenômenos e materiais naturais....."

ENGENHEIRO DETERMINA RISCO FINANCEIRO ASSOCIADO À "FALTA DE FIRMEZA DO SOLO" (O NÃO ATENDIMENTO DO "FATOR DE SEGURANÇA" CONSTITUI IMPERÍCIA TÉCNICA)

COMPETE AO DONO DA OBRA JULGAR SE O RISCO É OU NÃO ACEITÁVEL (NECESSIDADE DE REVISÃO DO ATUAL Art. 618 DO CCB 2002)

ORIGEM: CENÁRIO FÍSICO DESCONHECIDO FORMAÇÃO GEOTÉCNICA


Geometria superfície contato solo-rocha???

FOTOGRAFIA BASE TUBULÃO: CORTE SAPROLITO GRANITO GNAISSE



OBJETO ANÁLISE: SUPERFÍCIE RESISTENTE ESTACAS PREMOLDADAS CONCRETO EM FORMAÇÃO SEDIMENTAR TERCIÁRIO

A DE DESASTÊDI DIAMBITICA DÍCHESTA SIGNITA DE ABBUADA A PROPRESTOD

MACIÇO DE ELEMENTOS DE SOLOS SEDIMENTARES ESTATÍSTICA DE COMPRIMENTOS

COMPRIMENTOS CRAVADOS : L(m)

36 kN

AMEAÇAS E RISCOS IMPREVISÍVEIS DEFESA CIVIL

RISCOS IMPREVISÍVEIS

CODIFICAÇÃO BRASILEIRA DE DESASTRES (COBRADE)

DESASTRES NATURAIS

GEOLÓGICO, HIDROLÓGICO, METEOROLÓGICO, CLIMATOLÓGICO, BIOLÓGICO

DESASTRES TECNOLÓGICOS

DECORRENTES DE VARIABILIDADES NATURAIS E DE ERROS HUMANOS E MISTOS QUE DEVEM SER PREVENIDOS/MITIGADOS

MANUAL DE DESASTRES HUMANOS DE NATUREZA TECNOLÓGICA

RELACIONADOS COM A CONSTRUÇÃO CIVIL

Relacionados com a Danificação ou a Destruição de **Habitações** HT.CDH 21.301
Relacionados com a Danificação ou a Destruição de **Obras de Arte ou de Edificações**por problemas relativos ao **Solo e às Fundações** HT.CPS 21.302
Relacionados com a Danificação ou a Destruição de **Obras de Arte ou de Edificações**por problemas de **Estruturas** HT.CPE 21.303

Relacionados com o Rompimento de **Barragens e Riscos de Inundação** a jusante HT.CRB 21.304
Desastres e/ou **Acidentes de Trabalho** ocorridos Durante a Construção HT.CAC 21.305
Desastres Relacionados com as Atividades de **Mineração** HT.CAM 21.306
e Distritos Industriais, Parques ou **Depósitos de produtos perigosos**

RISCOS PREVISÍVEIS NA ENGENHARIA CIVIL

RISCOS PREVISÍVEIS NA ENGENHARIA CIVIL OBRIGATÓRIOS POR LEI

PREVISTOS NAS NORMAS BRASILEIRAS **ABNT** NBR 8681/8800/6122 VERIFICAÇÃO ESTABILIDADE ESTADO LIMITES ÚLTIMO / ESTADO LIMITE SERVIÇO

RISCO PREVISÍVEL DE RUÍNA DE OBRA DA ENGENHARIA CIVIL

RISCO → OBRA: LOCAL/CONCEPÇÃO; CARGAS: AMBIENTAIS/FUNCIONAIS; RESISTÊNCIAS: MATERIAIS

C_{RISCO OBRA} = PROBABILIDADE RUÍNA p_f x VULNERABILIDADE V x C_{REPARAÇÃO RUÍNA}

RISCO DO SOLO NÃO SER FIRME: RISCO GEOTÉCNICO DEPENDE LOCAL/CONCEPÇÃO

PREVISTOS NO CÓDIGO CIVIL BRASILEIRO E NO CÓDIGO DE DEFESA CONSUMIDOR

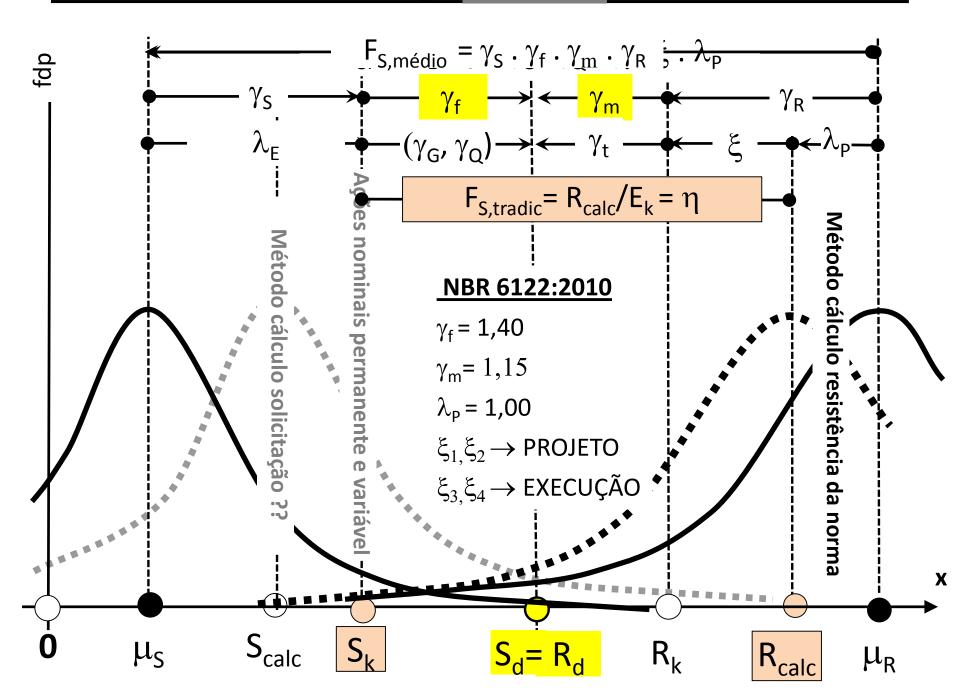
RISCO FINANCEIRO DEPENDE VARIABILIDADE CONJUNTO (OBRA+CARGAS+RESISTÊNCIAS)

OBRA + CARGAS + RESISTÊNCIA ⇒ ISE ⇒ CUSTO REAL OBRA

CUSTO_{REAL OBRA} = C_{MATERIAL} + C_{MÃO DE OBRA} + C_{EQUIPAMENTO} + BDI + C_{RISCO OBRA}

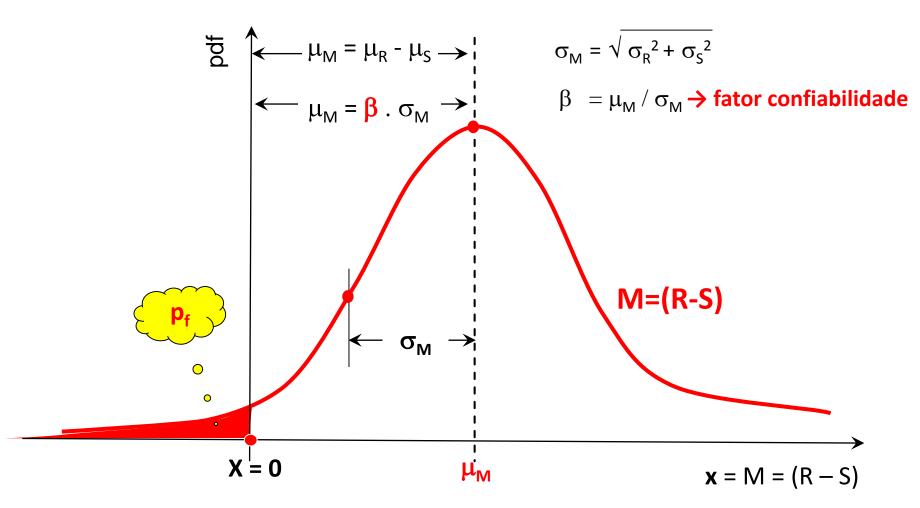
C_{RISCO OBRA} = p_f x V x C_{REPARAÇÃO RUÍNA}

DEVER DO ENGENHEIRO NA SOCIEDADE DE RISCO


INFORMAR AO DONO DA OBRA O VALOR FINANCEIRO DO RISCO DA OBRA CONCEBIDA (QUEM CORRE O RISCO E TOMA DECISÕES É O DONO QUE É RESPONSÁVEL FINAL PELA OBRA)

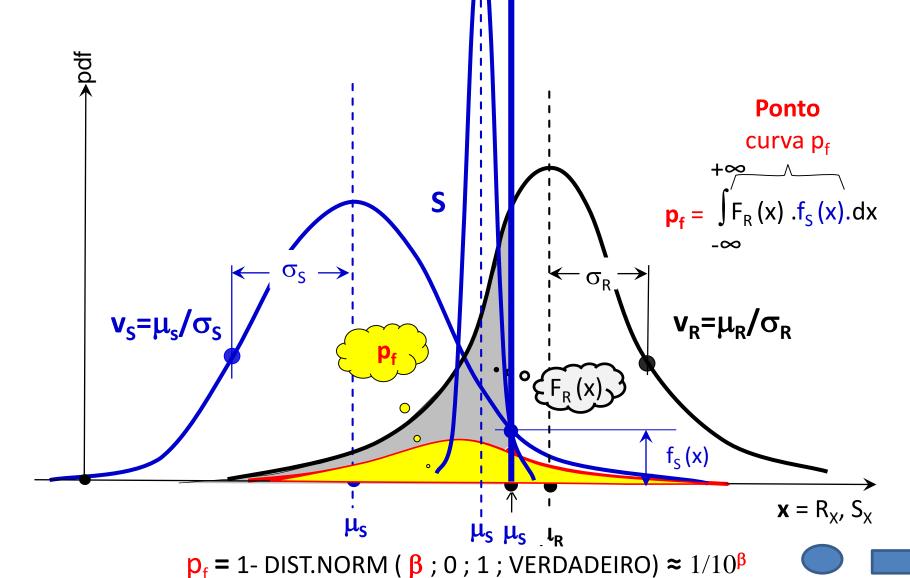
POTENCIAL VULNERABILIDADE

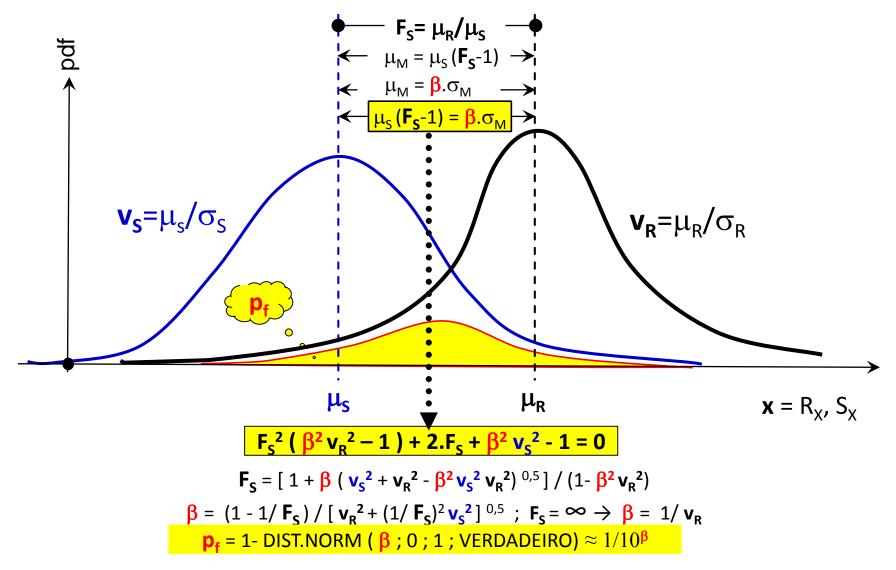
(Prof. Eduardo Dell'Avanzi - UFPR)


Vul_e	Descrição da Situação de Exposição
1	Potencial extremo de exposição do elemento (ou conjunto de elementos) à perda súbita de integridade (colapso) sem tempo hábil de reação por parte do agente causador, incluindo alto potencial de danos ambientais
0.9	Alto potencial de exposição do elemento ou conjunto de elementos à situação iminente de ruína; Potencial de danos ambientais devido à ruína ou mal desempenho do elemento ou conjunto de elementos
0.8	Potencial de danos estruturais ao elemento ou conjunto de elementos que possam induzir ruína (ELU) se não mitigados em tempo hábil
0.7	Potencial de danos estruturais localizados em elemento ou conjunto de elementos com diminuição de desempenho quanto aos ELS se não mitigados em tempo hábil
0.6	Potencial de danos localizados em elemento ou conjunto de elementos sem diminuição de desempenho quanto aos ELS
0.5	Potencial limitado de danos induzidos a um elemento ou conjunto de elementos com função estrutural sem diminuição de desempenho quanto aos ELS
0.4	Potencial limitado de danos a um elemento ou conjunto de elementos sem função estrutural, sem diminuição de desempenho quanto aos ELS
0.3	Potencial limitado de danos a um elemento ou conjunto de elementos sem função estrutural, sem diminuição de desempenho quanto aos ELS, mas com diminuição da vida útil do elemento
0.2	Potencial mínimo de perda de desempenho de um elemento isolado com impacto limitado ao meio ambiente
0.1	Baixo potencial de impacto ao meio ambiente ou ao elemento vulnerável sem diminuição da integridade do elemento ou conjunto de elementos localizados no interior da área vulnerável
0.0	A integridade do elemento ou conjunto de elementos é mantida independentemente da ocorrência do evento

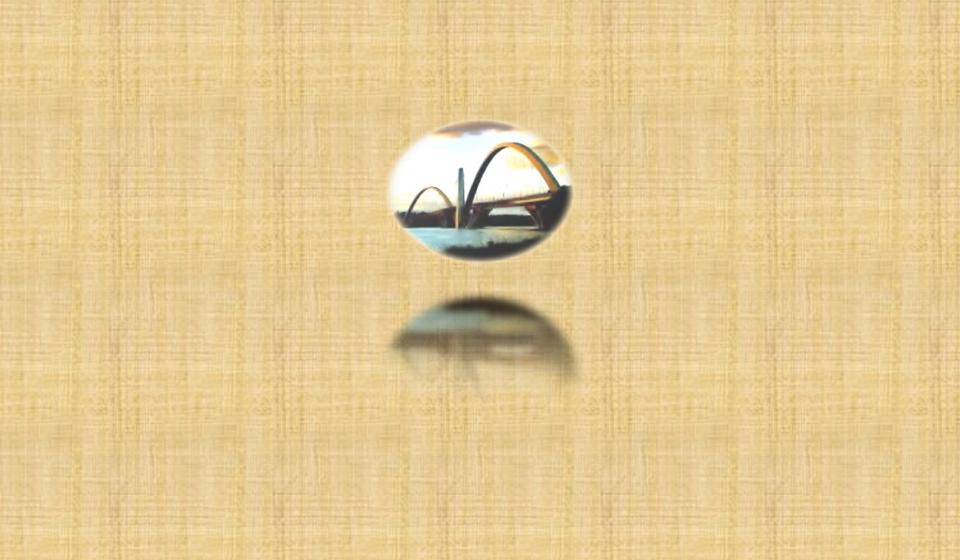
FILOSOFIA FATORES SEGURANÇA: EUROCODE x NBR 6122 x REALIDADE

FATOR DE CONFIABILIDADE: MÉTODO β PROPOSTO POR CORNELL,1971


APLICA-SE A CURVA NORMAL DE DISTRIBUIÇÃO ESTATÍSTICA (M = R - S)


 $p_f = 1$ - DIST.NORM (β ; 0; 1; VERDADEIRO) $\approx 1/10^{\beta}$

DEFINIÇÃO PROBABILIDADE RUÍNA (QQR DISTRIBUIÇÃO: FREUDENTHAL, 1974)


FATOR SEGURANÇA & PROBABILIDADE RUÍNA SÃO VARIÁVEIS INTERDEPENDENTES

<u>AUMENTAR O FATOR SEGURANÇA DA NORMA NÃO ELIMINA O RISCO DE RUÍNA</u>

VARIABILIDADE TERRENO COMANDA RISCO

COMPARAÇÃO PROJETO FUNDAÇÃO SAPATA: TRADICIONAL x RISCO CALCULADO

CONCLUSÕES

ASPECTO LEGAL DA VIDA EM UMA SOCIEDADE DE RISCO
CÓDIGO CIVIL E CÓDIGO DEFESA CONSUMIDOR **EXIGEM** DETERMINAÇÃO RISCO GEOTÉCNICO

ASPECTO TÉCNICO

O FATOR DE SEGURANÇA DAS NORMAS NÃO ELIMINA O RISCO DE RUÍNA DE UMA OBRA

CENÁRIO DE ANÁLISE: INTERAÇÃO SOLO ESTRUTURA PARA UMA DADA SUPERFÍCIE RESISTENTE VARIÁVEL QUE COMANDA O RISCO E DEPENDE DA METODOLOGIA PROJETO E CONTROLE EXECUÇÃO

ASPECTO ECONÔMICO-FINANCEIRO

A CADA SUPERFÍCIE RESISTENTE PROJETO/EXECUÇÃO CORRESPONDE UM RISCO FINANCEIRO ÚNICO

GRANDE DESCONHECIDO: DEFINIÇÃO FÍSICA SUPERFÍCIES CAMADAS SOLOS E ROCHAS
DEPENDE CONHECIMENTO GEOLÓGICO DA VARIABILIDADE ESPACIAL CAMADAS SOLOS E ROCHAS

DEFINIÇÃO PERFIL GEOTÉCNICO **DESCONHECIDO** ENTRE SONDAGENS VERTICAIS
METODOLOGIA INTERPOLAÇÃO CAMADAS + METODOLOGIA PROJETO/EXECUÇÃO

RISCO DEVE SER MITIGADO EXERCENDO MAIOR CONTROLE DA PROFUNDIDADE FINAL DA FUNDAÇÃO CONSIDERAR EXISTÊNCIA TIPOS FUNDAÇÃO COM OU SEM CONTROLE DA RESISTÊNCIA NA EXECUÇÃO \rightarrow $\mathbf{v_R}$

PAPEL DO ENGENHEIRO CIVIL E SUA RELAÇÃO LEGAL COM CONSUMIDOR
CONSTITUI DEVER DO ENGENHEIRO INFORMAR RISCO FINANCEIRO AO DONO DA OBRA
POIS QUEM ASSUME O RISCO, MAS NÃO SABE COMO DETERMINA-LO, É O DONO DO BEM MATERIAL

DESAFIO ATUAL ENGENHEIRO CIVIL
PROMOVER REVISÃO, DO Art. 618 DO CÓDIGO CIVIL DE 2002

POTENCIAL VULNERABILIDADE FINANCEIRA E CUSTO DA OBRA

(Prof. Eduardo Dell'Avanzi - UFPR)

Vul_f	Descrição da Situação de Exposição
≥8	Situações potenciais envolvendo embargo da obra por períodos prolongados, custos com indenizações relacionadas à óbitos, danos materiais, lucros cessantes, danos morais e ao meio ambiente, custos com remoção, estadia, transporte e alimentação, realocação, reconstrução e/ou recuperação estrutural de elementos danificados por mal desempenho da solução de engenharia implementada, danos à imagem da empresa pelos fatos ocorridos
4	Situações potenciais envolvendo embargo temporário da obra, custos com indenizações relacionados a danos materiais, lucros cessantes, danos morais e ao meio ambiente, custos com remoção, estadia, transporte e alimentação, realocação, reforço, reconstrução e/ou recuperação estrutural de elementos danificados por mal desempenho da solução de engenharia implementada
2	Situações potenciais envolvendo custos com indenizações relacionados a danos materiais, lucros cessantes, danos morais e ao meio ambiente, reforço, reconstrução e/ou recuperação estrutural de elementos danificados por mal desempenho da solução de engenharia implementada
1	Situações potenciais envolvendo custos com reconstrução e/ou recuperação/ reforço estrutural de elementos danificados por mal desempenho da solução de engenharia implementada
0.5	Situações potenciais envolvendo custos com recuperação estrutural de elementos danificados por mal desempenho da solução de engenharia implementada (ELS)
0.25	Situações potenciais envolvendo custos com reformas de elementos localizados na área vulnerável
0.125	Custos marginais envolvendo a implantação da solução de engenharia

CÓDIGO DEFESA DO CONSUMIDOR OBRIGA DETERMINAR E INFORMAR O RISCO GEOTÉCNICO AO DONO DA OBRA

O Código de Defesa do Consumidor responsabiliza o fornecedor pela:

"... informação adequada e clara sobre os diferentes **produtos e serviços**, com especificação correta de quantidade, características, composição, qualidade e preço, bem como sobre **os riscos** que apresentem..."

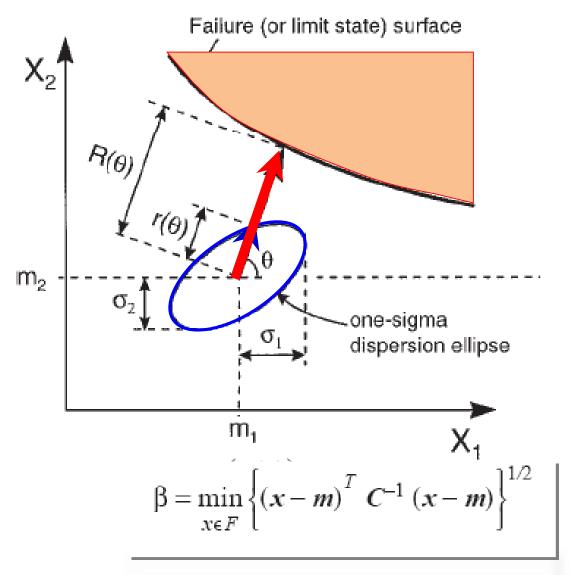
"... § 1º - **Produto** é qualquer bem, móvel ou imóvel, material ou imaterial"

Obra de engenharia civil é um bem material que corre **risco** de atingir os estados limites último **(ELU)** e de serviço **(ELS)**

No Brasil, no caso de produto de engenharia que envolve o solo, o dono da obra deve ser informado do risco de ruína conforme previsto nos Art. 1245 e 618 do CCB

O reconhecimento da existência de risco na atividade geotécnica foi FORMALIZADO pela ABNT em 2010

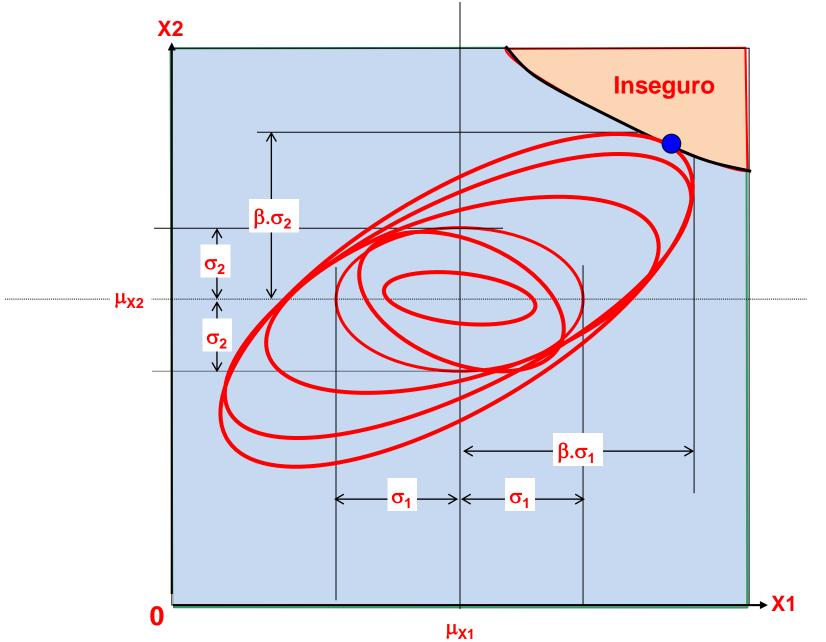
FATORES PARCIAIS MAJORAÇÃO


			Ações permane	entes $(\gamma_g)^{(1)(3)}$			
	Diretas						
Combinações	Peso próprio de estruturas metálicas	Peso próprio de estruturas pré- moldadas	Peso próprio de estruturas moldadas no local e de elementos construtivos industrializados	Peso próprio de elementos construtivos industrializados com adições "in loco"	Peso próprio de elementos construtivos em geral e equipamentos	recalques de apoio e de retração dos materiais	
Normais	1,25 (1,00)	1,30 (1,00)	1,35 (1,00)	1,40 (1,00)	1,50 (1,00)	1,20 (0)	
Especiais ou	1,15	1,20	1,25	1,30	1,40	1,20	
de construção	(1,00)	(1,00)	(1,00)	(1,00)	(1,00)	(0)	
Evanniancia	1,10	1,15	1,15	1,20	1,30	0	
Excepcionais	(1,00)	(1,00)	(1,00)	(1,00)	(1,00)	(0)	
			Ações variáv	eis $(\gamma_q)^{(1)(4)}$			
	Efeito da temperatura ²⁾		Ação do vento	Demais ações variáveis, incluindo as decorrentes do uso e ocupação			
Normais	1,20		1,40	1,50			
Especiais ou de construção	1,00		1,20	1,30			
Excepcionais	1,0	00	1,00	1,00			

FATOR DE CONFIABILIDADE DISTRIBUIÇÃO LOGNORMAL

$$\beta = \left\{ \frac{\ln \frac{\mu_R}{\mu_E} \sqrt{\frac{1 + v_E^2}{1 + v_R^2}}}{\sqrt{\ln \left[\left(1 + v_E^2 \right) \left(1 + v_R^2 \right) \right]}} \right\}$$

FATOR DE CONFIABILIDADE: MÉTODO β PROPOSTO POR HASOFER-LIND, 1974


APLICA-SE A CURVA DE DISTRIBUIÇÃO ESTATÍSTICA QQR (M = R - S)

where x is a vector representing the set of random variables, m their mean values, C the covariance matrix, and F the failure region.

SOLVER MÉTODO β (HASOFER-LIND, 1974)

MÉTODO SORM SECOND ORDER MOMENT (SORM) UTILIZANDO SOLVER DO EXCEL

DETERMINAÇÃO CURVA SOLICITAÇÃO: NBR 8681/8800

Regra de Turkstra et Madsen, 1980

Combinação carga permanente com valor extremo ação principal (i) e a média, no tempo, da ação secundária (j)

NORMA ABNT PROJETO NBR 8681:2003

$$S_{d} = \gamma_{D} \cdot D_{n} + \gamma_{i} \cdot Q_{ni} + \sum_{i \neq i}^{n} \psi_{j} \cdot \gamma_{j} \cdot Q_{nj}$$

NORMA ABMT PROJETO NBR 8800:2008

$$\begin{split} \boldsymbol{S}_{d} &= \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} + \boldsymbol{\gamma}_{i} \cdot \left(\boldsymbol{Q}_{ni} + \sum_{i \neq i}^{n} \boldsymbol{\psi}_{j} \cdot \boldsymbol{Q}_{nj} \right) \\ \boldsymbol{S}_{d} &= \max \begin{bmatrix} \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} \\ \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} + \boldsymbol{\gamma}_{L} \cdot \boldsymbol{L}_{n} \\ \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} + \boldsymbol{\gamma}_{W} \cdot \boldsymbol{W}_{n} \\ \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} + \boldsymbol{\gamma}_{L} \cdot \boldsymbol{L}_{n} + \boldsymbol{\psi}_{W} \cdot \boldsymbol{\gamma}_{W} \cdot \boldsymbol{W}_{n} \\ \boldsymbol{\gamma}_{D} \cdot \boldsymbol{D}_{n} + \boldsymbol{\gamma}_{L} \cdot \boldsymbol{L}_{n} + \boldsymbol{\psi}_{W} \cdot \boldsymbol{\gamma}_{W} \cdot \boldsymbol{W}_{n} \end{bmatrix} \end{split}$$

AÇÕES E FATORES PARCIAIS NBR 8800:2008

Tipos distribuição estatística das ações (Ellingwood et al., 1980)

Variável	Média	c.v.	distribuição
Ação permanente	1,05 D _n	0,10	Normal
Ação variável devido ao uso e La.p.t.	$0,25 L_{\rm n}$	0,55	Gamma
ocupação da edificação L _{50 anos}	$1,00 L_{\rm n}$	0,25	Gumbel Tipo I
Ação variável devido à ação W _{1 ano}	$0,33~W_n$	0,47	Gumbel Tipo I
do vento W _{50 anos}	$0,90~\mathrm{W_n}$	0,34	Gumbel Tipo I

Fatores parciais e de combinação ações

Fatores parciais de segurança ou de combinação de ações	NBR8800:2008
<i>7</i> b	1,35
n	1,50
1 /w	1,40
ψ_{L}	0,70
$\psi_{ m W}$	0,60

DETERMINAÇÃO CURVA RESISTÊNCIA: NBR 6122:2010

DETERMINAÇÃO CURVA RESISTÊNCIA EXECUÇÃO

$$R_{c,k} = Min [(R_{c,cal})_{med}/\xi_3; (R_{c,cal})_{min}/\xi_4]$$

onde

R_{c,k} é a resistência característica;

(R_{c,cal})_{med} é a resistência característica calculada com base em valores médios dos parâmetros;

(R_{c,cal})_{min} é a resistência característica calculada com base em valores mínimos dos parâmetros;

Table A.9(CYS): Correlation factors ξ to derive characteristic values from static pile load tests (n - number of tested piles)

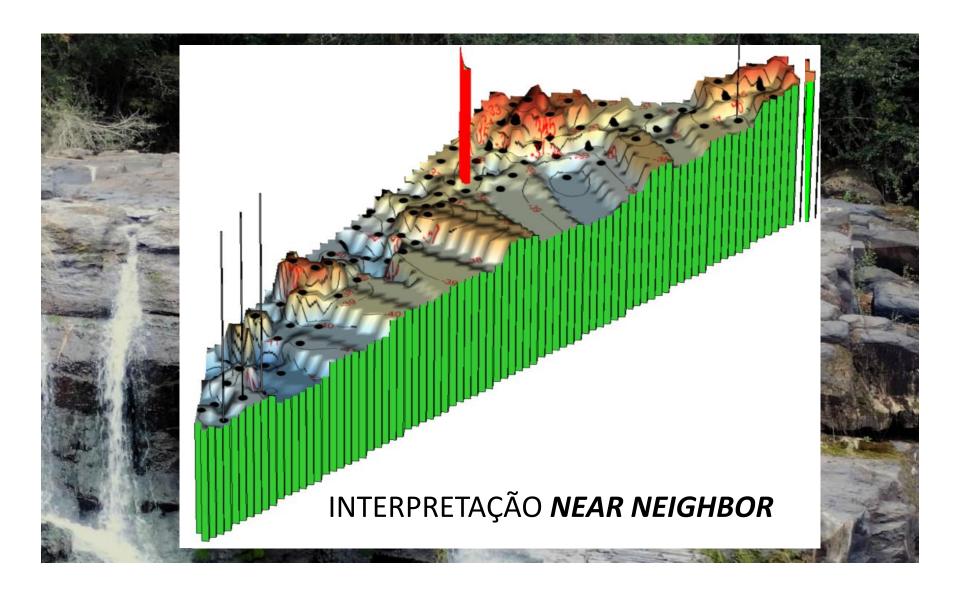
ξ for $n =$	1	2	3	4	≥5
ξ1	1,40	1,30	1,20	1,10	1,00
\$2	1,40	1,20	1,05	1,00	1,00

$$\lambda_{p} = 1,0$$

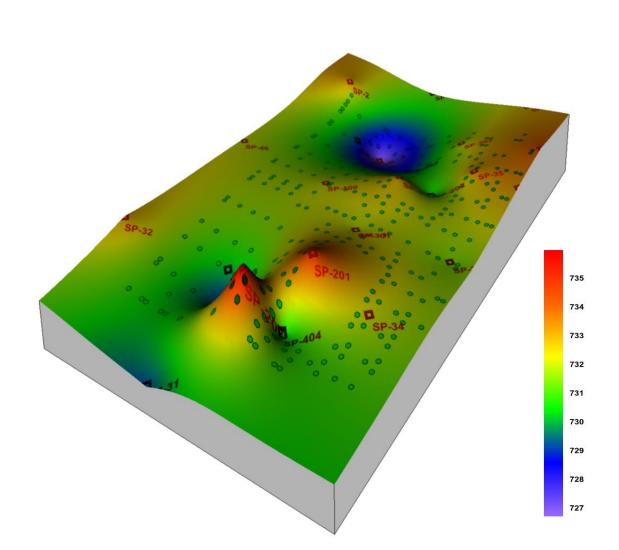
$$\gamma_{f} = 1,4$$

$$\gamma_{m} = 1,15$$

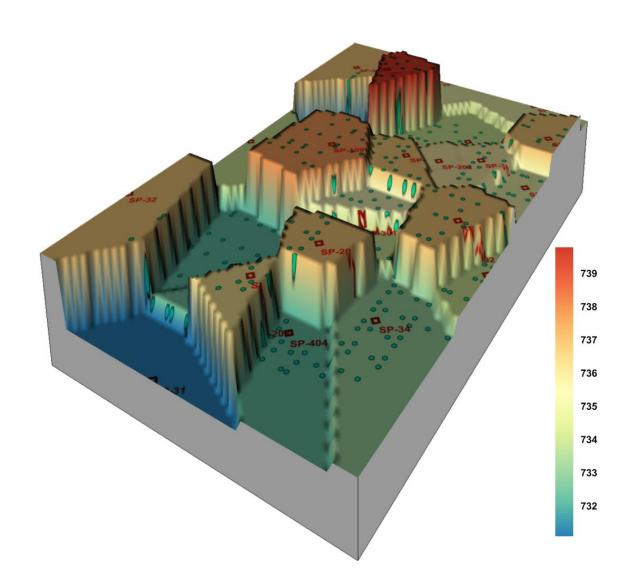
$$\xi_{1},\xi_{2} \rightarrow \text{PROJETO}$$

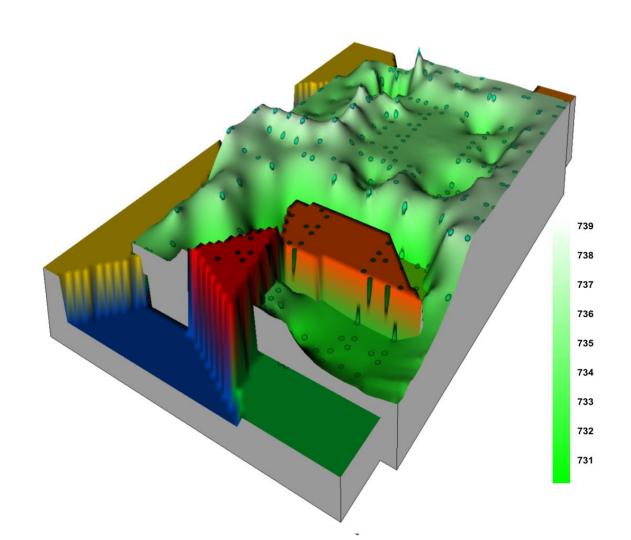

$$\xi_{3},\xi_{4} \rightarrow \text{EXECUÇÃO}$$

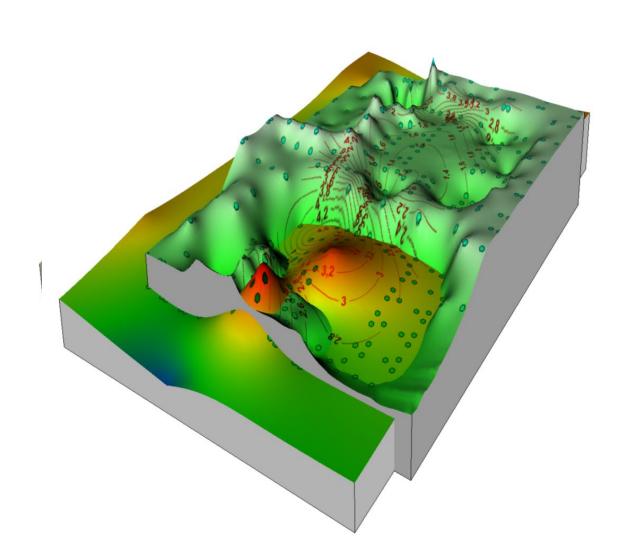
$$\mu_R = (R_{c,cal})_{med}$$


$$\sigma_{R} = [(R_{c,cal})_{med} - R_{c,k}] / 1,645$$

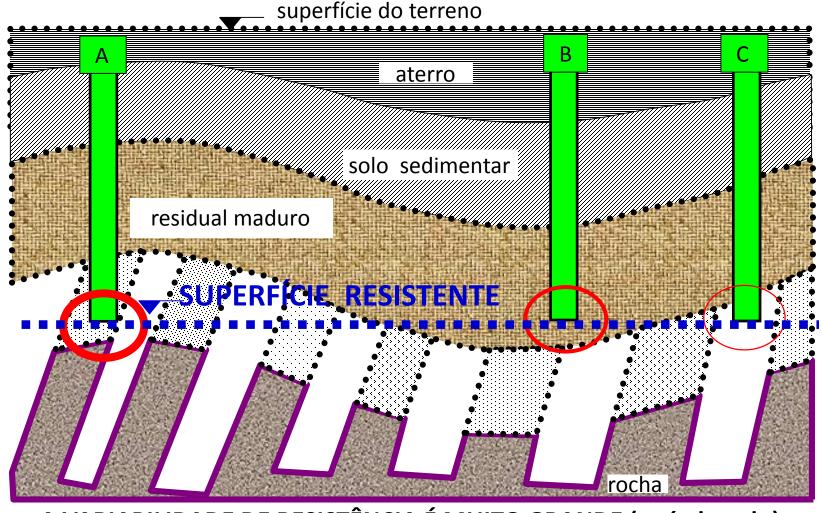
$$v_R = \sigma_R / \mu_R$$


OBJETO ANÁLISE DE RISCO: SUPERFÍCIE RESISTENTE EXECUTADA ESTACAS TUBADAS <u>MACIÇO SOLO: SAPRÓLITO DE GNAISSE</u>


EXEMPLO KRIGGING SUPERFÍCIE SAPRÓLITO E SUPERFÍCIE ROCHA


EXEMPLO NEAR NEIGHBOR SUPERFÍCIE SAPRÓLITO E SUPERFÍCIE ROCHA

KRIGGING, NEAR NEIGHBOR, SAPRÓLITO, ROCHA, SUPERFÍCIE RESISTENTE



INTERPOLAÇÃO KRIGGING FATOR SEGURANÇA, SAPROLITO E ROCHA

INTERPRETAÇÃO CENÁRIO FÍSICO FORMAÇÃO GEOTÉCNICA

ESTAQUEAMENTO HÉLICE CONTÍNUA: SUPERFÍCIE RESISTENTE PRÉFIXADA

A VARIABILIDADE DE RESISTÊNCIA É MUITO GRANDE (v_R é elevado)

PREVISÃO PROBABILIDADE DE RUÍNA (DISSERTAÇÃO FERNANDA C. SILVA)

Número	Localização			Estaca			2P	P _{rup}	Resistência	Carga Adm.	Solicitação
Numero	Estado	Bairro/Cidade	Endereço	D (cm)	L (m)	Área (m²)	(kN)	(kN)	(kPa)	(kN)	(kPa)
34	SC	S. Fco. Do Sul	Vega Sul	50.0	17.0	0.1963	2260.0	2999.8	15277.7	800.0	4074.4
35	SC	S. Fco. Do Sul	Vega Sul	50.0	17.0	0.1963	2110.0	2523.0	12849.4	800.0	4074.4
36	SC	S. Fco. Do Sul	Vega Sul	50.0	13.5	0.1963	1650.0	1650.2	8404.2	800.0	4074.4
37	SC	S. Fco. Do Sul	Vega Sul	40.0	14.5	0.1257	1220.0	1223.5	9736.6	500.0	3978.9
Média	47.5	15.5	0.1787	1810.0	11567.0		4050.5				
Desvio Padrão				5.0	1.8	0.0353	471.2	3096.6		6 47.7	
Coeficiente de Variação				10.5%	11.5%	19.8%	26.0%	26.8%		1.2%	

Análises		Resistência		Solicitação			CS	0	Pr	1 / Pr	Padm
	Média (kPa)	Desvio (kPa)	CV (%)	Média (kPa)	Desvio (kPa)	CV (%)	00	β	FI	1 / F1	(kPa)
Análise 1	11567.0	3096.6	26.8%	4050.5	47.7	1.2%	2.9	2.43	0.00761	131	4050.5
Análise 2	11567.0	3096.6	26.8%	5783.5	68.2	1.2%	2.0	1.87	0.03094	32	5783.5
Análise 3	11567.0	3096.6	26.8%	1996.9	23.5	1.2%	5.8	3.09	0.00100	1000	1996.9

COMPROVAÇÃO PREVISÃO: PROVAS DE CARGA (28 PCD+10 PCE)										
ESTACA	Local	Ø cm	R _{máx} ensaio kN	R _{CAPWAP} KN	R _{davisson} kN	R _{máx} kN	S kN	Tensão resistê ncia kPa	Tensão solicita ção kPa	
E0019	PI	40	1586	1580	1864	1864	790	14834	6287	
E0031	PI	40	1894	1861	indefinido	1894	800	15072	6366	

indefinido

indefinido

indefinido

1142,1

2233,2

1291,9

Coefici ente segura

nça individ ual

2,36

2,37

1,45

2,42

2,15

1,43

2,76

2,67

2,52

2,26

2,01

1,85

1,00

1,63

1,52

1,61

1,74

2,06

E0231

E0246

E0435

E0535

E0624

E0631

E0647

E0674

E0720

E0725

E0744

E0773

E0778

E0896

E0926

E1076

Ы

Ы

Ы

Ы

Ы

Ы

PE

PE

Ы

Ы

Ы

Ы

Ы

Ы

Ы

Ы

E1200	PI	40	1713	1691	indefinido	1713	780	13632	6207	2,20
E1251	PI	50	1950	1981	indefinido	1950	820	9931	4176	2,38
E1297	PI	40	1884	1835	indefinido	1884	780	14992	6207	2,42
E1466	PE	40	1506	1148	indefinido	1506	600	11984	4775	2,51
E1636	PE	50	1960	1936	1918	1960	1020	9982	5195	1,92
E1693	PE	60	3099	2970	indefinido	3099	1560	10960	5517	1,99
E1910	PI	50	1508	1112	indefinido	1508	700	7680	3565	2,15
E2000	PE	40	1162	1120	780	1162	700	9247	5570	1,66
E2136	PI	50	2655	1725	2304	2655	1190	13522	6061	2,23
E4456	PI	40	1236	885	1002	1236	410	9836	3263	3,01
PC 0127	PE	50	2260	estática	2770	2770	1130	14107	5755	2,45
PC 0201	PE	50	2110	estática	2530	2530	1180	12885	6010	2,14
PC 0204	PE	50	1650	estática	1660	1660	870	8454	4431	1,91
PC 0207	PE	40	1220	estática	1230	1230	580	9788	4615	2,12
E1	PE	50	1700	estática	3298	3298	1060	16797	5399	3,11
S7	PI	50	2000	estática	2420	2420	1490	12325	7589	1,62
S8	PI	50	2000	estática	2520	2520	1490	12834	7589	1,69
S10	PI	40	940	estática	940	940	800	7480	6366	1,18
S11	PI	40	1390	estática	1830	1830	740	14563	5889	2,47
S15	PI	40	1200	estática	1200	1200	800	9549	6366	1,50
valor médio							11734	5778	2,03	
desvio padrão								2741	951	0,48
coeficiente de variação								0,234	0,165	0,234
valor máximo								17771	7589	3,11
valor mínimo							6382	3263	1,00	

PROBABILIDADE RUINA PREVISTA E MEDIDA

	VALOR	DISSERTAÇÃO	OBRA	ITEM
	μ_{R}	11567	11734	
AL.	σ_{R}	3097	2741	RESISTÊNCIA
Ĭ,	v_R	0,27	0,23	SIST
O N	R_k	6472	7225	R
\\ \\	μ_{S}	5784	5778	ÃO
CUR	σ_{S}	48	951	TAÇ
ANÁLISE CONFIABILIDADE CONFORME CURVA NORMAL	V _S	0,01	0,16	SOLICITAÇÃO
ORN	S _k	5862	7342	SO
NF	F_{S}	2,00	2,03	
8	γ_{R}	1,79	1,62	SEGURANÇA
ADE	γs	1,01	1,27	URA
/ <u>a</u>	γ_{f}	1,40	1,40	SEG
∆BII	γ _m	0,79	0,70	
	μ_{M}	5784	5956	SSO
9	σм	3097	2901)CE
ISE	β	1,87	2,05	Ē SI
- Y	p _f	0,030935	0,020042	DAD
A	p_s	0,969065	0,979958	BILI
	N _f =1/p _f	32	50	PROBABILIDADE SUCESSO
	N _s	31	49	PR

RUPTURA BARRAGEM REJEITO ALTEAMENTO A JUSANTE DA SAMARCO (FATOR DE SEGURANÇA RUPTURA TALUDE)

A lama atingiu o Rio Doce, provocando morte de peixes e assoreando o leito do Rio.

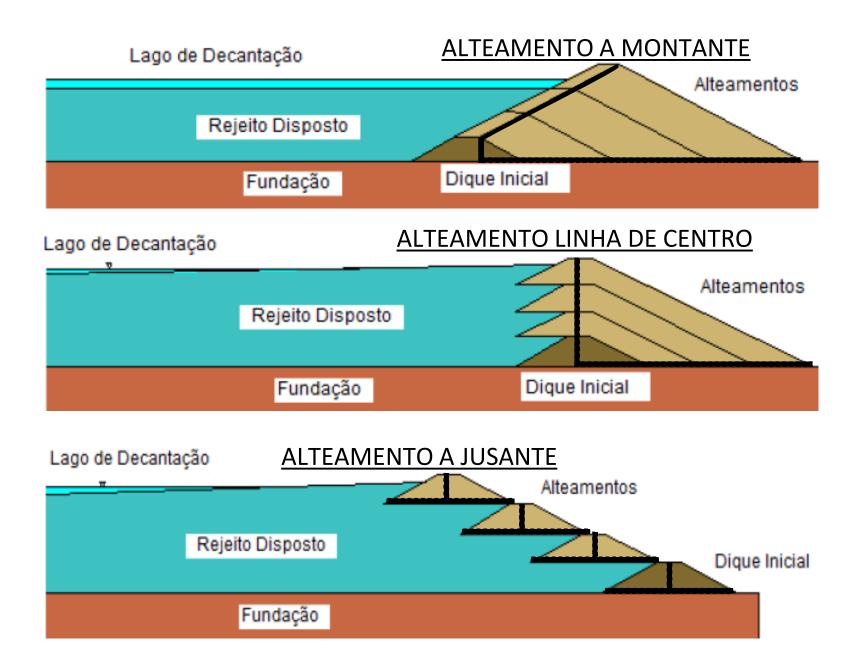
O abastecimento de água foi prejudicado nos municípios banhados pelo Rio, caso de Governador Valadares, onde ficou suspenso por uma semana.

Apesar dos danos causados, que já resultaram em multa do Ibama de R\$ 250 milhões e envolvem custos de mais de R\$ 1 bilhão para recuperação e mitigação dos estragos, o diretor de operações e infraestrutura da empresa, Kléber Terra, disse que a empresa não deve desculpas à população.

"Tem o risco, e nós, para aumentarmos o fator de segurança e reduzirmos o risco, estamos fazendo as ações emergenciais necessárias", anunciou o gerente-geral de projetos estruturais da Samarco, Germano Lopes, em entrevista coletiva.

Segundo o representante da mineradora, o fator de segurança, estabelecido pela norma (NBR 13028), mede a estabilidade de uma estrutura.

Para estruturas em condições normais de operação, a regra estabelece fator de segurança de 1,5, no mínimo. Em condições adversas, é admitido **fator de segurança** de 1,3.

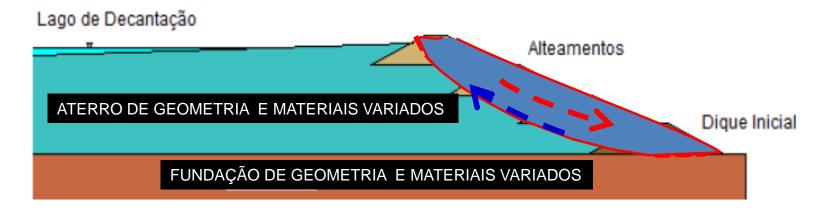

O índice igual a 1 representa que a estrutura está no limite de equilíbrio.

Na barragem de Santarém, segundo Kléber Terra, o fator de segurança na barragem de Santarém é de 1,37.

Na de Germano, de 1,22. Lopes afirmou que, antes do rompimento, a barragem de Fundão tinha fator de segurança de 1,58.

Segundo ele, o valor foi atestado por um laudo feito em julho de 2015 por empresas especializadas, contratadas pela Samarco.

GEOMETRIAS DE BARRAGEM REJEITO



SEGURANÇA RUPTURA BARRAGEM REJEITO JUSANTE

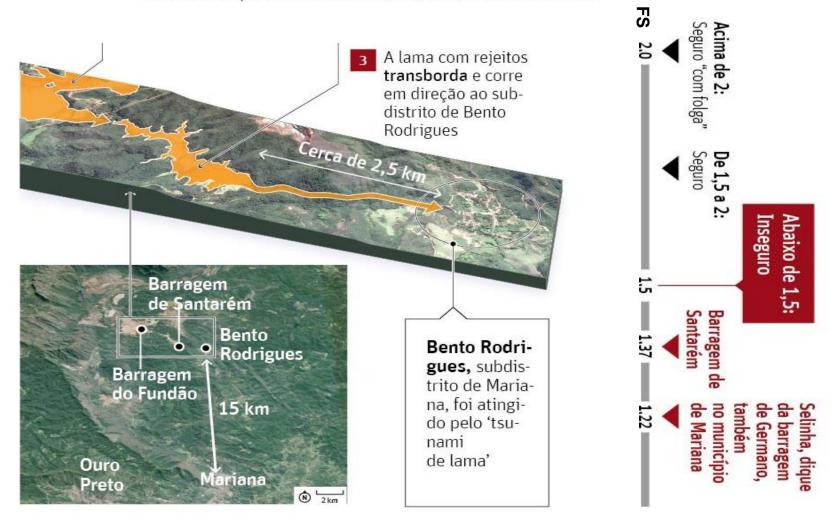
VARIABILIDADE MATERIAIS DO REJEITO

Rejeitos predominantemente regrossos leves (Quartzo) (Quartzo e Ferro) Rejeitos grossos e finos pesados (Ferro)

ABNT NBR 13028:1993 — Elaboração e apresentação de projeto de disposição de rejeitos de beneficiamento, em barramento, em mineração.

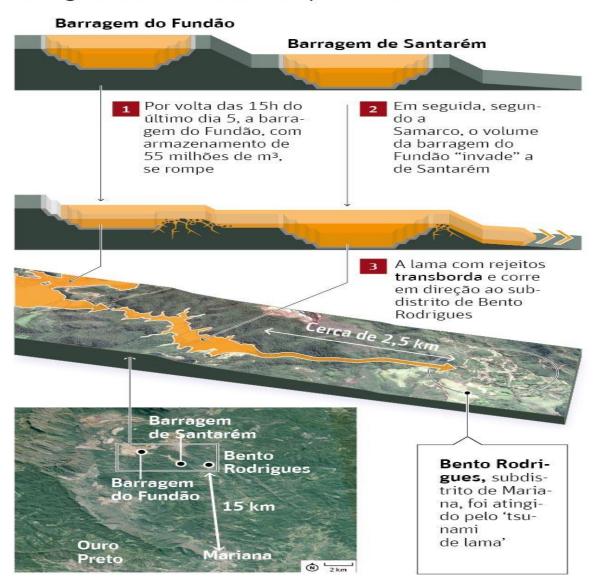
F_s (fator de segurança) = Resistência/ SolicItação

O FATOR DE SEGURANÇA ERA MAIOR QUE UM E A BARRAGEM ROMPEU!


CONSTRUÇÃO E RUPTURA BARRAGEM DO FUNDÃO

RUÍNA BARRAGEM DO FUNDÃO: ESCALA DE SEGURANÇA ABNT

ESCALA DE SEGURANÇA


Índice da ABNT leva em consideração fatores como estabilidade interna e externa do solo e obras de contenção, como concreto armado. Também contam eventuais riscos de perdas de vidas humanas, de materiais e ambientais

RUÍNA BARRAGEM DO FUNDÃO: SEQUÊNCIA DE RUPTURAS

RADIOGRAFIA DA TRAGÉDIA

Mineradora Samarco muda versão e diz que apenas uma das barragens, a do Fundão, se rompeu no dia 5

CLASSIFICAÇÃO E CODIFICAÇÃO BRASILEIRA DE DESASTRES IMPREVISÍVEIS (COBRADE)

NATURAL

GEOLÓGICO:

Terremoto, Tremor de terra Tsunami, Emanação vulcânica

Movimento de massa: Quedas, Tombamentos e rolamentos, Blocos, Lascas, Matacões, Lajes, Deslizamentos, Deslizamentos de solo e ou rocha, Corridas de Massa, Solo/Lama, Rocha/Detrito, Subsidências e colapsos Erosão: Erosão Costeira/ Marinha, Erosão de Margem Fluvial, Erosão Continental: Laminar, Ravinas, Boçorocas

HIDROLÓGICO

Inundações

Enxurradas

Alagamentos

METEOROLÓGICO

Sistemas de Grande Escala/Escala Regional: Ciclones, Ventos Costeiros (Mobilidade de Dunas), Marés de Tempestade (Ressacas), Frentes Frias/Zonas de Convergência

Tempestades: Tempestade Local/ Convectiva, Tornados, Tempestade de Raios, Granizo, Chuvas Intensas, Vendaval Temperaturas Extremas: Onda de Calor, Onda de Frio, Friagem, Geadas

CLIMATOLÓGICO

Seca: Estiagem, Seca Incêndio Florestal

Incêndios em Parques, Áreas de Proteção Ambiental e Áreas de Preservação Permanente Nacionais, Estaduais ou Municipais, Incêndios em áreas não protegidas, com reflexos na qualidade do ar

Baixa Humidade do Ar

BIOLÓGICO

Epidemias: Doenças infecciosas virais, Doenças infecciosas bacterianas, Doenças infecciosas parasíticas, Doenças infecciosas fúngicas

Infestações/ Pragas: Infestações de animais, Infestações de algas, Marés vermelhas, Ciano bactérias em reservatórios,

Outras Infestações

CLASSIFICAÇÃO E CODIFICAÇÃO BRASILEIRA DE DESASTRES IMPREVISÍVEIS (COBRADE)

TECNOLÓGICO

Desastres Relacionados a Substâncias radioativas (Chernobyl)

Desastres siderais com riscos radioativos, Queda de satélite (radionuclídeos)

Desastres com substâncias e equipamentos radioativos de uso em pesquisas, indústrias e usinas nucleares:

Fontes radioativas em processos de produção

Desastres relacionados com riscos de intensa poluição ambiental provocada por resíduos radioativos: Outras fontes de liberação de radionuclídeos para o meio ambiente

Desastres Relacionados a Produtos Perigosos

Desastres em plantas e distritos industriais, parques e armazenamentos com extravasamento de produtos perigosos

Liberação de produtos químicos para a atmosfera causada por explosão ou incêndio Desastres relacionados à contaminação da água: Liberação de produtos químicos nos sistemas de água potável, Derramamento de produtos químicos em ambiente lacustre, fluvial e marinho

<u>Desastres Relacionados a Conflitos Bélicos</u>: Liberação produtos químicos e contaminação como consequência de ações militares.

<u>Desastres relacionados a transporte de produtos perigosos</u>: Transporte rodoviário, Transporte ferroviário, Transporte aéreo, Transporte duto viário, Transporte marítimo, Transporte aquaviário

<u>Desastres Relacionados a Incêndios Urbanos</u>: Incêndios urbanos, Incêndios em plantas e distritos industriais, parques e depósitos, Incêndios em aglomerados residenciais

Desastres relacionados a obras civis (decorrentes de erro humano (Fundão, ciclovia)

Colapso de edificações/estruturas, Rompimento/ colapso de barragens

<u>Desastres relacionados a transporte de passageiros e cargas não perigosas</u>: Transporte rodoviário, Transporte ferroviário, Transporte aéreo, Transporte marítimo, Transporte aquaviário