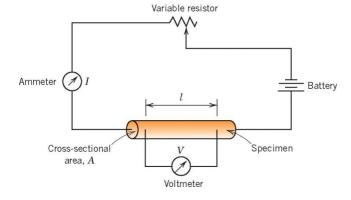
1º Semestre de 2016

Instituto de Física Universidade de São Paulo

Professor: Luiz C C M Nagamine

E-mail: nagamine@if.usp.br


Fone: 3091.6877

homepage: : http://disciplinas.stoa.usp.br/course/view.php?id=10070111

Propriedades Elétricas

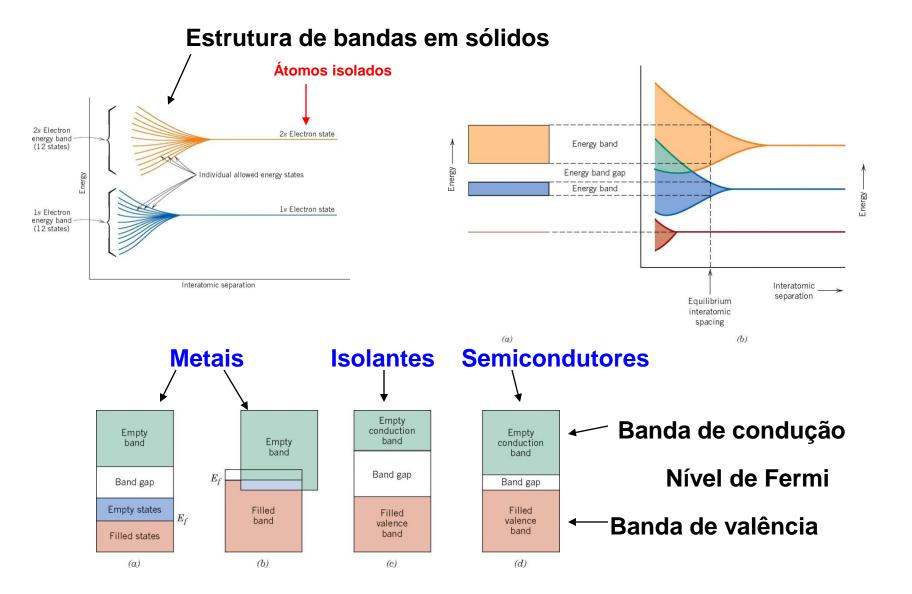
Lei de Ohm

$$V = RI$$

Resistividade

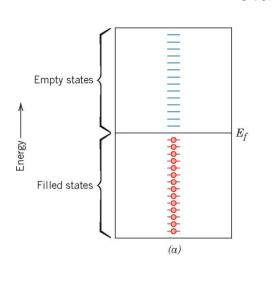
$$\rho = \frac{RA}{l} = \frac{VA}{Il}$$

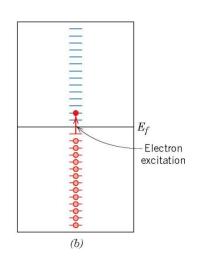
Condutividade

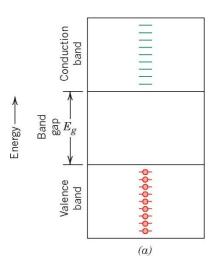

$$\sigma = \frac{1}{\rho} \qquad J = \sigma E$$

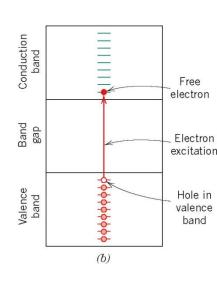
Metais = $\sim 10^7 (\Omega m)^{-1}$

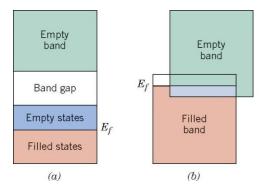
Isolantes = $10^{-10} \sim 10^{-20} (\Omega m)^{-1}$

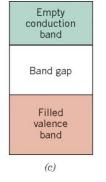

Semicondutores = $10^{-6} \sim 10^4 (\Omega m)^{-1}$

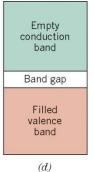

Propriedades Elétricas

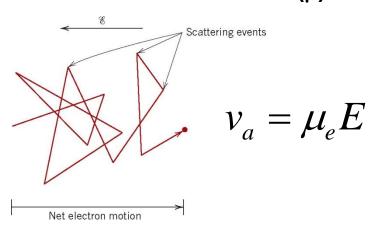

Propriedades Elétricas


Metais






Isolantes e Semicondutores



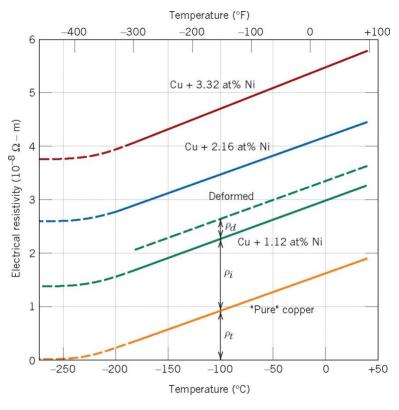
Propriedades Elétricas

Mobilidade eletrônica (μ)

Condutividade

$$\sigma = n|e|\mu_e$$

Table 18.1	Room-Temperature Electrical Conductivities for Nine Common	
	Metals and Alloys	

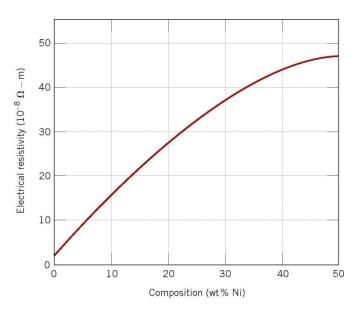

Metal	Electrical Conductivity $[(\Omega - m)^{-1}]$	
Silver	6.8×10^{7}	
Copper	6.0×10^{7}	
Gold	4.3×10^{7}	
Aluminum	3.8×10^{7}	
Brass (70Cu-30Zn)	1.6×10^{7}	
Iron	1.0×10^{7}	
Platinum	0.94×10^{7}	
Plain carbon steel	0.6×10^{7}	
Stainless steel	0.2×10^{7}	

Para metais:

$$\rho = \rho_t + \rho_i + \rho_d$$

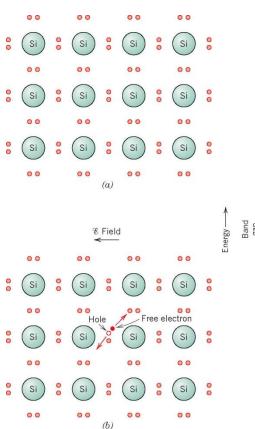
Termos correspondentes à efeitos térmicos, de impurezas e de deformações

Propriedades Elétricas



$$\rho_t = \rho_0 + aT$$

Efeitos de impurezas, temperatura e deformação


Solução sólida

$$\rho_i = Ac_i(1-c_i)$$

Duas fases

$$\rho_i = \rho_a V_a + \rho_b V_b$$

% Field

Si

Si

Si

Si

Si

(c)

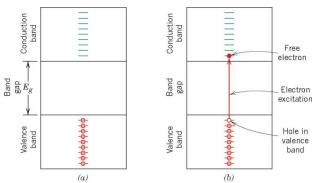
00

Free electron

Si

Si

00


Si

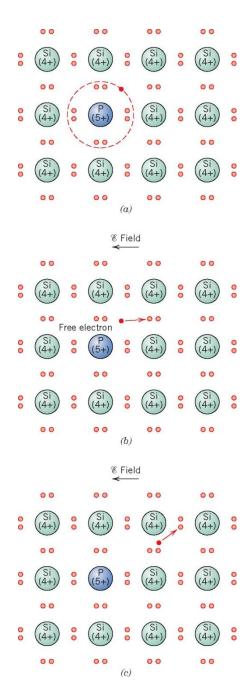
00

Si

Si

Semicondutores

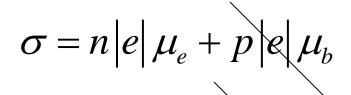
Condutividade intrínsica

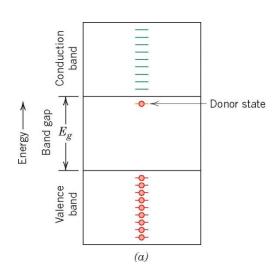

$$\sigma = n |e| \mu_e + p |e| \mu_b$$

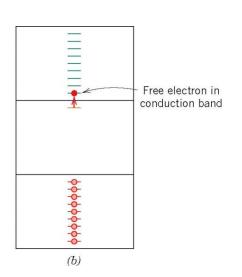
Por elétrons e buracos

$$\mu_e > \mu_b$$

Table 12.2 Band Gap Energies, Electron and Hole Mobilities, and Intrinsic Electrical Conductivities at Room Temperature for Semiconducting Materials

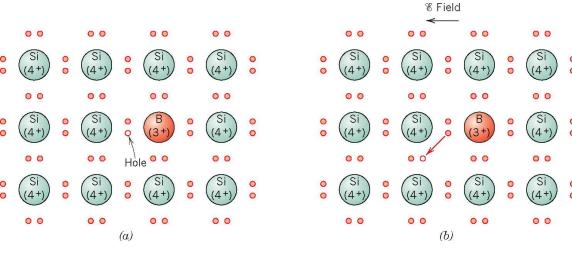

Material	Band Gap (eV)	Electrical Conductivity $[(\Omega-m)^{-1}]$	Electron Mobility (m²/V-s)	Hole Mobility (m²/V-s)
		Elemen	tal	
Si	1.11	$4 imes 10^{-4}$	0.14	0.05
Ge	0.67	2.2	0.38	0.18
		III-V Comp	ounds	
GaP	2.25		0.05	0.002
GaAs	1.42	10^{-6}	0.85	0.45
InSb	0.17	2×10^4	7.7	0.07
		II-VI Com	ounds	
CdS	2.40	_	0.03	_
ZnTe	2.26	_	0.03	0.01

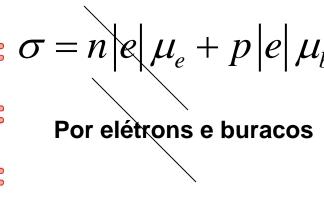

Semicondutores extrínsicos


Tipo n

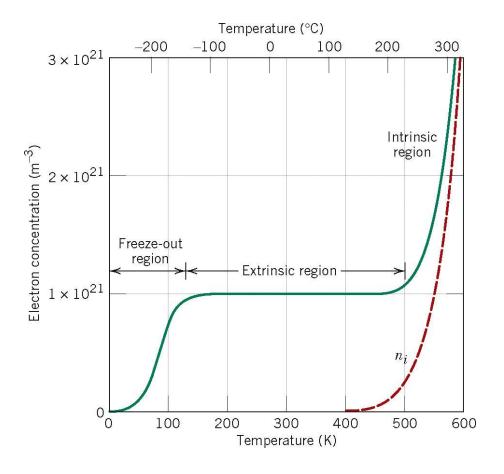
Condutividade

Por elétrons e buracos




Semicondutores extrínsicos

Tipo p


Condutividade

Hole in

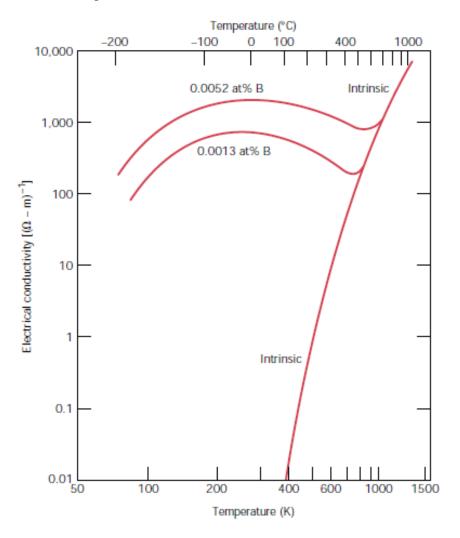
Semicondutores extrínsicos

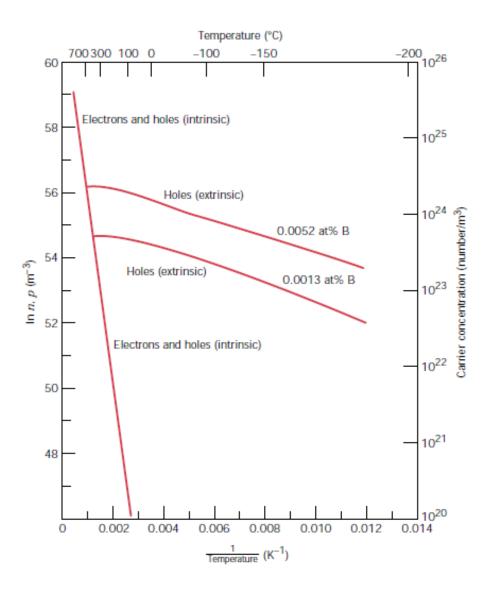
Condutividade

$$\sigma = n|e|\mu_e + p|e|\mu_b$$

Por elétrons e buracos

Variação com a temperatura da condutividade




Figure 12.15 The temperature dependence of the electrical conductivity (log-log scales) for intrinsic silicon and boron-doped silicon at two doping levels. [Adapted from G. L. Pearson and J. Bardeen, *Phys. Rev.*, 75, 865 (1949).]

A dependência da condutividade intrínseca com a temperatura é aproximadamente:

$$\ln \sigma \cong C - \frac{E_g}{2kT}$$

A dependência dos portadores de carga com a temperatura é aproximadamente

$$\ln n = \ln p \cong C' - \frac{E_g}{2kT}$$

FIGURE 12.16

The logarithm of carrier (electron and hole) concentration as a function of the reciprocal of the absolute temperature for intrinsic silicon and two boron-doped silicon materials.

(Adapted from G. L. Pearson and J. Bardeen, *Phys. Rev.*, 75, 865, 1949.)

$$E_g = -2k \left(\frac{\Delta \ln p}{\Delta (1/T)} \right)$$

$$= -2k \left(\frac{\Delta \ln n}{\Delta (1/T)} \right)$$

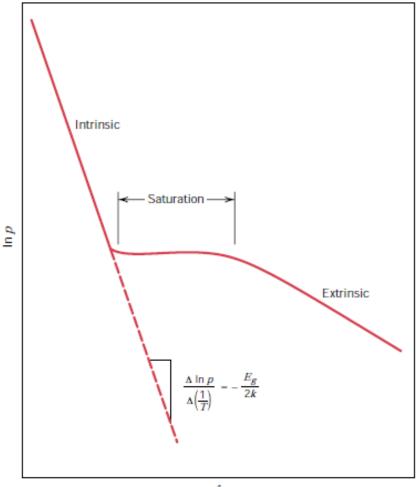


FIGURE 12.17 Schematic plot of the natural logarithm of hole concentration as a function of the reciprocal of absolute temperature for a *p*-type semiconductor that exhibits extrinsic, saturation, and intrinsic behavior.

Exemplo 1

Phosphorus is added to high-purity silicon to give a concentration of 10²³ m⁻³ of charge carriers at room temperature.

- (a) Is this material n-type or p-type?
- **(b)** Calculate the room-temperature conductivity of this material, assuming that electron and hole mobilities are the same as for the intrinsic material.
- (a) Phosphorus is a Group VA element (Figure 2.6) and, therefore, will act as a donor in silicon. Thus, the $10^{23}\,\mathrm{m}^{-3}$ charge carriers will be virtually all electrons. This electron concentration is greater than that for the intrinsic case (1.33 \times $10^{16}\,\mathrm{m}^{-3}$, Example Problem 12.1); hence, this material is extrinsically n-type.

(b) In this case the conductivity may be determined using Equation 12.16, as follows:

$$\sigma = n |e| \mu_e = (10^{23} \,\mathrm{m}^{-3}) (1.6 \times 10^{-19} \,\mathrm{C}) (0.14 \,\mathrm{m}^2/\mathrm{V}\text{-s})$$

= 2240 (\Omega\cdot \mathrm{m})^{-1}

Exemplo 2-

If the room-temperature [25°C (298 K)] electrical conductivity of intrinsic germanium is 2.2 $(\Omega-m)^{-1}$, estimate its conductivity at 150°C (423 K).

$$C = \ln \sigma + \frac{E_g}{2kT}$$

= $\ln(2.2) + \frac{0.67 \text{ eV}}{(2)(8.62 \times 10^{-5} \text{ eV/K})(298 \text{ K})} = 13.83$

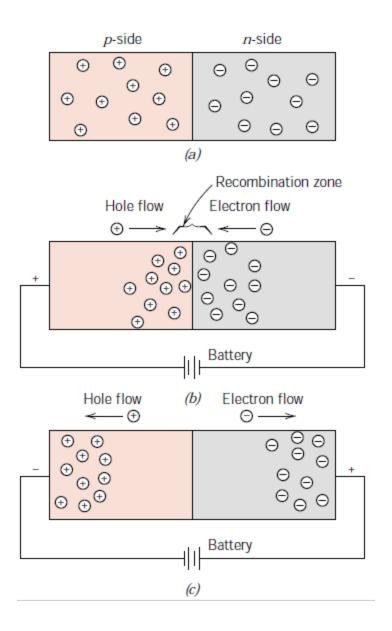
A condutividade a 150°C (423 K):

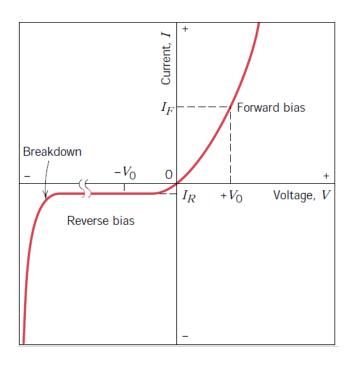
$$\ln \sigma = C - \frac{E_g}{2kT}$$

=
$$13.83 - \frac{0.67 \text{ eV}}{(2)(8.62 \times 10^{-5} \text{ eV/K})(423 \text{ K})} = 4.64$$

$$\sigma = 103.8 \ (\Omega \text{-m})^{-1}$$

Dispositivos Semicondutores


Junção p-n Processo de produção **Diodos** Camada epitaxial Substrato n n+ n+ $\uparrow N_a - N_d$ (a) (b) (a) Luz ultravioleta SiO_2 Resina foto-Óxido Máscara resistiva SiO_2 n n Junção abrupta Carga espacial n+ n+ Contato metálico Contato metálico (c) (d) (b) região p SiO2 região n SiO Contato metálico x = 0n+ n+ Contato metálico


Figura 6.1: Etapas da fabricação de um diodo de junção p-n com a tecnologia planar: (a) pastilha de Si usada como substrato; (b) substrato com camada de Si epitaxial dopado com impurezas tipo n; (c) camada óxida sobre o Si; (d) ilustração do processo de fotolitografia para polimerizar certas regiões da resina foto-resistiva; (e) difusão de impurezas tipo p através da janela aberta no óxido; (f) estrutura completa do diodo de junção com contatos metálicos.

(f)

(e)

Figura 6.2: (a) Variação da concentração de impurezas numa junção p-n. A linha tracejada representa a variação numa junção real enquanto a linha cheia representa uma junção abrupta ideal. (b) Modelo de junção abrupta unidimensional.

Dispositivos Semicondutores

Figura 6.4: Variação da densidade de carga, campo elétrico e potencial eletrostático no modelo unidimensional da junção p-n.

Dispositivos Semicondutores

Junção p-n

Diodos

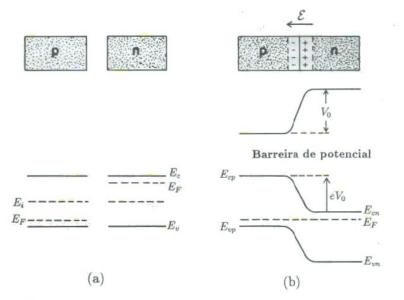
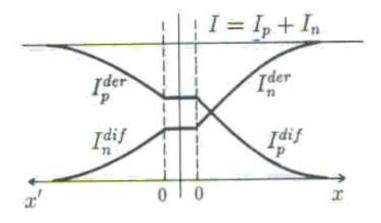



Figura 6.3: (a) Semicondutores p e n separados. (b) Carga, campo elétrico, potencial e níveis de energia na região de carga espacial de junção p-n.

Correntes na região de depleção

Dispositivos Semicondutores

Junção p-n

Região de depleção

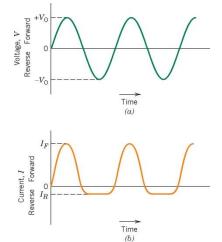



Figura 6.5: Efeito de tensão externa na espessura da região de carga espacial e na altura da barreira de potencial: (a) situação em equilíbrio, (b) polarização direta; (c) polarização reversa.

Diodos

Corrente elétrica em um diodo

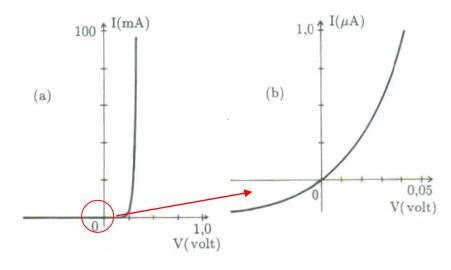
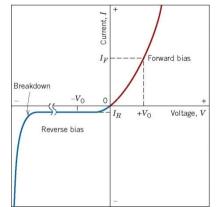



Figura 6.7: Característica I-V de junção p-n ideal dada pela equação do diodo com $I_s = 0, 25~\mu A$, valor adequado para uma junção de germânio. A curva em (b) é a mesma que em (a), feita em escala ampliada para mostrar o comportamento em torno da origem.

Dispositivos Semicondutores

Transístor bipolar

Transistor p-n-p

Metal E B SiO₂

Figura 7.2: Estrutura planar do transistor bipolar de junção com algumas dimensões típicas. As letras E, B e C representam os terminais do emissor, da base e do coletor, respectivamente. As distâncias indicadas representam espessuras típicas.

Corrente elétrica em um transístor

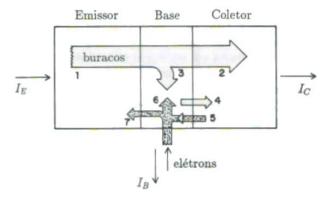
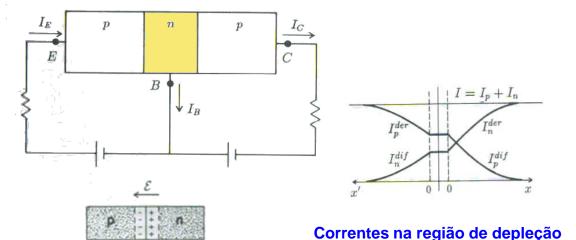
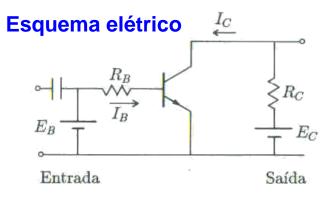




Figura 7.4: Ilustração do fluxo de elétrons e de buracos em transistor p-n-p: 1- Buracos em movimento de deriva no emissor; 2- Buracos que atingem o coletor em movimento de difusão; 3- Buracos que desaparecem na base por recombinação; 4 e 5- Buracos e elétrons gerados termicamente na base e que formam a corrente de saturação reversa da junção do coletor; 6- Elétrons que recombinam com os buracos da componente 3; 7- Elétrons injetados da base para o emissor formando a corrente I_{E_n} .

Transistor p-n-p

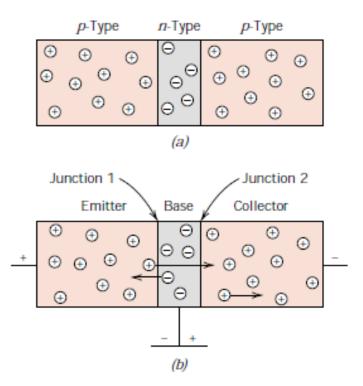
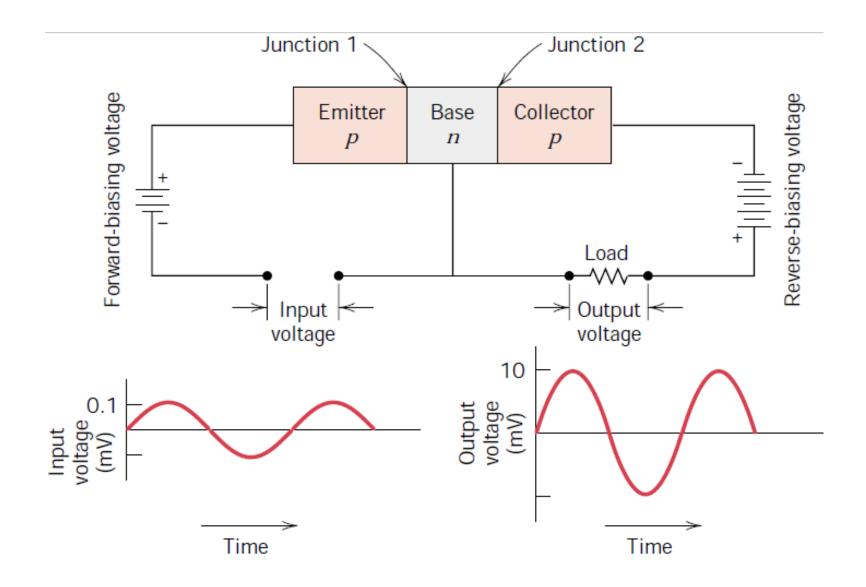



FIGURE 12.23 For a junction transistor (p-n-p type), the distributions and directions of electron and hole motion (a) when no potential is applied and (b) with appropriate bias for voltage amplification.

