
An Evaluation of Systematic Functional Testing

Using Mutation Testing

Steve Linkman

Computer Science Department

Keele University – United Kingdom

s.g.linkman@cs.keele.ac.uk

Auri Marcelo Rizzo Vincenzi∗

José Carlos Maldonado

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo – Brazil

{auri, jcmaldon}@icmc.usp.br

Abstract

We describe a criterion named Systematic Functional Testing that provides a set of guidelines to help
the generation of test sets. The test sets generated by the Systematic Functional Testing and by other
functional approaches and Random Testing are compared against Mutation Testing. The effectiveness of
each test set is measured based on the mutation score using PROTEUM/IM 2.0– a mutation testing tool.
We conducted a case study using the Cal UNIX programme. The test set generated by the Systematic
Functional Testing criterion killed all the non-equivalent mutants while the others approaches scored
significantly less.

Keywords: Functional Testing, Systematic Functional Testing, Mutation Testing, Software Testing.

1 Introduction

When we try to test software we have to ensure that the behaviour of the programme matches the planned
behaviour. In the literature we find proposals to do this in a number of ways, these include, structured
testing, functional testing, random testing, data driven testing and others. Traditional wisdom indicates that
we should undertake structural testing aiming to get the various coverage measures of the programme as
high as possible. However such an approach is expensive and is at best a substitute measure as it does not
look at behaviour. We would propose that the use of mutation testing as a measure of the effectiveness of a
test set in finding errors in a programme. In this case a test suite that killed 100% of all mutants is going to
ensure the correct behaviour of the programme, given the mutant generation is effective.
On this premise we set out to test the effectiveness of various approaches to test generation by using them

on the same programme, in this case the programme Cal in UNIX which is used to generate calendars based
on the input parameters. The approaches we assessed were:

• Functional testing as specified by students with knowledge of the source code of Cal ;

• Functional Testing using partition and boundary testing using commercial testers;

• Random Testing; and

∗Supported by FAPESP: Process Number 98/16492-8

• Systematic Functional Testing.

We do not describe in detail any of the above except Systematic Functional Testing, which is a set of
guidelines used in generating functional tests which attempts to ensure the best possible coverage of the input
and output spaces of the programme.
When we compare these criteria against mutation testing we found that the test set generated by Sys-

tematic Functional Testing criterion killed all the non-equivalent mutants while other approaches scored
significantly less than this. The full details are given below.
The rest of this paper is organized as follows. In Section 2 we describe Systematic Functional Testing

criterion. In Section 3 we describe mutation testing and its application as a measure of the ability of a test
set to expose errors in the programme. In Section 4 we present the results of our study. Finally, in Section 5,
we highlight future work required to confirm our results.

2 Systematic Functional Testing

Functional testing regards a computer programme as a function and selects values for the input domain which
should produce values in the output domain which are the correct ones. If the output values are correct, then
the function which just been executed is the function which was specified, i.e. the programme is correct or is
a programme which has identical behaviour for the given input data. The selection of test case to be input
to a functional test is determined on the basis of the functions to be performed by the software. Additions
to the approach include Equivalence Class Partitioning and Boundary Value Analysis that attempt to add
some structure to this approach.
As defined by Roper [10], the idea behind Equivalence Class Partitioning is to divide the input and

output domain into equivalence partitions or classes of data which, according to the specification, are treated
identically. Therefore, any datum chosen from an equivalence class is as good as any other since it should
be processed in a similar fashion. On the other hand, Boundary Value Analysis is also based on equivalence
partitioning but it focuses on the boundaries of an partition to obtain the corresponding input datum that
will represent such a partition.
Systematic Functional Testing attempts to combine these functional testing criteria such that, once the

input and output domain have been partitioned, Systematic Functional Testing requires at least two test
case of each partition to minimize the problem of co-incident errors masking faults. Systematic Functional
Testing also requires the evaluation at and around the boundaries of each partition, and provides a set of
guidelines, described in Section 2.1, to facilitate the identification of such test cases. To illustrate how to
generate a test set using Systematic Functional Testing criterion, the Cal UNIX programme, that will be
used as example in the remaining of this paper, is described in Section 2.2.
One strength of functional testing criteria, including Systematic Functional Testing, is that they require

only the product specification to derive the testing requirements. In this way, it can be applied indistinctly
to any software program (procedural or object-oriented) or software component, since no source code is
required. On the other hand, as highlighted by Roper [10], because functional criteria are only based on the
specification, they cannot assure that essential/critical parts of the implementation have being covered. For
example, considering Equivalence Class Partitioning, although the specification may suggest that a group
of data is processing identically, this may not in fact be the case. This serve to reinforce the argument
that functional testing criteria and structural testing criteria should be used in conjunction. Moreover, it
would also be beneficial if a test set generated based on functional criterion provides a high coverage of the
implementation according to a given structural criterion. Systematic Functional Testing aims at fulfill this
expectation.

2

2.1 Systematic Functional Testing Guidelines

The following guidelines show what type of data should be selected for various types of functions, input
and output domains. Each guideline may lead to select one or more test cases, depending on whether it is
applicable to the programme under testing.

Numeric Values

For the input domain of a function which computes a value based on a numeric input value, the following
test case should be selected:

• Discrete values: test each one;

• Range of values: test endpoints and one interior value for each range.

For the output domain, select input values which will result in the values being generated by the software.
The types of value output may or may not correspond to the same type of input; for example, distinct values
input may produce a range of output values depending on other factors, or a range of input values may
produce only one or two output values such as true or false. Choose values to appear in the output as follows:

• Discrete values: generate each one;

• Range of values: generate each endpoint and at least one interior value for each range.

Different Types of Value and Special Cases

Different types of value should also be both input and generated on output, as for example a blank space
can be regarded as a zero in a numeric field.
Special cases such as zero should also always be selected individually, even if they are inside a range of

values. Values on “bit boundaries” should be selected if values are packed into limited bit fields when stored,
to ensure that they are both stored and retrieved correctly.

Illegal Values

Values which are illegal input should be included in the test case, to ensure that the software correctly rejects
them. It should also be attempted to generate illegal output values (which should not succeed).
It is particularly important to select values just outside any numeric range. Selecting both the minimum

value which is legal and the next lowest value will test that the software handles the bottom of a range of
values correctly, and the maximum and next highest will check the top of a range of values.

Real Numbers

There are special problems when testing involves real numbers rather than integer values, since the accuracy
stored will normally be different to the value entered. Real values are usually entered as powers of 10, stored
as powers of 2, and then output as powers of 10 again. The boundary checking for real numbers cannot be
exact, therefore, but should still be included in the test case. An acceptable range of accuracy error should
be defined, with boundary values differing by more than that amount in order to be considered as distinct
input values. In addition, very small real numbers should be selected and zero.

3

Variable Range

Special care needs to be taken when the range of one variable depends on the value of another variable. For
example, suppose the value of a variable x can be anything from zero to whatever value the variable y has,
and suppose y can be any positive value. Then the following cases should be selected for inclusion in the
input test case:

x = y = 0
x = 0 < y

0 < x = y

0 < x < y

In addition, the following illegal values should also be selected:

y = 0 < x

0 < y < x

x < 0
y < 0

Arrays

When dealing with arrays in either input or output, there is the problem of variable array size, as well as
variable data, to be considered. Just as with any value input or output, each element of an array should
be tested for the values as listed above. In addition, the array size itself should be tested for minimum,
maximum and intermediate sizes, not just for one but for all dimensions, and in all combinations.
It may be possible to simplify the testing somewhat by taking advantage of possible sub-structures; for

example a row or column may be regarded as one unit for subsequent testing. The array should be tested
first as a single structure, then as a collection of substructures, and each substructure should be tested
independently.

Text or String Data

Text or string data (varying number of characters input as a logical group) needs to be checked for varying
length (including no characters at all), and for the validity of each character. Sometimes only alphabetic
characters are valid, and other times alphanumeric or some punctuation characters would be valid.

In addition, Systematic Functional Testing insists that at least two values are chosen from a given partition
of the data. The reasoning being that if a single value is chosen to fit a partition co-incidental error may
mask a fault, i.e. to a programme which is meant to take a number and output the square of that number
then the input value of 2, expected output of 4 is not sufficient to distinguish between 2 ∗ 2 and 2+ 2. Using
a second value from a partition minimizes this problem.

2.2 Example Programme

An example may help to make clear the actual process of defining the domains for input and output, and
how the domains affect the choice of test case. We are using the Cal programme in our example. The
specification of Cal programme, extracted from UNIX man pages, is presented in Figure 1. Observe that
Cal is a command line programme that can be called in three different ways: with no parameters, with one
parameter, or with two parameters. In the first case it shows the calendar of the current month; in the second
case it shows the calendar of a complete year (the specified one); and in the latter case it shows the calendar
of a single month of a given year.
Considering z the number of the parameters, we can define two domains:

4

NAME
cal - display a calendar

SYNOPSIS
cal [[month] year]

AVAILABILITY
SUNWesu

DESCRIPTION
The cal utility writes a Gregorian calendar to standard out-
put. If the year operand is specified, a calendar for that
year is written. If no operands are specified, a calendar
for the current month is written.

OPERANDS
The following operands are supported:

month Specify the month to be displayed, represented as a
decimal integer from 1 (January) to 12 (December).
The default is the current month.

year Specify the year for which the calendar is
displayed, represented as a decimal integer from 1
to 9999. The default is the current year.

ENVIRONMENT
See environ(5) for descriptions of the following environment
variables that affect the execution of cal: LC_TIME,
LC_MESSAGES, and NLSPATH.

EXIT STATUS
The following exit values are returned:
0 Successful completion.
>0 An error occurred.

SEE ALSO
calendar(1), environ(5)

NOTES
An unusual calendar is printed for September 1752. That is
the month 11 days were skipped to make up for lack of leap
year adjustments. To see this calendar, type:

cal 9 1752

The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January.

Figure 1: Cal man page.

• valid domain: 0 ≤ z ≤ 2; and

• invalid domain: z > 2.

Observe that it is not possible to call a programme with a negative number of arguments. Therefore, the
invalid domain z < 0 is not considered in this case. Table 1 (a) illustrates the partitions corresponding to the
number of parameters. The number between parentheses identifies a single partition and is used to associate
which test case is generated with respect to each partition.
Now, considering the case where the Cal programme is called with one argument (that represents a given

year yyyy from 1 to 9999), the valid and invalid domains are:

• invalid domain yyyy < 1;

• invalid domain yyyy > 9999;

• valid domain 1 ≤ yyyy ≤ 9999.

5

Considering the case where the Cal programme is called with two arguments (a month mm of a given
given year yyyy), the valid and invalid domains are:

• invalid domain mm < 1 and/or yyyy < 1;

• invalid domain mm > 12 and/or yyyy > 9999;

• valid domain 1 ≤ mm ≤ 12 and 1 ≤ yyyy ≤ 9999.

Observe that when the programme is called with two parameters, if one of than is invalid the equivalency
class will be invalid. Table 1 (b) and Table 1 (c) summarize the equivalence classes for Cal programme
considering one parameter and two parameters inputs, respectively.

Table 1: Cal Equivalence Partitioning Classes – Valid (V) and Invalid (I): (a) – number of parameters, (b)
– one parameter input, (c) – two parameters input, (d) – one parameter output, and (e) – two parameters
output.

Parameters 0 ≤ z ≤ 2 z > 2

z V (1) I (2)
(a)

Year non-integer yyyy < 1 yyyy > 9999 1 ≤ yyyy ≤ 9999

yyyy I(3) I(4) I(5) V(6)
(b)

Month/Year non-integer yyyy < 1 yyyy > 9999 1 ≤ yyyy ≤ 9999

non-integer I (7) I (8) I (9) I (10)
mm < 1 I (11) I (12) I (13) I (14)
mm > 12 I (15) I (16) I (17) I (18)
1 ≤ mm ≤ 12 I (19) I (20) I (21) V (22)

(c)

Year Number of days

1752 356 (23)
Any non-leap year 365 (24)
Any leap year 366 (25)

(d)

Month e Year Number of Days

01,03,05,07,08,10,12/any year 31 (26)
04,06,09,11/any year 30 (27)
02/non-leap year 28 (28)
02/leap year 29 (29)
09/1752 20 (30)

(e)

Considering the output domain for Cal programme, it consists of the calendar of a single month or of an
entire year. An error message is output if a invalid month and/or an invalid year is entered. Table 1 (d)
summarizes the output classes to be considered based on the calendar of an entire year, and Table 1 (e) shows
the output classes to be considered based on the calendar of a single month.
Once the partitions have been determined, considering the input and output domains, test cases are

chosen to cover such partitions. First of all, values should be chosen covering the invalida partitions, at least
one from each of the invalid domains. Next a few values should be chosen which lie well within the valid
ranges.

6

Since the most fruitful source of good test cases are the boundaries of the domains, months 0, 1, 12 and
13 should be selected to ensure that 0 and 13 are invalid and 1 and 12 are valid. Similarly, years 0, 1, 9999,
and 10000 should be selected. Negative values should also be input for month and year.
Considering the equivalence partitions of Table 1 and the guidelines described in Section 2.1, Table 2

contains the complete test set generated based on the Systematic Functional Testing criterion. In all, 76 test
cases are generated to cover all the equivalence partitions. For example, TC1 is a valid test case generated
to cover the partitions 1 (valid partition for two parameters), 22 (valid month and valid year), and 30 (valid
output of a single month with 20 days). On the other hand, TC33 is an invalid test case generated to cover
the partitions 1 and 14 (invalid month and valid year).

Table 2: A complete pool of test cases for the Cal programme.

Test Input Covered Is Test Input Covered Is
Case ID Parameters Partition Valid Case ID Parameters Partition Valid
TC1 9 1752 1, 22, 30 Yes TC39 3 -9999 1, 20 No
TC2 2 1200 1, 22, 29 Yes TC40 3 -10000 1, 20 No
TC3 2 1000 1, 22, 29 Yes TC41 3 10000 1, 21 No
TC4 2 1900 1, 22, 28 Yes TC42 a 2000 1, 10 No
TC5 2 1104 1, 22, 29 Yes TC43 1.0 2000 1, 10 Yes
TC6 2 2000 1, 22, 29 Yes TC44 3 z 1, 19 No
TC7 1 Yes TC45 3 2.0 1, 19 No
TC8 1 1, 6, 24 Yes TC46 10 1000 5 2 No
TC9 1999 1, 6, 24 Yes TC47 +10 1000 1, 22, 26 Yes
TC10 7999 1, 6, 24 Yes TC48 ’(10)’ 1000 1, 10 No
TC11 1 1 1, 22, 26 Yes TC49 10 +1000 1, 22, 26 Yes
TC12 1 1999 1, 22, 26 Yes TC50 10 ’(1000)’ 1, 19 No
TC13 1 7999 1, 22, 26 Yes TC51 0012 2000 1, 22, 26 Yes
TC14 1 9999 1, 22, 26 Yes TC52 012 2000 1, 22, 26 Yes
TC15 12 1999 1, 22, 26 Yes TC53 10 0083 1, 22, 26 Yes
TC16 12 1 1, 22, 26 Yes TC54 10 083 1, 22, 26 Yes
TC17 12 7999 1, 22, 26 Yes TC55 10 2000 A 2 No
TC18 12 9999 1, 22, 26 Yes TC56 10 A 2000 2 No
TC19 6 1 1, 22, 27 Yes TC57 A 10 2000 2 No
TC20 6 1999 1, 22, 27 Yes TC58 2.0 10 2000 2 No
TC21 6 7999 1, 22, 27 Yes TC59 10 2.0 2000 2 No
TC22 6 9999 1, 22, 27 Yes TC60 10 2000 2.0 2 No
TC23 9 1 1, 22, 27 Yes TC61 9999 1, 6, 24 Yes
TC24 9 1999 1, 22, 27 Yes TC62 0 1, 4 No
TC25 9 7999 1, 22, 27 Yes TC63 10000 1, 5 No
TC26 9 9999 1, 22, 27 Yes TC64 -9999 1, 4 No
TC27 8 1752 1, 22, 26 Yes TC65 a 1, 3 No
TC28 10 1752 1, 22, 26 Yes TC66 A b 1, 7 No
TC29 9 1751 1, 22, 27 Yes TC67 a -1 1, 8 No
TC30 9 1753 1, 22, 27 Yes TC68 a 10000 1, 9 No
TC31 2 1752 1, 22, 29 Yes TC69 -1 a 1, 11 No
TC32 0 2000 1, 14 No TC70 -1 -1 1, 12 No
TC33 -1 2000 1, 14 No TC71 -1 10000 1, 13 No
TC34 -14 2000 1, 14 No TC72 13 a 1, 15 No
TC35 -12 2000 1, 14 No TC73 13 -1 1, 16 No
TC36 13 2000 1, 18 No TC74 13 10000 1, 17 No
TC37 3 0 1, 20 No TC75 1752 1, 6, 23 Yes
TC38 3 -1 1, 20 No TC76 2000 1, 6, 25 Yes

3 An Overview of Mutation Testing

Mutation testing is a fault-based testing adequacy criterion proposed by DeMillo et al. [5]. Given a
programme P , a set of alternative programmes M , called mutants of P , is considered in order to measure
the adequacy of a test set T . The mutants differ from P only on simple syntactic changes, determined by a
set of mutant operators. In fact, mutant operators can be seen as the implementation of a fault model

that represents the common errors committed during software development. One example of such mutant
operator in C is the replacement of the relational operator < in the code if (a < b) by each of the other
relational operators >, <=, >=, == and !=.

7

To assess the adequacy of a test set T , each mutant m ∈ M , as well as the programme P , has to be
executed against each the test case t ∈ T . If the observed output of a mutant m is the same as that of P for
all test cases in T , then m is considered live, otherwise it is considered dead or eliminated. A live mutant
m can be equivalent to programme P . An equivalent mutant can not be distinguished and is discarded from
the mutant set as it does not contribute to improve the quality T .
Themutation score – the ratio of the number of dead mutants to the number of non-equivalent mutants

– provides to the tester a mechanism to assess the quality of the testing activity. When a mutation score
reaches 1.00, it is said that T is adequate with respect to (w.r.t.) mutation testing (MT-adequate) to
test P .
Since the set of mutant operators can be seen as an implementation of a fault model, we can consider all

the mutant operators as a set of faults against which our test sets is being evaluated. In this sense, a test set
that kills all the mutants or almost all of them, can be considered effective in detecting these kind of faults.
In the case study described in this article the complete set of mutant operators for unit testing implemented

in PROTEUM/IM 2.0 testing tool [4] is used as a fault model to evaluate the effectiveness of the Systematic
Functional Testing and others approaches in detecting faults. Below we describe the case study carried out
using the Cal programme and the results obtained.

4 Study Procedure and Results

The methodology used to conduct this case study comprises five steps: Programme Selection, Tool Selection,
Test Set Generation, Results and Data Analysis.

4.1 Programme Selection

In this case study the Cal programme – an UNIX utility to show calendars – is used for both: (1) illustrate
the process of generating test cases using Systematic Functional Testing criteria; and (2) also to make some
comparisons with other functional test sets. The results obtained herein must be further investigated for
larger programmes and other application domains.

4.2 Tool Selection

To support the application of Mutation Testing, PROTEUM/IM 2.0 [4] was used. This tool was developed at the
Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo – Brazil. Some facilities
that ease the carrying out of empirical studies are provided, such as:

• Test case handling: execution, inclusion/exclusion and enabling/disabling of test cases;

• Mutant handling: creation, selection, execution, and analysis of mutants; and

• Adequacy analysis: mutation score and statistical reports.

PROTEUM/IM 2.0 supports the application of mutation testing at the unit and integration level for C
programmes. At unit level it implements a set of 75 mutant operators, divided into four groups according to
where the mutation is applied: Constants (3 operators), Operators (46 operators), Statements (15 operators)
and Variables (11 operators). At integration level 33 mutants operators are implemented. Given a connection
between units f and g (f calls g), there are two groups of mutations: Group-I (24 operators) that applies
changes to the body of function g; and Group-II (9 operators) that applies mutations to the places unit f

calls g. More detailed information about PROTEUM/IM 2.0 testing environment can be found in [3].
In this paper the unit mutant operators were used as a fault model against which the test sets were

evaluated. The complete set of unit mutant operators available in PROTEUM/IM 2.0 is presented in Appendix A.
Mutation testing has been found to be powerful in its fault detection capability when compared to other

code coverage criteria at the unit and integration level [3, 8, 11, 12]. Although powerful, mutation testing

8

is computationally expensive [3, 8, 11, 12]. Its high cost of application, mainly due to the high number of
mutants created and the effort to determine the equivalent mutants, has motivated the proposition of many
alternative criteria for its application [1, 2, 6–9].

4.3 Test Set Generation

The idea of this experiment is to evaluate the adequacy of functional and random test sets w.r.t. mutation
testing. Therefore, different test sets were generated and their ability to kill mutants was evaluated.
One test set, named TSSFT , was generated using the Systematic Functional Testing described in Section 2.

Four test sets, named TSPB1, TSPB2, TSPB3, and TSPB4, were generated by students using both Equivalent
Class Partitioning and Boundary Value Analysis criteria. And seven random test sets, named TSRA1, TSRA2,
TSRA3, TSRA4, TSRA5, TSRA6, TSRA7, where generated containing 10, 20, 30, 40, 50, 60, and 70 test cases,
respectively. In all, 12 test sets were generated and the cardinality of each test set is shown in Table 3. The
second column of Table 3 presents the number of test cases in each test set. The third column presents the
number of effective test case, i.e., test case that kills at least one mutant considering the order of execution.
For example, considering TSSFT , 76 test cases were generated to cover all valid and invalid partitions and,
from this 76 test cases, 21 killed at least one mutant when executed.

Table 3: Functional and Random Test Sets.

Test Set Number of test case Effective test case

TSSFT 76 21
TSPB1 21 17
TSPB2 15 13
TSPB3 21 17
TSPB4 14 13
TSRA1 10 5
TSRA2 20 9
TSRA3 30 16
TSRA4 40 22
TSRA5 50 23
TSRA6 60 27
TSRA7 70 29

4.4 Results and Data Analysis

To illustrate the cost aspect related to mutation testing, consider the Cal programme that has 119 LOC,
4,624 mutants were generated by the set of unit mutant operators implemented in PROTEUM/IM 2.0. In
order to evaluate the coverage of a given test set against mutation testing its is necessary to determine the
equivalent mutants. This activity was carried out by hand and 335 (7.24%) out of 4,624 generated mutants
were identified as equivalents.
Having determined the equivalent mutants, we evaluated the mutation score obtained by each test set,

i.e., we evaluated the ability of each test set to distinguish the faults modelled by the set of non-equivalent
mutants. Table 4 shows, for each test set, the number of live mutants (i.e., the number of mutants that the
test set was not able to detect), the percentage of live mutants with respect to the total number of generated
mutants, the mutation score obtained, and the live mutants grouped by mutant operator class.
For example, it can be observed that TSSFT is the only test set that revealed all faults modelled by the

mutant operators. After its execution all the non-equivalent mutants are killed and a mutation score of 1.00
is obtained. Considering the test set TSPB2, after evaluating it w.r.t. mutation testing, 74 mutants are still
alive, i.e., 1.60% of the total, and the mutation score obtained is around 0.983. The last columns show the
number of live mutants per mutant operator class, giving an indication of the types of faults missing by the

9

corresponding test set. For example, considering TSPB2, 33 out of 74 live mutants are from the Constant
mutant operator class, 22 out of 74 are from the Operator class, and 19 out of 74 are from the Variable class.

Table 4: Test Set Coverage and Mutant Operator Class Missed.

Test Number Percentage Mutation Missing Mutants per Class
Set of Live of Live Score Constant Operator Statement Variable

TSSFT 0 0 1.000000 0 0 0 0
TSPB1 371 8.02 0.913500 193 78 27 73
TSPB2 74 1.60 0.982747 33 22 0 19
TSPB3 124 2.68 0.971089 58 31 13 22
TSPB4 293 6.34 0.931686 116 84 16 77
TSRA1 1,875 40.55 0.563242 944 539 103 289
TSRA2 558 12.07 0.870021 287 161 21 89
TSRA3 419 9.06 0.902399 216 113 15 75
TSRA4 348 7.53 0.918938 181 87 12 68
TSRA5 311 6.73 0.927557 159 77 11 64
TSRA6 296 6.40 0.931051 149 73 11 63
TSRA7 69 1.49 0.983927 21 30 0 18

A more detail information about the live mutants is presented in Table 5. In this table the live mutants
are grouped per mutant operator. For example, considering TSPB2, the 33 live mutants from Constant class
correspond to 17 mutants of u-Cccr, 13 of u-Ccsr, and 3 of u-CRCR. From Table 5 we can clearly observe
that TSSFT is the only test set that revealed all the faults modelled by the set mutants. We believe that this
occurs because TSSFT is designed to cover at least two test cases per partition to avoid co-incidental errors,
what is not required by the other approaches. The other functional approaches, although having a lower
application cost because they required less test cases, did not obtain a significative mutation score.
According to Table 4 it can be observed that TSSFT reaches the maximum coverage w.r.t. mutation

testing. Only two other test sets reached a mutation score over 0.98 but lower than 1.00: TSPB2 and TSRA7.
On average, considering random test sets with 10, 20, and 30 test cases, it can be observed that all the test
sets generated based on function testing criteria scored over 0.91 while TSRA1, TSRA2, and TSRA3, determined
mutation score around 0.56, 0.87, and 0.90, respectively.
Considering that the test set obtained by using Systematic Functional Testing criterion has 76 test cases

and only 21 out of 76 are effective, considering the order of application, we observe that the random test sets
with 70 an 20 test cases, scored relatively less than TSSFT . TSRA7 determines an mutation score around 0.984
and TSRA2 determines an mutation score around 0.870, which represent scores 1.6% and 13% below the one
determined by TSSFT , respectively.
Considering only the TSSFT test set, as described before, we observed that, due to the order of execution,

some test cases does not contribute to increment the mutation score, i.e., even if such test cases were removed
from TSSFT , the test set is still adequate w.r.t. mutation testing. From this evaluation we found that only
21 out of 76 test cases are effective. Table 6 shows the set of 21 test cases and also the increment in the
mutation score produced by each one. Observe that a mutation score of 1.00 is obtained with this subset
of test cases. For example, TC1 has been executed, 2,097 mutants are still alive (45.35% w.r.t. the total of
generated mutants) and a mutation score of 0.511 is obtained.
We carried out another analysis in TSSFT to identify which one of these 21 test cases are indispensable

to obtain a mutation score of 1.00. By analyzing which test case killed each mutant, we observed that some
mutants are killed by only one specific test case such that, if this particular test case is removed from the test
set, such a test set is not adequate any more w.r.t. mutation testing, i.e., at least one mutant will remain
alive. We called this test case as indispensable in the sense that, considering these particular test set, it is
not possible to obtain a mutation score of 1.00 if one of such indispensable test cases is removed.
We found that 9 out of the 21 effective test test cases of TSSFT are indispensable and cannot be removed

from the test set if a mutation score of 1.00 is required because there are some mutants that are killed
only by one of these 9 test cases. We evaluate the mutation score that these 9 test cases determined w.r.t.
mutation testing. The results are summarized in Table 7. As can be observed, the mutation score obtained

10

by these 9 test cases is 0.983, the same mutation score determined by TSPB2 and TSRA7. Comparing with the
random test sets TSRA1 (that has 5 out of 10 effective test cases) and TSRA2 (that has 9 out of 20 effective
test cases), the difference in the mutation score is around 42% and 11%, respectively. This may indicate that
even selecting random test sets with the same number of effective test cases, the efficacy in detecting faults
depends of other factors that, in this case, were not satisfied by the random test sets.

Table 5: Test Set Coverage and Type of Mutation Missed.

Test Missing Operators per Class
Set Constant Operator Statement Variable

TSSFT – – – –
TSPB1 u-Cccr(95)

u-Ccsr(74)
u-CRCR(24)

u-OAAA(8) u-OABA(6) u-OAEA(2) u-OASA(4)
u-OEAA(10) u-OEBA(7) u-OESA(6) u-OLAN(1)
u-OLBN(1) u-OLLN(1) u-OLNG(1) u-OLRN(3)
u-OLSN(2) u-ORAN(7) u-ORBN(3) u-ORLN(2)
u-ORRN(10) u-ORSN(4)

u-SRSR(7) u-SSDL(9)
u-SSWM(1) u-STRI(2)
u-STRP(8)

u-VDTR(4) u-VGAR(10)
u-VLSR(43) u-VTWD(16)

TSPB2 u-Cccr(17)
u-Ccsr(13)
u-CRCR(3)

u-OAAN(1) u-OABN(1) u-OEAA(5) u-OEBA(4)
u-OESA(4) u-OLRN(1) u-OLSN(2) u-ORRN(2)
u-ORSN(2)

– u-VDTR(3) u-VLSR(10)
u-VTWD(6)

TSPB3 u-Cccr(28)
u-Ccsr(24)
u-CRCR(6)

u-OABN(1) u-OEAA(6) u-OEBA(4) u-OESA(4)
u-OLAN(1) u-OLBN(1) u-OLLN(1) u-OLRN(2)
u-OLSN(2) u-ORAN(2) u-ORBN(1) u-ORRN(4)
u-ORSN(2)

u-SRSR(3) u-SSDL(4)
u-SSWM(1) u-STRI(1)
u-STRP(4)

u-VDTR(4) u-VGAR(1)
u-VLSR(12) u-VTWD(5)

TSPB4 u-Cccr(48)
u-Ccsr(53)
u-CRCR(15)

u-OAAN(8) u-OABN(5) u-OALN(4) u-OARN(12)
u-OASN(4) u-OEAA(19) u-OEBA(9)
u-OESA(10) u-OLRN(1) u-OLSN(2) u-ORAN(2)
u-ORRN(6) u-ORSN(2)

u-SRSR(5) u-SSDL(5)
u-STRI(1) u-STRP(5)

u-VDTR(4) u-VLSR(44)
u-VSCR(18) u-VTWD(11)

TSRA1 u-Cccr(480)
u-Ccsr(334)
u-CRCR(130)

u-OAAA(19) u-OAAN(43) u-OABA(14)
u-OABN(32) u-OAEA(5) u-OALN(26)
u-OARN(69) u-OASA(9) u-OASN(18)
u-OCNG(4) u-OEAA(48) u-OEBA(23)
u-OESA(24) u-Oido(2) u-OLAN(3) u-OLBN(1)
u-OLLN(1) u-OLNG(6) u-OLRN(10) u-OLSN(6)
u-ORAN(53) u-ORBN(32) u-ORLN(24)
u-ORRN(43) u-ORSN(24)

u-SMTC(3) u-SMTT(3)
u-SMVB(2) u-SRSR(27)
u-SSDL(29) u-SSWM(2)
u-STRI(7) u-STRP(29)
u-SWDD(1)

u-VDTR(39) u-VGAR(31)
u-VLAR(3) u-VLSR(161)
u-VTWD(55)

TSRA2 u-Cccr(155)
u-Ccsr(97)
u-CRCR(35)

u-OAAA(10) u-OAAN(5) u-OABA(8) u-OABN(8)
u-OAEA(3) u-OALN(6) u-OARN(7) u-OASA(5)
u-OASN(2) u-OEAA(16) u-OEBA(9) u-OESA(8)
u-OLNG(2) u-OLRN(5) u-OLSN(6) u-ORAN(16)
u-ORBN(13) u-ORLN(5) u-ORRN(19)
u-ORSN(8)

u-SRSR(6) u-SSDL(5)
u-SSWM(2) u-STRI(2)
u-STRP(6)

u-VDTR(5) u-VGAR(10)
u-VLSR(52) u-VTWD(22)

TSRA3 u-Cccr(107)
u-Ccsr(82)
u-CRCR(27)

u-OAAA(8) u-OAAN(2) u-OABA(7) u-OABN(2)
u-OAEA(2) u-OALN(4) u-OARN(6) u-OASA(5)
u-OEAA(15) u-OEBA(8) u-OESA(8) u-OLNG(1)
u-OLRN(4) u-OLSN(6) u-ORAN(8) u-ORBN(5)
u-ORLN(2) u-ORRN(13) u-ORSN(7)

u-SRSR(4) u-SSDL(5)
u-SSWM(1) u-STRI(1)
u-STRP(4)

u-VDTR(2) u-VGAR(8)
u-VLSR(45) u-VTWD(20)

TSRA4 u-Cccr(88)
u-Ccsr(69)
u-CRCR(24)

u-OAAA(8) u-OAAN(2) u-OABA(7) u-OABN(1)
u-OAEA(2) u-OARN(2) u-OASA(5) u-OEAA(11)
u-OEBA(7) u-OESA(6) u-OLNG(1) u-OLRN(3)
u-OLSN(4) u-ORAN(7) u-ORBN(3) u-ORLN(2)
u-ORRN(11) u-ORSN(5)

u-SRSR(3) u-SSDL(5)
u-STRI(1) u-STRP(3)

u-VDTR(1) u-VGAR(8)
u-VLSR(41) u-VTWD(18)

TSRA5 u-Cccr(66)
u-Ccsr(69)
u-CRCR(24)

u-OAAA(8) u-OAAN(2) u-OABA(7) u-OABN(1)
u-OAEA(2) u-OARN(2) u-OASA(5) u-OEAA(6)
u-OEBA(4) u-OESA(4) u-OLNG(1) u-OLRN(3)
u-OLSN(4) u-ORAN(7) u-ORBN(3) u-ORLN(2)
u-ORRN(11) u-ORSN(5)

u-SRSR(3) u-SSDL(4)
u-STRI(1) u-STRP(3)

u-VDTR(1) u-VGAR(6)
u-VLSR(39) u-VTWD(18)

TSRA6 u-Cccr(56)
u-Ccsr(69)
u-CRCR(24)

u-OAAA(8) u-OAAN(2) u-OABA(7) u-OABN(1)
u-OAEA(2) u-OARN(2) u-OASA(5) u-OEAA(5)
u-OEBA(4) u-OESA(4) u-OLNG(1) u-OLRN(3)
u-OLSN(4) u-ORAN(6) u-ORBN(3) u-ORLN(2)
u-ORRN(9) u-ORSN(5)

u-SRSR(3) u-SSDL(4)
u-STRI(1) u-STRP(3)

u-VDTR(1) u-VGAR(6)
u-VLSR(39) u-VTWD(17)

TSRA7 u-Cccr(5)
u-Ccsr(13)
u-CRCR(3)

u-OAAN(2) u-OABA(1) u-OABN(1) u-OARN(2)
u-OASA(1) u-OEAA(5) u-OEBA(4) u-OESA(4)
u-OLRN(1) u-OLSN(2) u-ORAN(2) u-ORRN(4)
u-ORSN(1)

– u-VLSR(9) u-VTWD(9)

11

Table 6: Effective Test Cases of TSSFT : Mutation Score Increment.

Test Case # Live % Live Score

TC1 2,097 45.35 0.511075
TC2 1,995 43.14 0.534857
TC3 1,986 42.95 0.536955
TC4 1,691 36.57 0.605736
TC6 1,659 35.88 0.613197
TC7 1,262 27.29 0.705759
TC8 256 5.54 0.940312
TC9 228 4.93 0.946841
TC11 212 4.58 0.950571
TC14 208 4.50 0.951504
TC15 204 4.41 0.952436
TC32 163 3.53 0.961996
TC33 162 3.50 0.962229
TC36 137 2.96 0.968058
TC37 96 2.08 0.977617
TC38 95 2.05 0.977850
TC41 70 1.51 0.983679
TC61 66 1.43 0.984612
TC62 25 0.54 0.994171
TC63 1 0.02 0.999767
TC64 0 0.00 1.000000

Table 7: TSSFT : Indispensable Test Cases.

Test Case # Live % Live Score

TC1 2,097 45.35 0.511075
TC7 1,266 27.38 0.704826
TC8 260 5.62 0.939380
TC36 215 4.65 0.949872
TC41 169 3.65 0.960597
TC61 137 2.96 0.968058
TC62 96 2.08 0.977617
TC63 72 1.56 0.983213
TC64 71 1.54 0.983446

Missing Operators

u-Cccr(15) u-Ccsr(22) u-CRCR(6) u-OLRN(2)
u-ORAN(4) u-ORBN(1) u-ORRN(6) u-SRSR(1)

u-VDTR(4) u-VLSR(4) u-VTWD(6)

12

5 Conclusions

From this study we can see the application of mutation testing as a coverage measure gives us assurance
that the test set we have produced for a programme is effective in detecting faults and we would recommend
doing this at least every time the method of test specification or programme production is changed.
Considering the Cal programme, we can see that the test set generated by Systematic Functional Testing

killed 100% of the non-equivalent mutants, while the test sets generated based on other criteria applied to
the same programme scored significantly less. We know that it is necessary to repeat the same experiment to
a number of programmes and to see if the results from applying it to Cal are consistently repeated. To aid
this it is the intention to place everything needed into a package suitable to allow such repetition to occur.
If Systematic Functional Testing demonstrates, in these repetition studies, to be as effective in detecting

faults as in the case study presented in this paper, given the cost and effort involved in doing path level
structural testing, Systematic Functional Testing can be a good start point to evaluate the quality of a
software program/component since the criterion does not require the source code to be supplied. Due to
the limitation of any functional testing criterion, an incremental testing strategy, combining Systematic
Functional Testing with structural testing criteria, can be established taking the advantage of the strength
of each testing technique.

References

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation analysis. Technical Report
GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, GA, Sept. 1979.

[2] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. Towards the determination of sufficient mutant
operators for C. In First International Workshop on Automated Program Analysis, Testing and Verification,
Limerick, Ireland, June 2000. (Special issue of the Software Testing Verification and Reliability Journal, 11(2),
2001 – To Appear).

[3] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An approach for integration testing.
IEEE Transactions on Software Engineering, 27(3):228–247, Mar. 2001.

[4] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/IM 2.0: An integrated mutation testing
environment. InMutation 2000 Symposium, pages 91–101, San Jose, CA, Oct. 2000. Kluwer Academic Publishers.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing programmer.
IEEE Computer, 11(4):34–43, Apr. 1978.

[6] A. P. Mathur. Performance, effectiveness and reliability issues in software testing. In 15th Annual International

Computer Software and Applications Conference, pages 604–605, Tokio, Japan, Sept. 1991. IEEE Computer
Society Press.

[7] E. Mresa and L. Bottaci. Efficiency of mutation operators and selective mutation strategies: an empirical study.
The Journal of Software Testing, Verification and Reliability, 9(4):205–232, Dec. 1999.

[8] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experimental determination of sufficient
mutant operators. ACM Transactions on Software Engineering Methodology, 5(2):99–118, Apr. 1996.

[9] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective mutation. In 15th International
Conference on Software Engineering, pages 100–107, Baltimore, MD, May 1993. IEEE Computer Society Press.

[10] M. Roper. Software Testing. McGrall Hill, 1994.
[11] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing: An empirical study. The Journal of

Systems and Software, 31(3):185–196, Dec. 1995.
[12] W. E. Wong, A. P. Mathur, and J. C. Maldonado. Mutation versus all-uses: An empirical evaluation of cost,

strength, and effectiveness. In International Conference on Software Quality and Productivity, pages 258–265,
Hong Kong, Dec. 1994. Chapman and Hall.

13

A Description of the Mutation Testing Unit Operators

PROTEUM/IM 2.0 has 75 unit mutation operators divided into 4 classes: Constant, Statement, Variable and
Operator. The three first classes are presented in Table 8 and the Operator class is illustrated in Table 9

Table 8: Constant, Statement and Variable Classes Operators.
Constant

Operator Description
u-Cccr Constant for Constant Replacement
u-Ccsr Constant for Scalar Replacement
u-CRCR Required Constant Replacement

Statement

Operator Description

u-SBRC break Replacement by continue
u-SBRn break Out to Nth Level
u-SCRB continue Replacement by break
u-SCRn continue Out to Nth Level
u-SDWD do-while Replacement by while
u-SGLR goto Label Replacement
u-SMTC n-trip continue
u-SMTT n-trip trap
u-SMVB Move Brace Up and Down
u-SRSR return Replacement
u-SSDL Statement Deletion
u-SSWM switch Statement Mutation
u-STRI Trap on if Condition
u-STRP Trap on Statement Execution
u-SWDD while Replacement by do-while

Variable

Operator Description

u-VDTR Domain Traps
u-VGAR Mutate Global Array References
u-VGPR Mutate Global Pointer References
u-VGSR Mutate Global Scalar References
u-VGTR Mutate Global Structure References
u-VLAR Mutate Local Array References
u-VLPR Mutate Local Pointer References
u-VLSR Mutate Local Scalar References
u-VLTR Mutate Local Structure References
u-VSCR Stucture Component Replacement
u-VTWD Twiddle Mutations

14

Table 9: Operator Class Operators.
Operator Description

u-OAAA Arithmetic Assignment Mutation
u-OAAN Arithmetic Operator Mutation
u-OABA Arithmetic Assignment by Bitwise Assignment
u-OABN Arithmetic by Bitwise Operator
u-OAEA Arithmetic Assignment by Plain Assignment
u-OALN Arithmetic Operator by Logical Operator
u-OARN Arithmetic Operator by Relational Operator
u-OASA Arithmetic Assignment by Shift Assignment
u-OASN Arithmetic Operator by Shift Operator
u-OBAA Bitwise Assignment by Arithmetic Assignment
u-OBAN Bitwise Operator by Arithmetic Assignment
u-OBBA Bitwise Assignment Mutation
u-OBBN Bitwise Operator Mutation
u-OBEA Bitwise Assignment by Plain Assignment
u-OBLN Bitwise Operator by Logical Operator
u-OBNG Bitwise Negation
u-OBRN Bitwise Operator by Relational Operator
u-OBSA Bitwise Assignment by Shift Assignment
u-OBSN Bitwise Operator by Shift Operator
u-OCNG Logical Context Negation
u-OCOR Cast Operator by Cast Operator
u-OEAA Plain assignment by Arithmetic Assignment
u-OEBA Plain assignment by Bitwise Assignment
u-OESA Plain assignment by Shift Assignment
u-Oido Increment/Decrement Mutation
u-OIPM Indirection Operator Precedence Mutation
u-OLAN Logical Operator by Arithmetic Operator
u-OLBN Logical Operator by Bitwise Operator
u-OLLN Logical Operator Mutation
u-OLNG Logical Negation
u-OLRN Logical Operator by Relational Operator
u-OLSN Logical Operator by Shift Operator
u-ORAN Relational Operator by Arithmetic Operator
u-ORBN Relational Operator by Bitwise Operator
u-ORLN Relational Operator by Logical Operator
u-ORRN Relational Operator Mutation
u-ORSN Relational Operator by Shift Operator
u-OSAA Shift Assignment by Arithmetic Assignment
u-OSAN Shift Operator by Arithmetic Operator
u-OSBA Shift Assignment by Bitwise Assignment
u-OSBN Shift Operator by Bitwise Operator
u-OSEA Shift Assignment by Plain Assignment
u-OSLN Shift Operator by Logical Operator
u-OSRN Shift Operator by Relational Operator
u-OSSA Shift Assignment Mutation
u-OSSN Shift Operator Mutation

15

